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ABSTRACT

The dynamics of drums can be described by wavefronts
and their wake on a bundle of rays. Using the ray picture
in their construction preserves the structure of the wave
propagation, which in general is dispersed by traditional
meshed methods. The idea is based on emphasizing local
dynamical descriptions and impulse responses of continu-
ous solutions in the plane and translating these properties
into a computational model.

1. INTRODUCTION

This work is part of a larger program trying to understand
if we can find efficient computational structure in the 2-
dimensional wave-equation1. The previous results in this
program can be found in [4, 6] and discuss geometric fea-
tures of wave fronts rendered with the algorithm to be de-
scribed here. Aspects of numerical behavior as well as the
nature and impact of wakes — originally to be presented
here — have been moved to an alternative publication [5]
due to space restrictions. In [4] I described the basic al-
gorithm and related the results of the algorithm to known
features of ray dynamics on a circular domain. In [6] the
domain was altered to an ellipse and a stadium (two semi-
circles connected with straight lines) to give an argument
relating the observed wave fronts to the whispering gallery
phenomenon.

Here I would like to bring the argument on the one hand
close to the full acoustics of drums in the plane. On the
other hand I want to give a first rendering of this algorithm
for sound synthesis. For this, a number of pieces are miss-
ing in [4, 6] to arrive at a realistic simulation for sound
synthesis. Most notably dissipation and radiation has not
been modeled so far. Hence we are adding new structure
and information to the algorithm to complete the picture.
This is however still not an exact numerical integration of
the wave equation as wakes have been omitted. See [5]
for details.

Digital waveguides [14] have proven to be an extraor-
dinarily successful way of simulating the wave equation
in one dimension. This has to do with the particular struc-
ture of the solution space of the wave equation, when writ-
ten as traveling waves (d’Alembert’s original solution).
This form allows for a computational structure to be uti-
lized that is, in a sense, better than a naive estimation of
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a meshed method to integrate the wave equation. By re-
quiring only constant, rather than order of spatial samples,
waveguides are optimal with respect to spatial integration.
The second main advantage is that the traveling waves are
not, or only mildly disturbed by propagation. This allows
for copy-propagation rather than arithmetic propagation.
Hence rounding errors are avoided or kept limited to few
operations thus giving waveguides highly desirable nu-
merical properties as well. At the same time waveguides
are exact with respect to the continuous equations on sam-
pling points.

We are still far from having the same properties for the
2-dimensional case. A number of methods have been em-
ployed to simulate drums. These are all predominantly
meshed methods. These include spring-based methods
[2], standard finite differencing methods, and waveguide
meshes [16, 8] and hybrids between waveguide and finite
differencing methods [1, 11]. All these share that the dy-
namics is discretized on mesh points and different direc-
tions of propagation are coupled at these mesh points. The
difference either consists in the motivation or implementa-
tion. The mesh itself is responsible for inexactness in the
solution known as mesh dispersion and various attempts
have been proposed to reduce this effect for various situa-
tions [12, 9].

Another approach is using functional transforms[15].
This is really a modal methods, in which the modes-strengths
are calculated from the equation once transform functions
have been picked. As these transform functions usually
constitute a support that ranges over the whole domain
of solution, local aspects of the problem become approxi-
mated by truncated infinite series of these transform func-
tions.

Banded waveguides have also been proposed for 2-dim-
ensional structures such as drums and cymbals [7]. This
is a modal method which tries to retain some notion of
spatial information. However this information is asymp-
totic and hence incomplete. Secondly, it is very diffi-
cult to recover the meaningful spatial positions of vari-
ous waveguide bands crossing. Recently a related method,
which employs details about the circular symmetry have
been proposed [17] as well as hybrids with waveguide
meshes[13].

2. APPROACH

The method to be described here does not solve the full
problem. It rather is an attempt to understand the struc-
ture better. It differs from earlier work in that it does not



employ a static grid, does not assume specific functional
forms of the solution nor does it only consider a limited
modal set of propagating paths. However, this choice is
not a primary one, but rather a consequence of trying to
maintain as much of the structure of the solution in nu-
merical simulation.

The key approach is to try to model the geometric and
functional content of what is known as thefundamental
solution of the 2-dimensional wave equation. The fun-
damental solution can be thought of as the continuous
function-theoretic analogue of the discrete impulse response
as familiar in digital signal processing. There is no space
here to discuss the theory of fundamental solutions of par-
tial differential equations and we refer the curious reader
to [3]. Further literature can be found in [5]. The Dirac-
delta within this theory is described using the function-
theoretic concept of a distribution. These are explained
in details in [3] and other sources (see [5]. However fun-
damental solutions of the wave equations in one to three
dimensions were already known before the theory of dis-
tributions was fully developed. For relevant information
we refer the reader to [10].

