
URMUS – AN ENVIRONMENT FOR MOBILE INSTRUMENT DESIGN AND
PERFORMANCE

Georg Essl

University of Michigan
EECS & Music, Ann Arbor, U.S.A.
gessl@eecs.umich.edu

ABSTRACT

UrMus is a multi-layered environment intended to support
interface design, interaction design, interactive music per-
formance and live patching on multi-touch mobile devices.
Its design is based on suggestions from the HCI community
for design for multiple target audiences and design for cre-
ativity. In addition UrMus is intended to be an environment
for use directly on mobile devices and was not designed with
legacy assumptions taken over from desktop computing. Ur-
Mus offers multiple component which all are replacable and
offer ways to control computational cost, easy of program-
ming and design as well as separation of representation and
function. Ultimately UrMus tries to stay as flexible and in-
dependent from any particular design choice as possible and
rather is an environment where mobile interaction design
becomes possible.

1. INTRODUCTION

UrMus is an environment to support interface design, in-
teractive media performance and mobile music making on
multi-touch mobile smart phones. The design of UrMus is
driven by multiple goals, but also by a certain set of assump-
tions about mobile computing and needs for future mobile
interactions. The field has recently seen a drastic accelera-
tion, yet there is still a certain lack of infrastructure to allow
to broadly explore what mobile music making can mean.

Mobile phones have become attractive platforms for au-
dio and multimedia processing. However, the approach to
using them for this purpose either is based on developing
special purpose software that will offer only one solution,
or is based on ports of existing audio and multi-media so-
lutions to mobile phone platforms. Our goal is to offer a
generic multi-media processing environment very much in
the spirit of Max/MSP, pd, SuperCollider or ChucK. We be-
lieve that mobile devices are not just small computers, but
have inherently different I/O capabilities. For example input
modalities are, in a traditional computing paradigms treated
as external, exemplified by the short-hand HID (for Human-
Interface-Device). Mobile devices themselves are, however
themselves the sum of all input and output capabilities. A

Figure 1. The default UrMus interface ready to select sensor
sources (left), filter or other manipulation flowboxes (cen-
ter), or actuator sinks (right).

second concern is that the prevailing editing paradigms for
laptop computers assume the standard interface hardware of
full alpha-numeric keyboard, a mouse and a large display.

Hence we look to start from scratch and develop a multi-
media processing environment that is directly designed for
the platform for which it is intended. This includes dimin-
ishing or removing the role of alpha-numeric input, replac-
ing single-point mouse interaction with multi-touch inter-
actions, designing for small, often partially occluded screen
display, taking motion sensing such as accelometer and mag-
netic field sensing into account from the start. A similar
goal was already explored in a project called SpeedDial [6]
which however is intended for smart phones with 12-key in-
put. We have since developed an environment that looks
to be broader and specifically addresses multi-touch inter-
actions. We call this project UrMus and the current paper
describes the overall design of the environment.

2. RELATED WORK

UrMus builds upon many lessons learned from SpeedDial
[6], a mobile phone synthesis environment for SymbianOS
smart phones, yet is a completely new design. There are
numerous project that address interaction design on for mo-
bile devices. Probably the closest to the current project is
RjDj, a commercial environment using pure data as the au-

mailto:gessl@eecs.umich.edu

dio engine1. One personal motivation to develop UrMus is
academic. The author was looking for an open environment
to use for research and teaching, and found that the current
landscape of mobile environment are often too tightly mixed
with commercial interests to allow open exploration. At the
same time we see this as an opportunity to incorporate a
broad range of design options into a new setup.

Audio processing engines have a long-standing history
going back to its origins with Music I by Max Matthews.
Ultimately multiple paradigms have emerged to support the
process of generating computer music. The most domi-
nant paradigms are text-based systems, such as CSound [1],
Arctic/Nyquist [5, 3, 2], SuperCollider [10] or ChucK [20]
on the one hand, and graphical patching systems, such as
Max/MSP [13] or pure data (pd) [11, 12] on the other hand.
For a more detailed review of audio processing languages
and systems see [19].

