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We discuss the geometric content of the wave equation in two dimensions and their implications for numer-
ical methods. Wavefronts and wakes are natural parts of the evolution of point disturbances and yield a rich
geometric structure. We discuss how this structure is preserved or destroyed. In particular wavefronts form
sharp edged solutions called cusps under repeated reflection. We illustrate the formation and evolution of
these cusps using a basic ray-based method and discuss the implication of these cusps for meshed methods.
Finally we give an outlook for future algorithms with respect to preservation of geometric structure of the
wave equation in two dimensions on arbitrary closed domains as well as some sound examples rendered
with the basic ray method.

1 Introduction

This work is part of a larger program trying understand
if we can find efficient computational structure in the 2-
dimensional wave-equation1. A number of related idea
within this program are published or in consideration for
publication elsewhere [7, 11, 10] and discuss geomet-
ric features of wave fronts rendered with the algorithm
to used here as well. In [7] I described the basic algo-
rithm and related the results of the algorithm to known
features of ray dynamics on a circular domain. In [11]
the domain was altered to an ellipse and a stadium (two
semi-circles connected with straight lines) to give an ar-
gument relating the observed wavefronts to the whisper-
ing gallery phenomenon. In [10] the geometric content is
used for a first synthesis of sound using this method using
a basic dissipation model.

The purpose of this paper is to give more detail of the im-
plication of the chosen method compared to fixed grids
and give some indication about wakes in the solution and
the relationship to the present method. Hence my focus
here will not primarily be on the synthesis aspect of the
problem, but on the numerical part of is, yet this immedi-
ately relates to practical aspects of synthesis.

We have a good and rather complete understanding of the
1-dimensional case. In particular we have an easily un-
derstandable temporal dynamical behavior in form solu-
tion space of the wave equation, when written as traveling
waves (d’Alembert’s original solution). This form allows
for a computational structure, called Digital Waveguides
[19] to be utilized that is, in a sense, better than a naive
estimation of a meshed method to integrate the wave
equation. By requiring only constant, rather than or-
der of spatial samples, waveguides are optimal with re-
spect to spatial integration. The second main advantage
is that the traveling waves are not, or only mildly dis-

1Throughout this paper dimensions refer to spatial dimensions of the
domain. The additional temporal dimension is implied.

turbed by propagation. This allows for copy-propagation
rather than arithmetic propagation. Hence rounding er-
rors are avoided or kept limited to few operations thus
giving waveguides highly desirable numerical properties
as well. At the same time waveguides are exact with re-
spect to the continuous equations on sampling points.

We are still far from having the same properties for the 2-
dimensional case. A number of methods have been em-
ployed to simulate drums. These are all predominantly
meshed methods. These include spring-based methods
[5], standard finite differencing methods, and waveguide
meshes [22, 13] and hybrids between waveguide and fi-
nite differencing methods [4, 16]. All these share that the
dynamics is discretized on mesh points and different di-
rections of propagation are coupled at these mesh points.
The difference either consists in the motivation or imple-
mentation. The mesh itself is responsible for inexactness
in the solution known as mesh dispersion and various at-
tempts have been proposed to reduce this effect for vari-
ous situations [17, 14].

Another approach is using functional transforms[21].
This is really a modal methods, in which the modes-
strengths are calculated from the equation once transform
functions have been picked. As these transform functions
usually constitute a support that ranges over the whole
domain of solution, local aspects of the problem become
approximated by truncated infinite series of these trans-
form functions.

Banded waveguides have also been proposed for 2-dim-
ensional structures such as drums and cymbals [12]. This
is a modal method which tries to retain some notion of
spatial information. However this information is asymp-
totic and hence incomplete. Secondly, it is very diffi-
cult to recover the meaningful spatial positions of various
waveguide bands crossing. Recently a related method,
which employs details about the circular symmetry have
been proposed [23] as well as hybrids with waveguide
meshes[18].
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2 Structure of the Wave Equation

The wave equation in two dimensions without external
forces and dissipation reads:

∂2y

∂t2
− c2

(
∂2y

∂x1
2

+
∂2y

∂x2
2

)
= 0 (1)

The initial conditions aref(·) for initial displacement and
g(·) for initial velocity.

