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This article describes banded waveguides, a way of
synthesizing sounds made by solid objects and an
alternative method for treating two- and three-
dimensional objects. It belongs to the synthesis
algorithms known as physical models, and in par-
ticular, it is a departure from waveguide synthesis.

Physical modeling of musical instruments is a
synthesis technique that is well established in
computer music. Physical models are historically
related to computationally expensive algorithms
(Ruiz 1969) but have become more efficient with
faster methods such as waveguide synthesis (Smith
2003). Digital waveguide models provide discrete-
time models of distributed media such as vibrating
strings, bores, horns, and plates.

We begin by outlining related synthesis methods
with emphasis on traditional waveguide synthesis,
which motivated the creation of this new struc-
ture. To simulate sustained and transient excita-
tions such as striking, bowing, and rubbing,
different excitation models are also proposed in
this article. Instruments that have been modeled
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Theory of Banded
Waveguides

using banded waveguides are discussed in a com-
panion article (Essl et al. 2003).

Digital Waveguides

Figure 1 shows a one-dimensional digital wave-
guide. A lossless digital waveguide is a bidirec-
tional delay line at some wave impedance, and
each delay line element contains a sampled
traveling-wave component (Smith 2003).

Efficient physical models of vibrating strings,
wind instruments, and other quasi-harmonic sys-
tems have been implemented using digital wave-
guides. For a review of physical models using
digital waveguides, see Smith (2003) and the refer-
ences therein.

Digital Waveguide Strings

Using digital waveguides, it is easy to create a
physical model of a vibrating string. The structure
of this model is shown in Figure 2. In this case, the
delay line represents the sampled string in which
traveling waves propagate. The low-pass filter is
used to model losses along the string and at the ex-
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Figure 1. A digital wave-
guide formed by two delay
lines of N samples each
with opposite wave propa-
gation directions.

tremities. For simplification, we assume that the
string is excited at one extremity. This corresponds
to the original Karplus-Strong algorithm (Karplus
and Strong 1983).

Advantages and Disadvantages of
One-Dimensional Waveguides

Digital waveguides provide an efficient synthesis
tool for quasi-harmonic resonators, which include

Figure 2. A simplified
waveguide model of a vi-
brating string. The delay
line of N samples repre-
sents the string, and “LP”’
represents the low-pass
filter that accounts for

vibrating strings when there is negligible or weak
dispersion. In situations where stiffness is noticea-
ble but not high, such as in piano strings, all-pass
filters have been used to model the inharmonicity
of overtones (Rocchesso and Scalcon 1996). The
role of all-pass filters is to create a frequency-
dependent propagation velocity, resulting in par-
tials that are stretched in frequency.

For very stiff systems such as rigid bars, however,
a combination of waveguides and all-pass filters
provides a less efficient structure for sound synthe-
sis. Some inharmonic structures such as bells
(Karjalainen, Vilimiki, and Esquef 2002) and
higher-dimensional structures (Rocchesso and
Dutilleux 2001) have recently been modeled using
all-pass filters. In these cases, other synthesis tech-
niques, such as spectral modeling synthesis (Serra
1986) or modal synthesis (Adrien 1991), have been
used. Another approach to modeling complex reso-
nators in higher dimensions is to use the wave-
guide mesh (van Duyne and Smith 1993), a
generalization of the digital waveguide described in
the following section.

The Digital Waveguide Mesh

Figure 3 shows a two-dimensional digital wave-
guide mesh. It is a regular array of digital one-
dimensional waveguides arranged along each
perpendicular dimension, interconnected at their
crossings by scattering junctions J. In the figure,

Iosses. each waveguide is one sample long. In addition to
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the rectilinear mesh shown in Figure 3, other mesh
geometries have been explored, such as triangular
and tetrahedral.