UrMus tries to not commit to any particular paradigm
per se, but rather looks to offer an environment in which
many different paradigms can be instantiated. It features the
support for full 2D UI design. In a less general form this
can also be seen in RjDj as well as other iPhone apps such
as MrMr2. MrMr main design is that of an Open Sound
Control remote client with configurable UI based on prede-
fined widgets. UrMus bases its UI design on more general
concepts such as regions and widgets can be derived and de-
signed from those. Also UrMus does not look to be an OSC
remote, but is primarily intended to incorporate all process-
ing, whether audio, or multi-media directly on the mobile
device.

The idea of having performance interfaces has previ-
ously appeared in various forms. So does Max/MSP through
jitter and other means offer ways to create interactions. In
fact the Max/MSP and pure data interfaces themselves mix
in performance elements through widgets. The Audicle serves
a similar purpose for ChucK [21]. The idea of Audicle to
offer multiple representations, called faces, is very much
related to UrMus. Some aspects of the Audicle are rather
closely tied to the needs of live coding and the underlying
language ChucK. UrMus is in principle not tied to such con-
cerns but is designed open enough to be useful in this fash-
ion.

Vessel is a multi-media scripting system based on Lua
[18]. In this sense it is closely related to UrMus. How-
ever UrMus’ goals are rather different from Vessel’s. The
primary function of Lua in UrMus is not to serve to script
multi-media and synthesis functionality but rather to serve
as a programmatic API and a middle layer between lower
level functionality. For example the synthesis computations
in UrMus’ data flow engine UrSound are fully realized in
C, whereas Vessel is designed for algorithmic generation.
However with increased computational performance on mo-

1http://rjdj.me/
2http://poly.share.dj/projects/#mrmr

bile devices one could see merging the ideas of Vessel and
UrMus and this might be facilitated by the fact that they al-
ready share the same scripting language. Serpent [4] is a
Python-based embeddable scripting solution which empha-
sized functional programming. Lua is in many ways similar
to both Serpent and Python. We see Lua’s main advantages
in the ease of embedding, its run-time performance and the
simplicity of the syntax.

3. DESIGN GOALS

The primary design goal for UrMus is to be a generic edit-
ing environment for multi-touch mobile smart phones such
as the iPhone. We consider this to ultimately be a com-
pletely new HCI setup and many decisions that have been
made for previous systems designed for desktops have to be
reevaluated. Design goals are:

• Direct and inherent support of all accessible input modal-
ities through sensor technology as available on the de-
vice.

• Direct and inherent support of all accessible output
modalities through actuator technology as available
on the device.

• The environment should largely be neutral to assump-
tions of best interaction paradigm, i.e. it should allow
many concurrent or competing interaction paradigms.
Ultimately this means the environment is conceptu-
alized as a meta-environment that then allows to cre-
ate a wide range, if possibly any, desirable interaction
paradigm.

• The environment should be multi-layered and acces-
sible at all levels [14]. A multi-layered environment
has multiple advantages. On the interaction side, it al-
lows for design of simple interfaces that still at a lower
level can be manipulated to offer increasing complex-
ity. The interface can be accessed at the level of ex-
pertise of the user. On the performance side, it al-
lows to implement solutions at the layer appropriate
to achieve the required computational speed for the
task.

• Offer design-by-molding. Refactoring and redesign-
ing from scratch is time-consuming and does not al-
low exploration. The environment should be designed
around the idea of modifiability to allow the user to
explore variations without having to frequently rewrite
data structures or interface designs. This is supported
by another goal:

• Clean separation and ”pluggable” interfacing [15, 17].
If one has a synthesis algorithm that allows to play

http://rjdj.me/
http://poly.share.dj/projects/#mrmr

chromatic notes, the choice of layouting of a multi-
touch interface should not interfere with this algo-
rithm. This requires a clean yet flexible interfacing
mechanism between synthesis engine and UI. If one
can simply replace one UI with another and have it
operate seamlessly with an existing synthesis setup
we call this property ”pluggable”.