The fundamental solution of the wave equation in the
plane without boundaries is [15, 6]:

f(x, t) = δ(x, t) (2)

y(x, t) =
H(±ct− |x|)ct
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g(x, t) = δ(x, t) (4)

y(x, t) =
H(±ct− |x|)

2πc
√

(ct)2 − |x|2 (5)

whereδ(·) is the Dirac-delta distribution, or impulse and
H(·) is the Heaviside distribution, or step function.

In both cases we have:

y(x, t) = 0 if |x|2 = (ct)2. (6)

These equations have two parts to them. One is the sup-
port of the solution. This part is encoded in the Heaviside
function of equations (2–5) and equation (6). The other is
the functional shape created by an impulse through prop-
agation inside this support.

The first part encodes what we will call thewavefront.
Here we will discuss this part of the problem. The second
part will be called thewake. Here we will only give a
brief discussion about wakes. A full treatment of wakes is
still future work. The omission of wakes places this work
in the traditional field of geometric optics and acoustics.

2.1 Wavefronts and Rays

Wavefronts are the point of first arrival of a disturbance
in response to an impulse (or a convolution of impulses).

The argument of the Heaviside functions in (3) and (5)
forms a circle for constant time. The radius of the circle
expands linearly with time. Hence the wavefront inhabit
a cone with the tip at the point of the impulsive excitation.
Any section of this cone will give a wavefront at a certain
time, which is a line embedded in the plane. Point of

the wavefront propagate along straight lines calledrays.
Hence one can think of rays as the direction of propaga-
tion of waves and wavefronts as the points of arrival on
them.

The crux of the proposed method is to maintain the sup-
port of wavefronts on rays. Hence the position will be ac-
curate, up to numerical accuracy on such rays and there
is no numerical dispersion by construction. This method
is in addition excitation-point centric, hence solves the
problem of banded waveguide-like methods in this re-
spect.

2.2 Wakes
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Figure 1: The wake of a radial cross-section of an impul-
sive velocity excitation at a point at various instances in
time aver the excitation. Top: At unit amplitude. Bottom:
At scaled amplitude of0.01.

Wakes are the content of a wave field after the point of
first arrival, the wavefront, has passed. These are de-
scribed by the equations (2) and (4). Detailed discussion
about properties of these wakes are not easily found in
the literature, while these equations are often derived.

The study of the existence and basic properties of wakes
goes back to Petrovsky and has somewhat later been
deepened by Atiyah, Bott and Gårding [2, 3]. If a wave-
front does not create a wake, they call it a lacuna. It
is known since Volterra, that the wave equation in even
spatial dimensions creates wakes, whereas in odd spatial
dimensions greater or equal three it doesn’t. The one-
dimensional wave equation constitutes a special case, as
a step function is the correct response to velocity excita-
tions hence there is a “wake-like” influence after the im-
pulsive propagation (for a related discussion with respect
to 1-D waveguides we refer to [9, 20, 8]).

For example it is noteworthy, that these equations have
singular points in their solution. These are at|x|2 = (ct)2
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for both cases, and at|x| = 0 for displacement impulses
of equation (2).

Another open problem is the proper discretization of
these functions. The singularities can in fact easily be
made finite by truncating them. At a position away from
it. However, it is not immediate, what best to chose as
truncation point.

The shape of the wake of a velocity excitation following
equation (4) is depicted in Figure 1. The bottom part of
the figure shows a greatly magnified view of the curve.
The displacement excitation is overall very similar, ex-
cept that the wake is rapidly pulled towards infinity ap-
proaching the origin of the excitation. It is due to this
observation of rapid decrease of the wake, that its effect
has currently been omitted.

3 Numerical Implications: Rays
versus Meshes

Figure 2: The rays compared to a uniform rectilinear
mesh for a circular arc (left) and a cusp (right) (sketch).

There are a number of immediate differences between the
rays supported wavefront approach described here and
comparable simulations using meshes. For one, meshes
only give accurate spatial sampling along the directions
of the mesh grids without additional effort. Spatial po-
sition is correct up to numerical precision for the ray
method. This can be seen on the left in Figure 2.

