URSOUND - LIVE PATCHING OF AUDIO AND MULTIMEDIA USING A
MULTI-RATE NORMED SINGLE-STREAM DATA-FLOW ENGINE

Georg Essl

University of Michigan
EECS & Music, Ann Arbor, Michigan, U.S.A.
gessl@eecs.umich.edu

ABSTRACT

UrSound is a multi-rate normed single-stream data-flow en-
gine for audio and multimedia I/O designed for multi-touch
sensor-rich mobile devices. All components connectivity
is treated equally. This design choice necessitates that no
entity dictates the sample rate and that the semantics of a
connection cannot be fixed. Hence we are lead to intro-
duce a multi- and flexible-rate data flow that uses normed
data streams to allow for seamless and very rapid connec-
tivity changes. We introduce canonical semantic mappings
to allow each processing unit to define the meaning of the
normed data for their purposes.

1. INTRODUCTION

Mobile phones have become attractive platforms for audio
and multimedia processing. There is a need for a audio and
multi-media dataflow engine suitable for this platform. This
paper presents UrSound, a multi-rate single-stream data-flow
engine. Itis part of UrMus which additionally offers a script-
ing API, interface design and other components to help sup-
port mobile interactions beyond data flow. Our purpose here
is to discuss only the data flow and details of UrMus are de-
scribed elsewhere [6]. UrMus is a followup to the SpeedDial
(3.

Audio processing engines have a long-standing history
going back to its origins with Music I by Max Matthews. Ul-
timately multiple paradigms have emerged addressing how
to allow users to generate and process music. The most
dominant paradigms are text-based systems, such as CSound
[L], Arctic/Nyquist [4} 3], SuperCollider [8]] or ChucK [13]
on the one hand, and graphical patching systems, such as
Max/MSP [10] or pure data (pd) [9] on the other hand. The
question of mapping has been widely discussed for these
different systems. Mapping of this kind is also of interest
for audio analysis, and in this context an approach called
implicit patching [[11] was proposed by Tzanetakis and co-
workers. UrSound allows implicit patching, but does not
demand it.

The main difference of UrSound to prior art is two-fold.
First UrSound is a data-flow processing pipeline which treats

all flow of data equally. Because sensors and actuators run
at different natural data rates or at irregular time events this
immediate leads to the need for the engine to be multi- and
flexible-rate. The second difference is the design goal of live
patching. This means that elements in the data flow can be
repatched interactively. In order to enable this UrSound in-
troduces normed data. The outcome of removing semantics
from processing allows fast live patching without the per-
former being required to know which mappings have fitting
semantics.

UrSound does not directly assume how it is being used
in terms of visual representation. As we will see it can be
used on two levels. One is directly in C/C++/Objective-C
and embedded in arbitrary projects. In this form it is akin to
the core engine of pure data [9]. It can also be used from
an abstracted higher level script language Lua as part of
UrMus [6]. The choice of Lua is not particularly impor-
tant for UrSound, except to say that UrSound is not, like
for example ChucK, SuperCollider or the Lua-based vessel
[12] a script language to write synthesis algorithms. Instead
it is purely a script-exposed interface that allows to create
C-level connections between processing blocks and hence
establish data-flow networks. This is somewhat related to
mechanisms also found in Nyquist [3] and Marsyas [11].
The reason for this design choice is purely based on perfor-
mance. By avoiding any script language processing within
the audio pipeline all code ultimately is C, and by avoiding
a virtual machine or byte-code processing, one can avoid
on-the-fly overhead when reconnecting components.

2. GENERIC INTERCONNECTIVITY AND
EQUALITY OF FLOWBOXES

UrSound is a dataflow engine consisting of a network of
connected units. When the network connects to an actua-
tor there will be a perceptible outcome. When it connects to
a sensor, there will be interactive control. The way UrSound
differs from some earlier engines is in the way sensors, ac-
tuators and the data flow is treated. Currently UrSound does
make one assumption, which is that the data flow is just one
normed data point in the range of [—1,1]. Hence currently

mailto:gessl@eecs.umich.edu

the engine does not allow higher dimensional information to
be transported as a single object.

In UrSound we do not distinguish between types of data
streams. This is different to many other engines which dis-
tinguish certain data flows by function. In those cases unit
generators are often seen as having two types of data flow-
ing in and out of them. In pure data for example these two
types are described as message and signal, other place they
are described as control and signal.