• Allow for On-the-fly patching. This means multi-
media interfaces and media streams should be repatch-
able on-the-fly with minimal or no concern to the user.

In terms of functions UrMus wants to offer the following:

• Design of multi-touch user interface and interactions.
Ideally on and for the phone at the same time.

• Efficient multi-media dataflow pipeline.

4. THE DESIGN

UrMus has a three-layered design. The bottom layer are
core engines that are written in system-close languages. Most
parts of UrMus are written in C, with some exceptions being
made for C++ to accomodate existing open software such as
STK, and Objective-C to interface with Apple’s system li-
braries.

Figure 2. The three layers of UrMus.

The second layer is a higher level script language which
offers abstraction of the primary design functions of UrMus.
We chose the script language Lua [9] over other options for
numerous reasons. Most important is the malleability that
the language offers which is compatible with our design-by-
molding design goal. Lua offers strong typing of primary
data types, yet weak typing of data structures. This design

goal means that data structures can very easily be extended
or modified without refactoring. Lua also offers functions as
first order types. This allows functions also to be modified
without refactoring through a mechanism called hooking.
Secondarily Lua is a very compact and efficient script lan-
guage hence also attractive from a performance perspective.
Lua comes with a very generous license. Didactically Lua
is attractive because it is widely used in the gaming industry
hence draws a lot of interest from students who seek to enter
this industry.

The Lua layer has to offer accessible abstraction for the
main functionality of UrMus, which is multi-touch inter-
faces and interactions as well as multi-media data flow. Ur-
Mus offers these through distinct object APIs. The interface
API is inspired in part by the addon interface API of the
popular game World of Warcraft. We found that aspects of
this API satisfy many of the needs for our purpose and gives
students an attractive point of access. However the WoW
API does not support multi-touch, accelerometers, and other
mobile-specific interaction modalities and hence the UrMus
interface API in many ways different to this API. The data
flow API is designed from scratch to support a novel data
flow engine based on normed generic patching. We call this
system UrSound and it is described in more detail separately
[7].

An important component of the Lua layer are events.
Events inform about occurrences and can be used to de-
fine interactions. Any part of the UI can register for events.
When registered, whenever new data is available from a sen-
sor such as an accelerometer, a designated callback function
in Lua will be called. That way UI elements can be written
to respond to event based actions.

The third layer are particular instances of Lua programs
in UrMus that offer a complete running program or UI in-
terface. Currently UrMus offers a default mapping interface
that also goes by the name UrMus that allows to map out
data flows using multi-touch. It is important to note that this
interface is by no means canonical. Many other interfaces
for mapping can be implemented in the UrMus environment.
The default interface serves as a first working example and
as a prove of concept. At the same time it implements a
certain type of visual mapping paradigm that is somewhat
different than the wire-patching paradigm of Max/MSP or
pure data on the one hand and text based patching such as
via SuperCollider or ChucK on the other hand.

5. CORE LOW LEVEL ENGINES

The core low level engines currently consist of the following
entities: 2D layouting and events, media dataflow pipeline,
Lua runtime-compiler and run-time engine. This is exten-
sible and we anticipate a detailed networking engine, and a
3D engine to be added.

All these engines are accessible from the next higher

Figure 3. Interrelation between different components of Ur-
Mus.

layer and are, on this lowest layer for the most part inde-
pendent. The reason for this is that we actually want core
parts to both operate independently and be replaceable. For
example if one wants to use the UrMus environment with a
pd or ChucK audio-pipeline, this should be possible either
as a replacement for the current pipeline or as an addition to
it. To allow this it is necessary to ensure sufficient separation
by design.