The traveling wave solution, that is so successfully em-
ployed in waveguide synthesis, is in fact the fundamental
solution of the 1-d wave equation (compare [3, p. 144]).

The main difference between the traditional simula-
tions, and also traditional analytic solution methods and
work with fundamental solutions, is that it described the
behavior of the problem directly by answering how a so-
lution behaves locally both in space and time. Hence if
a local disturbance is given, the question how this distur-
bance will evolve can be answered immediately.

In comparison, the traditional solution of the circular
membrane is written down in terms of functional expan-
sions using Bessel functions arrived at via the method of
separation of variables. However, Bessel functions, as are
trigonometric functions in case of the 1-dimensional equa-
tion, are distributed qualities and hence it requires addi-
tional effort to recover local behavior from these descrip-
tion. Often the correct Fourier-Bessel series is not easily
found.

With respect to meshed methods, meshes are often cho-
sen independent of any knowledge of the structure of the
solution. Rather they are chosen to approximate the form
of the (partial) derivative. However, similar partial deriva-
tive operators can have different resulting solution spaces,
as is already visible in the case of the 1-D versus the 2-D
wave equation.

3. STRUCTURE OF THE WAVE EQUATION

The wave equation in two dimensions without external
forces and dissipation reads:
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The fundamental solution of the wave equation in the
plane without boundaries is [10, 3]:
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where 2 is the response to an impulsive displacement
and 3 is the response to an impulsive velocity.H(·) is a
step function also called the Heaviside distribution.

These equations have two parts to them. One is the
support of the solution. This part is encoded in the Heav-
iside function of equations (2–3).The other is the func-
tional shape created by an impulse through propagation
inside this support.

The first part encodes what we will call thewavefront.
Here we will discuss this part of the problem. The second
part will be called thewake. A full treatment of wakes is
future work. A theoretical discussion of the impact of its
omission can be found in [5].

Wave fronts are the point of first arrival of a disturbance
in response to an impulse (or a convolution of impulses).
The argument of the Heaviside functions in (2) and (3)
forms a circle for constant time. The radius of the circle
expands linearly with time. Hence the wavefront inhabit a
cone with the tip at the point of the impulsive excitation.
Any section of this cone will give a wavefront at a cer-
tain time, which is a line embedded in the plane. Point of
the wavefront propagate along straight lines calledrays.
Hence one can think of rays as the direction of propaga-
tion of waves and wave fronts as the points of arrival on
them.

The crux of the proposed method is to maintain the sup-
port of wavefronts on rays. Hence the position will be ac-
curate, up to numerical accuracy on such rays and there is
no numerical dispersion by construction. This method is
in addition excitation-point centric, hence solves the prob-
lem of banded waveguide-like methods in this respect.

For space reasons I cannot present the details of the
algorithm here. These details can be found in [4, 6]. Using
this method also complicated shapes can be simulated. If
the domain is sufficiently simpled the reflection code can
be replaced by an iterative function of reflection angle and
reflection point. For details see [4].

3.1. Damping, Radiation and Pickup

There are two sources of dissipation modeled. One is geo-
metric. If a wave front travels outward it forms an ever
increasing circle. The total amplitude will be diluted in
proportion of the spreading of the circumference of this
circle. As the increase of the circumference is linear with
time, i.e. 2πt the reduction of local amplitude will linear
as well. On a closed domain the overall amplitude, how-
ever, remains constant and hence no energy is dissipated.

The second source of dissipation are friction effects of
various sorts. In the current implementation we only em-



Figure 1. Examples of wave front shapes on a circular
domain. Top: Excitation point at1/3 of the radius. Bot-
tom: Excitation point9/10 of the radius. Minimum order
of reflections are 1, 7 and 13 (from left to right).

ploy a very simple heuristic model to implement some dis-
sipation. This model assumes that the amplitude addition-
ally decreases linearly with distance according to some
proportionality factor. By choosing a suitable constant,
reasonable first-order damping behavior can be achieved.

A basic problem for 2-dimensional simulation, is the
problem of the pickup. Where should the virtual ear, ac-
cepting a one-dimensional audio-stream, be placed? For
the purpose of this presentation, a simple conic radiation
method was used. The listener is assumed to be placed
directly above the center of the drum at some distancehr.
The positionx, y on the membrane of a disturbance in-
duces a certain travel-lengthd(x, y) to the position of the
listener according to the basic length of a line on the cone.

d(x, y) =
√

x2 + y2 + hr (4)

The delay to the listener can then be calculated using
the speed of sound in air and can appropriately be imple-
mented using a delay line, which is loaded at the correct
distance according to equation (4).