Advantages and Disadvantages
of Waveguide Meshes

Digital waveguide meshes are a synthesis tech-
nique usually adopted to generate large numbers of
modes. They are especially useful for modeling the
high frequency modes of complex resonators. The
computational cost of the waveguide mesh, how-
ever, may not allow the mesh to be used in real-
time applications, especially in the case of large
meshes, which are necessary to model resonators
like reverberant rooms.

Other Related Methods

A large class of real-world objects of interest for
musical and non-musical sound simulation belongs
to the category of highly inharmonic objects, not
necessarily with a high number of modes. Exam-
ples include bars and metal objects. In these cases,
a synthesis technique called modal synthesis is
used, in which the sound simulation is based on
the modal frequencies of objects. These modal fre-
quencies are typically derived from measurements
(van den Doel, Kry, and Pai 2001) or from the gen-
eral equations used for finite element methods. A
technique similar to modal synthesis is the spectral
modeling approach, in which the spectral evolu-
tion of the partials of the object of interest is taken
into account.

These methods are efficient and work well for all
types of linear interactions, i.e., interactions that
can be well described by impulsively adding energy
to the system. For many complex interactions,
however, a different description is desirable. A typi-
cal example of this is a sustained interaction such
as bowing. In these situations, the interaction de-
pends on the physical state (e.g., force, velocity, and
displacement) of the object, like multiple bounces
of interacting objects or strongly non-linear interac-
tions like stick-slip friction. Moreover, synthesis

Figure 3. A digital wave-
guide mesh. | represents
scattering junctions con-
nected by single-sample
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techniques such as spectral modeling and modal
synthesis do not directly simulate the way waves
propagate in the vibrating object.

Another computational physical modeling tech-
nique called the finite difference method consists
of “discretizing” differential equations that de-
scribe the object in space and time. The resulting
system of equations then is solved. Depending on
the type of ““discretization,” this method is also
known as the finite or boundary-element method
(Chaigne and Doutaut 1997; Doutaut, Matignon,
and Chaigne 1998; O’Brien, Cook, and Essl 2001).
At present, these methods are computationally ex-
pensive. In addition, these methods are prone to
instability owing to numeric imprecision, as distur-
bances are propagated by algebraic operations and
truncation errors of multiplications accumulate
over the number of multiplications. Waveguide
synthesis methods propagate disturbances using
lossless delay lines that are implemented by mov-
ing pointers, hence are not affected by accumulated
truncation errors. Numerical errors resulting from
algebraic operations are confined to digital filters’s
simulating losses owing to propagation, scattering,
or boundary reflections. Because numerically ro-
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bust digital filter structures are known, waveguide
synthesis is well-suited for simulating highly reso-
nant oscillatory phenomena.

In the following section, we propose banded wave-
guides as a synthesis technique offering unique ad-
vantages for certain kinds of modeling problems.

Theory of Banded Digital Waveguides

As the name suggests, in banded waveguide synthe-
sis, the spectrum of a passive or impulsively ex-
cited vibrating system is divided into frequency
bands, each band containing primarily one resonant
mode. For each band, digital waveguides are used
to model the dynamics of the traveling wave and
the resonant frequency of the mode. By retaining
the wave dynamics, the synthesis algorithm can be
used with nonlinear excitation models like violin
bow friction models or reed models. Furthermore,
by separating the spectrum, the method allows
modeling of idiophones like marimba bars and
bells.

An elementary banded waveguide structure is
depicted in Figure 4. Compared to the waveguide
structure of Figure 2, a single delay line is replaced
by a number of delay lines (in Figure 4, three are
depicted, but this number is not essential to the
model), an interaction model has been added, and
the low-pass filter has been replaced by a band-
limited operation as discussed next.

The diagram shows four separate components
that must be defined. It shows band-limiting (band-
pass) operations (“BP’’), delay operations (“delay”’)
and an interaction operation (“interaction’). In ad-
dition, the number of band-pass/delay pairs must
be defined.