There are numerous advantages to removing this distinc-
tion. One is that it leads to equal and consistent treatment of
all parts of the network. For example should a signal com-
ing out of a microphone be considered a control/message
stream, or should it be considered a signal? Should a new
touch event on a multi-touch screen be considered a control
or a signal? By removing the distinction the question does
not pose itself. Rather the network itself is allowed to de-
fine the semantics of a data flow. An event is simply a data
stream that is currently sending data. A sequence of events
is a data stream which sends data at irregular event times.

Looking at unit generators we can make this more ex-
plicit. Let us take a unit generator that is a sine oscillators:

y=A-sin(2xnf-t) (1)

with the following inputs: amplitude A, frequency f, and
t is some notion of time. We have one output which is the
result of the oscillator given its parameters. Traditionally we
consider A, f to be controls that generate a signal stream y.

But what is the correct way to treat the following goal in
this context: Have a microphone signal (which traditionally
is an audio signal stream) change the amplitude and have
accelerometer data change the frequency. If the microphone
signal is not a control, how do I convert it to serve as control
to the unit generator? In UrSound we remove this question
and design the necessary aspects that are needed to make
this work.

3. NORMED DATAFLOW

If one removes the difference between control and signal
one immediately can consider connecting every data flow
with another. But by wanting to do so there are two prob-
lems that need to be addressed. These problems relate to the
question of data semantics and timing.

To understand what we mean by data semantics let us
return to the example of the sine oscillator. As written in
equation (I)) has inputs A, and f. These however require dif-
ferent actual number ranges. To have a sine oscillator that
does not clip or overflow, the absolute value of A should be
no larger than 1. On the other hand f in order to be in the
audible range should be somewhere between 20 and 20000.
Another way to think about this is via types or units. The

unit of frequency is Hertz. We do not typically give ampli-
tude of audio samples a type though we could. Secondly the
data itself has a certain semantics. It is actually not enough
to know that the range of frequencies is 20 to 20000 but in
addition the perception of frequencies mean that our percep-
tion of pitches relates to frequency doubling, hence having
an exponential relationship. On the other hand the ampli-
tudes A are generally treated linearly.

The goal is now to make it easy for an arbitrary data
stream to be both connectable to A and f and make that
give sensible results. The solution used in UrSound is two-
fold. First all data streams are normed. By this we mean
that their value range is generically assumed to be within
[—1,1]. Unit Generators which observe this condition are
called flowboxes. Any flowbox in UrSound is required to ac-
cept this range for all its inputs, and produce outputs that sat-
isfy this requirement. This alone already allows for generic
interconnectivity. Now any flowbox output can be connected
with any flowbox inputs without consideration of the type or
semantics of the input. The second part of the solution has
to do with semantics and type. UrSound flowboxes are re-
sponsible for knowing their own semantics and type, and be
capable of converting a normed data stream into semantic
data that is meaningful for its own purpose.

In the case of the sine oscillator flowbox, the genera-
tion of the semantics of frequency requires a mapping of the
interval [—1, 1] to some frequency range. This mapping is
somewhat arbitrary and up for design of a flowbox. In or-
der to ease the design, we use a set of canonical mappings
in UrMus. If a flowbox has an input of a certain frequently
used semantics there is one defined mapping from normed
data to this input. Frequency is a good example of an in-
put that appears in a wide range of contexts. The currently
used canonical mapping for frequency is out = 55-2°0%/12,
This allows for sub-audible frequencies to be represented in
one mapping hence allows for effects that happen in the vi-
sual range as well as time-domain audio oscillations (such
as vibrato) to be rendered with the same mapping.

The choice of the interval [—1, 1] is somewhat arbitrary
and in fact when a data network is connected it is mostly
invisible what the data is that flows through the network.
There are however certain reasons that suggests this choice.
For one it is a good prototype for a symmetric bound in-
terval. Many types of data that we encounter in multi-media
processing are either symmetric bound, or asymmetric bound.
Examples for symmetric bound data are audio samples, or
tilt angle from accelerometers. Second, the interval is gen-
eral in the sense that any function, even infinitely continu-
ous ones can be arranged with a suitable mapping. In the
case of an infinite line, it can be defined through a stereo-
graphic projection. Also the interval is the natural parallel
projection of the circle hence rotations on the circle can be
naturally done using this interval. This has direct practi-
cal applications in that for example the zero-point of data

from accelerometer tilt can be directly manipulated. Finally
within the interval [—1, 1] monomials such as x" all have the
property that they all share intersections with the 0 and +1
points hence increasing the order serves to simply create in-
creasingly steep even and odd-symmetric function that for
very high order start to approximate steps with increasing
flattening around O.