5.1. 2-D layouting and interactions

The 2-D layouting engine is responsible for offering all as-
pects of two-dimensional layouting. It is a layouting engine
written from scratch in OpenGLES hence promises to port
to all platforms supporting that standard without relying on
higher level libraries.

The basic paradigm borrows from the notion of a region
that can be found in the interface API of World of Warcraft.
Regions serve as the basic UI element for everything visual
as well as the size for accepting events coming from inter-
actions. One can think of a region as any arbitrary rectan-
gular region associated with the screen. A region may or
may not be visible. In fact regions come with ways to con-
trol their own visibility. However even invisible regions do
serve an important function in that they can be used to de-
fine regions of interactions that do not require extra visual
representations. Regions can be manipulated in size and po-
sition and can be associated with colors. The main visual

display of information within regions is achieved through
textures. By associating rectangular regions with textures
one can build complex looking visual interfaces. Regions
support relative anchored layouting. One can anchor rela-
tive to another region and hence build groups of regions. If
the parent region in the group is moved or otherwise has its
layout changed, all anchored children will have their lay-
outs refreshed. This way it becomes possible to have com-
plex user interface elements that can be dynamically mod-
ified and still behave seamlessly even if there are complex
layouting relationships. Anchoring can also help order ele-
ments and facilitate insertions and deletions.

Many of these aspects can already be found in interface
layouting systems of computer games such as World of War-
craf, however the urMus engine extends these existing sys-
tems in numerous ways. For example textures can be drawn
into via 2-D drawing primitives. This is roughly modeled
after the programming environment processing. But as any
region can have an attached texture and any texture can be
used as brush in painting, one can implement a range of vi-
sual metaphors such as visual recursions or interrelations
between layouts and painting.

Each region can be informed of a range of events. In
order to receive an event, a region registers a function to be
called when the event occurs. Events are typically associ-
ated with some form of user interaction. An event can occur
when a touch event starts within a region, when a finger is
dragged into a region, when a finger is lifted, or when a
finger is dragged outside the region. There are also events
for dragging and resizing the region, for scrolling the region
vertically or horizontally, and for double tapping. All these
are events associated with multi-touch interactions. There
are further events that trigger from other forms of input such
as accelerometer data, compass data and so forth. The role
of this layer is to expose all this functionality in a way that
can be integrated by a higher level language layer.

5.2. UrSound: The multi-media Pipeline

Figure 4. A simple example data flow in UrSound. Ac-
celerometer X axis data pushes into the frequency parameter
of the sine oscillator. The dac pulls from the sine oscillator
output. Each happens at its independent rate and each con-
nection uses normed semantic-free data.

The multimedia pipeline is written to incorporate all sen-
sors and actuators into a multi-rate data flow. Here a con-

nected network flow from sensors through filter and other
manipulation algorithms and synthesis engines to actuators
such as loud speakers, visual display, and vibrotactile dis-
play can be established.

It is important to note that the multi-media pipeline in
some sense duplicates functionality with the 2D layouting
engine. Both can take sensor input and both have ways to
relate these inputs to visual outcomes. This duplication is
a result of the design goal of keeping each engine indepen-
dent. One can either choose to use them in an interface set-
ting or in a data flow setting. A mixing of the two paradigms
can happen, but only at a higher level. This ensures that each
engine is autonomous. The UrSound engine is written at the
lowest level to avoid any performance loss due to intermit-
tent script language processing. The engine has a number
of properties that are design criterion for UrMus such as ba-
sic support of on-the-fly mapping through concepts such as
normed data flow and multi-rate processing (see Figure 4 for
an illustration). Details of the pipeline are beyond the scope
of this overview and can be found in a separate publication
[7].

Figure 5. A full example of creating an interactive region in
UrMus.

5.3. Lua engine

UrMus uses the Lua programming language. Its run-time
compiler and run-time engine are freely available and easily
integrate in a C environment. In UrMus it serves as a uni-
fied scripting environment with added API for higher level
access to the low level engines. We use an unaltered ver-
sion of lua-5.1.4 stripped of libraries incompatible with the
iPhone SDK.