The most simple of these operations is the delay.
Its function is simply to delay digital signals by a
certain amount of time. The corresponding linear
digital filter transfer function is

H,z) = z-* (1)

where d is the delay-time. If the delay d is an inte-
ger, this structure can be implemented efficiently
using circular buffers (Dodge and Jerse 1985). Any

40

Figure 4. A banded wave-
guide structure as pro-
posed in Essl and Cook

(1999).
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non-integer fraction can be implemented using
fractional delay techniques (Laakso, Vilimiki, Kar-
jalainen, and Laine 1996).

The band-limiting operation is achieved by using
band-pass filters, among which we choose second-
order resonant filters, because they are the simplest
and most efficient (Steiglitz 1996). As will be dis-
cussed later, the band limiting is not a critical
operation, and hence a computationally inexpen-
sive second-order filter is sufficient. In essence, the
important parameters are the center frequency of
the pass band and the gain at that frequency, while
the bandwidth is typically less critical. Among the
second-order options offered in Steiglitz (1996) , we
take for illustrative purposes the two-pole version.
Its transfer function is given by:

1 — z2

H =
:12) 1 — (2R cos O)z—' + R2z?

(2)

where R and 0 are free parameters of the poles that
relate to bandwidth B, center frequency v, and gain
A, in the following way (Steiglitz 1996):

R=~1— B/2 (3)
=== 4
cos 0 T Rz oSV (4)
A, = (1 — R?) sin 6 (5)
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Hence the free parameters are length of the delay
line d, resonance frequency y, gain of the band-pass
A,, and the bandwidth B.

The gain A, is a damping factor that relates to
the multiplicative loss per period of oscillation.
The length of the delay line is usually tuned to the
frequency f, of a mode to be modeled. The rela-
tionship between f,, sampling frequency f, and de-
lay line length d is:

d = f/fn (6)

To calculate the band-pass parameter R, the
same modal frequency f,, is used and converted
into radians:

y = 2af,/f, (7)

Among these parameters, only the bandwidth B
does not have a strict physical interpretation. It is
usually chosen to sufficiently reject other modes of
the comb response of a feedback delay-line filter.

The idea behind banded waveguides is to create a
hybrid of modal and waveguide synthesis in which
each waveguide models the propagation of waves
around a particular spatial mode of the system. For
this reason, as shown in Essl et al. (2003), banded
waveguides are useful for modeling instruments
such as struck bars in which many modes are ex-
cited initially, but only a few strongly inharmonic
modes are dominant after the attack. The original
application of banded waveguides was the separa-
tion of a normal waveguide structure into a super-
position of band-limited waveguide structures that
accommodate different wave-propagation speeds at
different frequencies in resonating medium such as
a bar.

Although this step is the core of the generaliza-
tion, in typical applications of banded waveguides,
a second step is taken. The frequency bands are
centered around the dominant modal frequencies of
the instrument to be modeled. This step is moti-
vated by the principle of “closed wavetrains.” This
principle states that a mode occurs when a travel-
ing wave closes onto itself and the frequencies of
the modes can be derived by finding the waves that
close onto themselves with the same phase. This
principle is well known (see Cremer, Heckl, and

Ungar 1988) and is important in chaos theory and
modern dynamical theory (Essl 2002). More details
on the historical development of these ideas can be
found in Essl and Cook (2003).

Using this principle, the design of banded wave-
guides becomes straightforward. The modes of a
particular instrument are analyzed using spectrum
analysis or modal analysis methods, and the param-
eters of each mode are used to configure a banded
waveguide structure to create the synthesis
method. If a waveguide creates a mode, any multi-
ple of the length of that waveguide will also create
that same mode.

There is some ambiguity in the relationship of
waveguide length to the created mode. The choice
of waveguide length can be expected to influence
transients, while the late impulse response remains
the same (a single mode). Unless precise attack re-
construction is desired, this ambiguity can be ig-
nored. This ambiguity can often be resolved if
knowledge of the mode shapes or the wave-
propagation speed is available.