4. RESULTS

4.1. Geometric Results

A detailed discussion of geometric features of this method
for the case of the circle can be found in [4]. A few ex-
amples of shapes of wave fronts on a circular drum are de-
picted in Figure 1. One can see that excitations close to the
wall yield a pattern of dense wave fronts creeping along
the wall. For this reason these types of wave fronts have
been associated with whispering gallery effects [4, 6].

Here we will illustrate examples of alternative domain
shapes as seen in Figure 2. All simulations were per-
formed with 500 rays. This includes both generated sound
files and graphical renderings.

4.2. Sound Synthesis Results

In order to get a qualitative comparison of the proposed
method with reality, simple experiments were performed

Figure 2. Examples of first order (top) and third order
(bottom) reflection wave front shapes on (left to right) rec-
tangle, ellipse and stadium domains.

Source f1 : f0 f2 : f0 f3 : f0 f4 : f0

Simulation 2.7857 3.6429 4.6429 6.5000
Recording 2.1333 3.7333 4.8667 6.2000
Theory 2.294 3.598 4.903 6.208

Table 1. Comparison of modes between simulation,
recording and theory for a strike at the center of the drum.

with a real drum. All the recordings were performed on
a Pearl tom drum with a Pearl ProTone drum head. The
bottom drum head was removed to eliminate beating due
to mistunings and to reduce the impact of the resonator.
Strikes were performed with an SX 2B wooden drum stick.

We show here two synthesized sound results. First a
strike at center. This excitation is particularly interesting,
because the theoretical eigenfrequencies of the excitation
points can be readily found. All eigenfunctions but the ze-
roth order Bessel function has a zero at the origin. Hence
their eigenfrequencies also vanish. This allows us to use
the zeros of the zeroth order Bessel function to compare
both the simulated sound, the recorded sound to idealized
theoretical predictions.

The basic result of the measurement is found in Table 1
and a pictorial comparison of the spectra of the simulation
and the recording can be seen in Figure 3(a).

The recording also shows the following additional peaks
comparable to the one associated with the modes ofJ0:
4.4, 5.4, 5.8. As can be seen in the spectra of Figure 3(a),
the synthesized sound is much cleaner than the physical
recording. This has to do with the idealizing assumption
of the model equation (1) as well as with the idealized
assumption of perfect impulse. The recordings were per-
formed by hand using a physically extended drum stick.
Hence there is also a deviation in position possible. Cer-
tainly there is much deviation possible due to the author’s
severe deficiencies as a drummer.

The second case is illustrated in Figure 3(b). Here the
drum was hit at a one third of the radius away from the
center of the drum. In the recording we see that the sec-
ond partial is much more dominant than in the simulation.
This again may be due to inaccurate striking or due to de-
viation in dissipation mechanisms. In this case, the deter-
mination of modes to eigenfrequencies is more laborious
and has been omitted.
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(a) Center of the drum.
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(b) 1/3 of the radius of the drum.

Figure 3. Spectra of simulated and recorded drum strikes.

The synthesized result sounds different from the re-
corded sounds. It appears though that this is mostly due
to insufficient dissipation models. The recorded sounds
have long ringing higher partials, whereas the simulation
damps all partials at the same speed. As it is well known
that damping is a very important perceptual factor, it re-
mains to be explored how to improve the damping model
to make the sound more realistic.

5. CONCLUSION

This paper describes first steps towards sound synthesis in
the plane using wave fronts as primary numerical objects.
This approach preserves many aspects of the structure of
the solution, which are lost in methods proposed so far. In
particular it retains accurate positions of first arrival fronts
up to floating point precision and can easily handle com-
plicated domain shapes.

To complete this program, a detailed dissipation model
needs to be developed, and the impact of the wake needs
to be investigated in more detail. Adaptive ray densities
may be helpful to deal with the ongoing divergence of the
wavefront. In the long run, however, this may not be a vi-
able synthesis method because the number of rays for rea-
sonable resolution will remain high. The main advantage
of this work, is to highlight previously neglected struc-
tures of the solution. Maybe ways can be found to exploit
this structure in a way to avoid the need for dense sets of
rays and hence make this approach practical. In addition
ideas presented here can be used to gauge the success of
numerical simulations with respect to their ability to re-
solve geometric features.
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