The Lua engine then allows to expose the functionality
of the other core engines in Lua through added global library
functions, user data types or methods associated with these
user types.

6. LUA AND THE URMUS LUA API

Lua is a scripting language with a reputation of being fast
and light-weight. In fact cross-language benchmark studies
have indeed shown that Lua performs very efficiently for a
run-time script language [22]. It is also very attractive for
use in project because it is designed to be easily embed-
dable.

While having simple syntax, Lua offers very attractive
and powerful data structures through dynamic associative
arrays called tables that serve as the only organizing mecha-
nism within the language. Every other instance is a first or-
der type. Lua’s syntax is a hybrid of C-like, Pascal-like and
some C++/Java like object-oriented notation. Overall Lua’s
syntax looks mostly procedural though in reality Lua can
be used as an object-oriented as well as functional program-
ming language. The standard reference for the language is
[9].

The UrMus Lua API adds global functions, global vari-
ables as well as functions to create user data which itself
comes with methods. To take two examples:

local r = Region()
r:SetHeight(200)
r:SetWidth(120)

This creates a user data called Region, and uses two methods
of regions to set height and width. Regions can be informed
of events. This can be achieved by setting callback functions
for each event type:

function WiggleRegion(self,x,y,z)
self:SetAnchor(x*320,y*480)

end

r:Handle("OnAccelerate", WiggleRegion)

This will make the region move along the screen according
to the values of the accelerometer x and y axis data, scaled
to match the screen dimensions. Full documentation of the
UrMus Lua API is distributed with UrMus.

The UrSound dataflow engine can also be accessed through
a Lua API. Similar to regions, flowboxes, the data process-
ing units of UrSound are instantiated explicitly. Each pro-
vided flowbox of UrSound has a global prototype that can
be used as a factory to create new instances. The func-
tion to create a new instance is FlowBox(type, name,
prototype). For example

mySinOsc = FlowBox("object",
"mySinOsc", _G["FBSinOsc"])

creates a new instance of the SinOsc flowbox from the global
prototype FBSinOsc. Some flowboxes are state-less and
hence do not require instancing. Many hardware sources
and sinks are of this type. For example we can use

dac = _G["FBDac"]

to get the global instance of the audio playback sink. In
order to establish a pull link between the sin oscillator and
the dac we use the method outflowbox:SetPullLink(inindex,
inflowbox, outindex).

dac:SetPullLink(0, mySinOsc, 0)

The moment this is executed, a sine will play at default fre-
quency of 440 Hertz and at normed amplitude. To connect
this to an accelerometer that pushes into the frequency we
do the following:

accel = _G["FBAccel"]
accel:SetPushLink(0, mySinOsc, 0)

Details of the technical mechanisms that govern UrSound
can be found in [7].

The UrMus Lua API allows for constructing of a very
broad range of user interfaces and interactions. The goal
here is two-fold. One is to offer generic editing environ-
ments. However there are a range of paradigms how to do
this and UrMus does not commit to any one paradigm, rather
any paradigm can in principle be implemented using the Lua
API. The second is to offer a way to define performance in-
terfaces for specific musical instruments or multi-media in-
teractions implemented in UrMus. That is if one wants to
design a specific specialized interaction, this should be pos-
sible in UrMus as well.

7. INTERFACES

7.1. Default UrMus Mapping Interface

The default UrMus mapping interface serves as a proof of
concept of the interface and interaction possibilities of the
UrMus Lua API. It demonstrates complex interactions such
as multi-touch dragging, multi-touch scrolling, dynamic lay-
outing and more. At the same time it also implements a spe-
cific form of graphical patching that creates links implicitly
from location. While similar in name this is not the same
thing as implicit patching [16]. Full details of the UrMus
default interface will be published elsewhere [8]. For the
current discussion we will briefly discuss its main idea.