Additionally, ray methods will be able to resolve spatial
information that would be averaged in the meshed case.
See the right side of Figure 2. It shows a cusp, which
occurs for very frequently for wavefronts under reflec-
tion. Close to the cusp point, the lines are close and fall
within the same spatial grid point. Hence the solution is
really multi-valued with respect to those grid points. A
mesh method traditionally does not allow for such multi-
valued solutions and hence fails to correctly account for
such situations. Such sharp edges are averaged and hence
suffer from diffusion.

Finally rays preserve the structure of such singularities as
the cusp, even if it is not accurately spatially represented.
Cusps form as crossings of neighboring rays. This cross-

ing behavior is preserved in a discrete form in these sim-
ulations and hence are cusp evolutions (for detailed dis-
cussion of cusp formation and evolution compare [1, 7]).

Figure 3 shows examples of wavefronts rendered with
this method. A subset of rays are displayed for illustrative
purposes. The locus of intersection of neighboring rays
and form so called caustics. Details of caustics rendered
with this method can be found in [7].

Figure 3: Wavefronts supported on rays rendered with
the present method before the first reflection (top left),
just the first reflection (top right), forming cusps after the
first reflection (bottom left) and after partial completion
of the second reflection (bottom).

3.1 Preserved Structure

The ray supported method has a number of properties
which are nice with respect to preserving meaningful
structures in the simulation despite numerical approxima-
tion of the problem. Essentially rays form correct traces
of the solution up to accuracy of angle and wavefront po-
sition for correct positions on these traces up to numerical
accuracy of distance.

In addition rays also encode further information about the
solution. The distance of neighboring rays gives a mea-
sure of wave front intensity between them which is ac-
curate up to ray angle. Hence the density local bundle of
such rays carries immediate information about the energy
density. By comparison, in a meshed method the local
energy has to be retrieved by inspecting the content of
mesh elements exhaustively while at the same time suf-
fering the inaccuracies of dispersive errors of the mesh
itself. This advantageous property is conveniently pre-
served through multivalued solution points in the vicinity
of singular points like cusps, which are not immediately
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Source f1 : f0 f2 : f0 f3 : f0 f4 : f0

Simulation 2.7857 3.6429 4.6429 6.5000
Recording 2.1333 3.7333 4.8667 6.2000
Theory 2.294 3.598 4.903 6.208

Table 1: Comparison of modes between simulation,
recording and theory for a strike at the center of the drum.

treated as such in meshed methods.

The ray method is inherently excitation-point dependent.
The construction originates at excitation points and traces
the solution from that point. This may or may nor be
an advantage. If complex, distributed excitation patterns
are present, this construction needs to sum over the full
excitation, whereas complex excitations are immediately
and easily handled by meshed methods. Here the ray
supported method shows a difference to 1-dimensional
waveguides. In the waveguide case, this problem doesn’t
occur, because the dimensionality of rays and the domain
coincide. Hence different excitation points will always
fall on the same “ray” for waveguides. This is a rather
pathological exception in 2-dimensions and is one further
reason for the increased complexity of this case.

There may be ways around this particular short-coming.
The ray construction remains valid under extended exci-
tation shapes, yet recovering these rays then falls into the
realm of contact transformations and its utility to find par-
allel curves[1]. This generalization has yet to be tested in
practice.

4 Towards Synthesis

This approach can already be used to render approximate
solutions of the wave equation in the plane. The approxi-
mate character is introduced by omission of the wakes in
the simulation.

This simulation is then assumed to be the source of the ra-
diated field. Comparing the results of this simulation with
measurement of a drum struck in the middle and theoret-
ical predictions are found in Table 1 (from [11]). Hence
we do get an approximate result compared to theory yet
retaining the qualitative nature of the spectrum. Details
of this simulation method and its implementation can be
found in the forthcoming paper [11].

5 Conclusion

The geometry of wavefronts contains rich information
about the solution of the wave equation in two dimen-
sions. By employing a ray based method to support
wavefronts, short-comings from meshed methods can be

avoided and structure of the solution space is preserved.
This way delicate features, such as cusps which form by
waves reflecting off the boundary can be simulated with-
out being destroyed by mesh dispersion and the temporal
behavior of the solution remains immediately visible.

This approach is still lacking the addition of the wake part
of the solution, which is to be included in future work.
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