4. MULTI-RATE DATAFLOW

UrSound is a multi-rate as well as flexible-rate single-dimen-
sional dataflow pipeline. By multi-rate we mean that differ-
ent parts of the dataflow network may be operating at dif-
ferent data rates. Some parts of the dataflow network may
also operate at irregular rates. The necessity for this again
follows from removing the distinction between control and
signal. Of course one could try to design a system where one
data rate plays a global role. In fact many audio synthesis
engines take this position indirectly, because they do not re-
ally consider other output media, hence it is fine to consider
a global sample rate. In UrSound inherently we wanted to
design for a number of existing data sources and data sinks.

The idea is that sub-graphs of the dataflow network take
on the data rate that is natural to its connected components,
insofar as this is well-defined. Take again example of the
sine oscillator (I). If we connect an input to the accelerome-
ter, the data rate of the network consisting of the accelerom-
eter leading into the input operates at the natural rate of the
accelerometer. If reconnected to a microphone, then the nat-
ural rate should be that of the microphone.

Furthermore the sine oscillator also serves to illustrate
another important question. How do we identify which parts
of the data-flow network have what sample rate? Clearly
the rate of data at the output of the sine oscillator is not de-
pendent of the rate that changes any of the inputs. Hence
the sine oscillator is an example of a rate-decoupling flow-
box. Many traditional unit generators have this property.
However there is a second type of flowbox that does not
de-couple rate. All filters fall into this class. The rate at
the input of the filter generically is related to the rate at the
output, at least form some input/output pair. So in general
a flowbox may have input/output pairs that are decoupled
as well as those that are coupled. If a dataflow network is
connected to a coupling pair, then the rate of the network
will propagate through the flowbox. If it is decoupled it will
terminate at the flowbox.

With these rules we can already describe the data rates
of subgraphs of many data flow networks, and in fact most
networks that one encounters in typical synthesis settings.
There is however an additional case to consider. If a sub-
network connects two decoupled flowboxes the network in-
between may not have any inherent sample rate. Currently
UrSound does not offer a canonical resolution for this situ-
ation. There are three options that can be implemented: (1)

take the rate of the incoming decoupled flowbox, (2) take
the rate of the outgoing decoupled flowbox, (3) define an
independent sample rate for the subnet.

The data rate can propagate forward, that is from an in-
put to an output, or it can propagate backward, from an out-
put to an input. In UrSound this propagating relation is ex-
plicitly chosen because this allows for user-side resolution
of conflicting possibilities. For example assume that Ac-
celerometer data is directly connected to the audio output.
Each has its natural rate. How can one define which rate
will be used in data flow? The answer is by choosing the di-
rection of the flow. In UrSound parlance we call a situation a
push if the data rate is defined by a flow from an output (say
the accelerometer) to an input (say the dac). The opposite
case is called a pull. Hence either the dac can pull data from
the accelerometer at its rate, or the accelerometer can push
data to the dac at its rate. All sources and sinks inherently
know rate conversion hence it is always possible to push or
pull them.

5. FLOWBOXES

The simplest possible flowboxes only have one input, one
output and do not de-couple data rates and have no state.
Within UrSound we call these flowboxes atomic. Within
audio processing we know flowboxes of this type as wave-
shaping [7]. However within UrSound they immediately
have a multitude of meanings depending on where they are
used in the network. They only become waveshapers if their
input is an audio signal. Otherwise they have more the na-
ture of a signal manipulator.

Nope Inv Fullv \
R
-1
1 DV FullDV @] SQ
S o
PGate NGate Pos Neg

Figure 1. 8 of the most elementary (piecewise linear) atoms.
UrMus also uses polynomial, exponential, logarithmic and
trigonometric atoms.

UrSound comes with a fairly large set of atomic flow-
boxes to ease data manipulation for many likely cases. The
most simple examples are depicted in Figure[I] The trivial
atom is Nope which does nothing to the signal. Many of
these are motivated by certain need to change the reference
or semantics of sensor signals. An important semantics is
orientation and the position of the zero. For example Inv

inverts the signal, hence an up-down tilt becomes a down-up
tilt. V defines that the minimum should be at 0 of the map-
ping rather than at —1. This has the effect of pulling the rest
position to the center of the mapping. DV does the same but
for the maximum. The line [—1, 1] has a jump condition if
one periodically continues the interval. The CJ atom moves
that jump condition to 0 and hence acts as a 90-degree rota-
tion. It can also do signal manipulations. For example SQ
forces all positive values to 1 and all negative values of —1
hence yielding a binary oriented signal from any continuous
one. Another specialized flowbox is called ZPuls. Its pur-
pose is to convert special cases into a discrete event. In this
case it returns 1 if it sees a 0 in the incoming stream, hence
pulsing for this special case. One can envision a wide range
of pulse generating methods that all generate pulses when-
ever conditions on the input signals are met. This is the way
conditionals can be implemented within the data network.