The core idea of UrMus is the support of rapid establish
and change of signal flow through an interface. Hence the
process of connecting or disconnecting should be as simple
and quick as possible. In order to achieve this, a fixed grid-
like arrangement of rows is created where flow elements can
be moved. If two elements are horizontal neighbors of each
other they will automatically connect. If they are moved out
of place the connection is automatically broken. Hence we
get a form of implied patching by position. In comparison
to graphical line patching paradigms such as Max/MSP or
pd this removes the step of creating the line between unit
generators.

The visual space is limited so the UrMus interface con-
tains numerous mechanisms to help manage space. By double-

tapping between rows and columns new elements can be in-
serted and if the size of the patch exceeds the visual view,
multi-touch horizontal and vertical scrolling helps navigate.

Figure 6. The default UrMus interface for on-the-fly patch-
ing.

7.2. Example Instrument Faces

Numerous instrument interfaces have already been designed
using UrMus. Figure 7 shows a few examples. The top
row are interfaces designed by students at the University of
Michigan during a class that used UrMus as environment for
mobile phone instrument design.

Figure 7. Six examples of instrument interfaces. Top left
was designed by Rishi Daftuar and Raphael Szymanski, top
center by Colin Zyskowski, top right by Colin Neville and
Owen Campbell.

Overall these interfaces are highly interactive and can
change their appearance and mapping as needed, yet can be
realized with short scripts. These interfaces take a few dozen
lines of Lua code to realize. The most ambitious interface
to date is the default UrMus interface which consists of just
over two-thousand lines of Lua source code. A powerful

aspect of UrMus is the separation of engine from represen-
tation. For example a large range of different patches can
be used by any of the interfaces shown in Figure 7 which
were designed for pitches. As long as the semantics of the
interaction regions is specified in some standard fashion, the
interfaces become simply replaceable. For example the user
can then simply decide whether to prefer a flute or a piano
interface for performance, without changing the sound. Or
vice versa one can keep an interface and replace the under-
lying sound synthesis method without difficulty.

8. CONCLUSIONS

UrMus is a meta-environment for the design of multi-media
interactions and is specifically designed to allow general de-
velopment of mobile phone musical instruments. It offers
separation of representation from processing engines and
hence allows flexible modular design and a choice of pre-
ferred interaction by both the user and the designer. UrMus
is still in its infancy and we hope to extend it further, by
strengthening its networking capabilities, keep adding sup-
port for more sensors and providing more rendering engines,
specifically 3D rendering and interactions. UrMus is avail-
able at:

http://urmus.eecs.umich.edu/

9. ACKNOWLEDGEMENTS

Thanks to Alexander Müller who helped design the UrMus
default interface and provided numerous other interface sug-
gestions. Also thanks to all students in the class ”Building
a Mobile Phone Ensemble” and patiently handling UrMus
in early, immature forms of existence, and for designing ex-
citing musical instruments in UrMus. Thanks also to Roger
Dannenberg for stimulating discussions on sound mapping
and on Serpent.

10. REFERENCES

[1] R. Boulanger, The Csound book: perspectives in soft-
ware synthesis, sound design, signal processing, and
programming. Cambridge, MA, USA: MIT Press,
2000.

[2] R. Dannenberg, “The implementation of nyquist, a
sound synthesis language,” Computer Music Journal,
vol. 21, no. 3, pp. 71–82, Fall 1997.

[3] ——, “Machine Tongues XIX: Nyquist, a Language
for Composition and Sound Synthesis,” Computer Mu-
sic Journal, vol. 21, no. 3, pp. 50–60, Fall 1997.

[4] ——, “A Language for Interactive Audio Applica-
tions,” in Proceedings of the International Computer
Music Conference (ICMC), 2002.

[5] R. Dannenberg, P. McAvinney, and D. Rubine, “Arctic:
A Functional Approach to Real-Time Control,” Com-
puter Music Journal, vol. 10, no. 4, pp. 67–78, Winter
1986.

[6] G. Essl, “SpeedDial: Rapid and On-The-Fly Mapping
of Mobile Phone Instruments,” in Proceedings of the
International Conference on New Interfaces for Musi-
cal Expression, Pittsburgh, June 4-6 2009.

[7] ——, “UrSound – live patching of audio and multime-
dia using a multi-rate normed single-stream data-flow
engine,” 2010, submitted to the International Com-
puter Music Conference.

[8] G. Essl and A. Müller, “Designing dynamic mobile
music instrument interfaces with UrMus,” 2010, in
preparation.

[9] R. Ierusalimschy, Programming in Lua, Second Edi-
tion. Lua.Org, 2006.

[10] J. McCartney, “Rethinking the computer music lan-
guage: Supercollider,” Comput. Music J., vol. 26,
no. 4, pp. 61–68, 2002.

[11] M. Puckette, “Pure data: another integrated computer
music environment,” in in Proceedings, International
Computer Music Conference, 1996, pp. 37–41.

[12] ——, “Pure data: Recent progress,” in Proceedings of
the Third Intercollege Computer Music Festival, 1997,
pp. 1–4.

[13] ——, “Max at seventeen,” Comput. Music J., vol. 26,
no. 4, pp. 31–43, 2002.

[14] B. Shneiderman, “Promoting universal usability with
multi-layer interface design,” in CUU ’03: Proceed-
ings of the 2003 conference on Universal usability.
New York, NY, USA: ACM, 2003, pp. 1–8.

[15] C. Simone, M. Divitini, and K. Schmidt, “A notation
for malleable and interoperable coordination mecha-
nisms for cscw systems,” in COCS ’95: Proceedings
of conference on Organizational computing systems.
New York, NY, USA: ACM, 1995, pp. 44–54.

[16] L. F. Teixeira, L. G. Martins, M. Lagrange, and
G. Tzanetakis, “Marsyasx: multimedia dataflow pro-
cessing with implicit patching,” in ACM Multimedia,
2008, pp. 873–876.

[17] N. Villar and H. Gellersen, “A malleable control struc-
ture for softwired user interfaces,” in TEI ’07: Pro-
ceedings of the 1st international conference on Tangi-
ble and embedded interaction. New York, NY, USA:
ACM, 2007, pp. 49–56.

http://urmus.eecs.umich.edu/

[18] G. Wakefield and W. Smith, “Using lua for multime-
dia composition,” in Proceedings of the International
Computer Music Conference. San Francisco: Inter-
national Computer Music Association, 2007, pp. 1–4.

[19] G. Wang, “A History of Programming and Mu-
sic,” in Cambridge Companion to Electronic Music,
N. Collins and J. DEscrivan, Eds. Cambridge Uni-
versity Press, 2008.

[20] G. Wang and P. R. Cook, “Chuck: a programming
language for on-the-fly, real-time audio synthesis and
multimedia,” in ACM Multimedia, 2004, pp. 812–815.

[21] G. Wang, A. Misra, and P. R. Cook, “Building collab-
orative graphical interfaces in the audicle,” in NIME
’06: Proceedings of the 2006 conference on New inter-
faces for musical expression. Paris, France, France:
IRCAM — Centre Pompidou, 2006, pp. 49–52.

[22] E. Wrenholt, “Fractal benchmark,” 2007, re-
trieved 6/1/2010 at http://www.timestretch.com/
FractalBenchmark.html.

http://www.timestretch.com/FractalBenchmark.html
http://www.timestretch.com/FractalBenchmark.html

	1 Introduction
	2 Related Work
	3 Design Goals
	4 The Design
	5 Core Low Level Engines
	5.1 2-D layouting and interactions
	5.2 UrSound: The multi-media Pipeline
	5.3 Lua engine

	6 Lua and the UrMus Lua API
	7 Interfaces
	7.1 Default UrMus Mapping Interface
	7.2 Example Instrument Faces

	8 Conclusions
	9 Acknowledgements
	10 References