STK [2] is used to provide a range of more complex
flowboxes. The paradigm of STK is not fully compatible
with a multi-rate system and often inputs to STK algorithms
are not all of a type that seamlessly would operate with
within the type of data flow mapping the UrSound uses. This
specifically goes for consistent behavior of inputs with same
or similar semantic meaning. However, the current imple-
mentation is workable and shows how complex algorithms
can be incorporated into the system.

6. CONCLUSIONS

UrSound is a dataflow engine that works with multiple frame
rates and operates on normed data on the range of [—1,1].
FlowBoxes, a generalized form of unit generators provide
conversion of the normed data to semantically meaningful
information. Hence control and signal become fully inter-
changeable. UrSound serves as an on-the-fly patching mul-
timedia dataflow backbone to the UrMus environment. How-
ever, in principle it can be replaced by other environments
that offer sound and multimedia processing. We can see that
currently developed alternative solutions such as pd, ChucK
can be integrated to either be concurrent or replace UrSound
for certain purposes. Regardless we believe that the the
multi-rate and normed data flow design of UrSound is at-
tractive and live-patching is important for interactive music
generation. Even though UrSound was designed on mobile
smart-phones such as the iPhone, it can in principle be used
on any platform that requires a dataflow mapping solution.

7. ACKNOWLEDGEMENTS

I appreciate stimulating discussion with George Tzanetakis
on implicit patching.

8. REFERENCES

[1] R. Boulanger, The Csound book: perspectives in soft-
ware synthesis, sound design, signal processing, and
programming. Cambridge, MA, USA: MIT Press,

2000.

[2] P. R. Cook and G. P. Scavone, “The synthesis toolkit
(stk),” in Proceedings of the International Computer
Music Conference (ICMC), 1999.

[3] R. Dannenberg, “Machine Tongues XIX: Nyquist,
a Language for Composition and Sound Synthesis,”
Computer Music Journal, vol. 21, no. 3, pp. 50-60,
Fall 1997.

[4] R.Dannenberg, P. McAvinney, and D. Rubine, “Arctic:
A Functional Approach to Real-Time Control,” Com-
puter Music Journal, vol. 10, no. 4, pp. 67-78, Winter
1986.

[5] G. Essl, “SpeedDial: Rapid and On-The-Fly Mapping
of Mobile Phone Instruments,” in Proceedings of the
International Conference on New Interfaces for Musi-
cal Expression, Pittsburgh, June 4-6 2009.

[6] , “UrMus — an environment for mobile instrument
design and performance,” in Proceedings of the Inter-
national Computer Music Conference (ICMC), Stony

Brooks/New York, June 1-5 2010.

[7] M. Le Brun, “Digital Waveshaping Synthesis,” Jour-
nal of the Audio Engineering Society, vol. 27, no. 4,
pp. 250-266, 1979.

[8] J. McCartney, “Rethinking the computer music lan-
guage: Supercollider,” Comput. Music J., vol. 26,
no. 4, pp. 61-68, 2002.

[9] M. Puckette, “Pure data: another integrated computer
music environment,” in in Proceedings, International
Computer Music Conference, 1996, pp. 37—41.

[10] ——, “Max at seventeen,” Comput. Music J., vol. 26,
no. 4, pp. 31-43, 2002.

[11] L. F Teixeira, L. G. Martins, M. Lagrange, and
G. Tzanetakis, “Marsyasx: multimedia dataflow pro-
cessing with implicit patching,” in ACM Multimedia,
2008, pp. 873-876.

[12] G. Wakefield and W. Smith, “Using lua for multime-
dia composition,” in Proceedings of the International
Computer Music Conference. San Francisco: Inter-
national Computer Music Association, 2007, pp. 1-4.

[13] G. Wang and P. R. Cook, “Chuck: a programming
language for on-the-fly, real-time audio synthesis and
multimedia,” in ACM Multimedia, 2004, pp. 812-815.

	1 Introduction
	2 Generic Interconnectivity and Equality of Flowboxes
	3 Normed Dataflow
	4 Multi-rate Dataflow
	5 Flowboxes
	6 Conclusions
	7 Acknowledgements
	8 References