The band-pass filter eliminates neighboring
peaks in the comb-filter response created by the
closed delay-line loop. We have found that a simple
second-order resonant filter works well in many
situations. If the wave-propagation speed is con-
stant for all frequencies, then these band-pass fil-
ters are not required. In this case, banded
waveguides are equivalent to conventional wave-
guide synthesis using one feedback delay line.

The banded waveguide model has a number of
desirable properties. First, if memory use is not re-
stricted, it has approximately the same computa-
tional complexity as modal synthesis, because the
delay lines only add a small constant number of
operations per time step independent of their
length (Dodge and Jerse 1985).

Moreover, the model is “bowable” in the same
way that waveguides are ““bowable,”” because the
“‘pulse timing,” which synchronizes the bowed
string stick-slip process, is preserved to some ex-
tent, unlike with modal synthesis (Avanzini, Ser-
afin, and Rocchesso 2002; Essl 2002). Finally, it
inherits the numerically desirable properties of
waveguide synthesis. An interpretation of the
banded waveguide principle and its relationship to
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the literature of dynamical systems can be found in
Essl (2002).

Spatial Information in Banded Waveguides

The relationship between mode frequency and
speed of the traveling wave responsible for that
mode is not unique. It depends both on the dis-
tance the wave must travel and the time it takes to
travel that distance. The additional information to
remove this ambiguity can either be measured or
derived from constituent equations. When the trav-
eling speed ¢ and the traveling length x are known,
the traveling time d can uniquely be calculated as
d = x/c. If this information is not known, we can
take a good guess and use that guess in the simula-
tion. The system’s spectrum will be modeled cor-
rectly, but the response time may differ. This
affects only the transient response of the system, as
the modes ““come in”’ or “speak” either too fast or
too slowly, but once the mode is established, the
mode remains unaffected. For nonlinear interac-
tions such as bowing, this means that an object
may lock to a mode more quickly or slowly than
expected, but it will not affect the fact that it locks
to the mode. Another way to understand the same
point is by considering the effect of the ambiguity
on the time-domain, steady-state response. The
ambiguity only affects how many full periods of
modes are stored in a delay line; hence, at the bow-
ing point, the time-domain function looks the
same, as they are self-similar over any multiple of
full period oscillations. Therefore, the result sounds
and behaves qualitatively correct after some onset
latency.

If the goal is to simulate existing musical instru-
ments, then one issue is how to optimize the inte-
ger multiple delay-lengths to best match the
physics of the instrument. The connection between
geometry, dynamics, and modes as primary compo-
nents of sound production is summarized in Figure
5. The dynamics of a given geometry can be de-
composed into three aspects: the speed of propaga-
tion of traveling waves, the length and topology of
closed paths (here called periodic orbits), and the
additional phase changes that occur while a wave
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Figure 5. Relationship of
geometry and dynamics to
modes.
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traverses the path owing to boundaries and other
effects. The combination of the last two aspects de-
fines the effective path length, which in turn de-
fines what frequencies of traveling waves will form
standing waves and hence ““quantize” the path.
(These are called quantization rules in physics; see
Brack and Bhaduri [1997].) Together with the speed,
the actual frequency can then be calculated.

The connection between components in Figure 5
can follow two directions. First, following the di-
rection of the arrows corresponds to a construction
of a simulation from complete dynamical and geo-
metrical description. In this case, the tasks are (1)
to find a closed-loop path; (2) to identify boundary
conditions and turning points and their phase con-
tributions to path length; and (3) to find wave prop-
agation speed characteristics.

However, this is not necessarily the most practi-
cal approach. Finding closed-loop paths can be diffi-
cult, and the theoretical dynamics of a complex
instrument may not be known. Hence, it may be
difficult to find the wave propagation speed charac-
teristics. Finally, this construction is not precise; it
is only approximate. Thus we propose that modal
measurements are always used to allow precise
tuning, and the path-length construction is used to
disambiguate the delay lines’s lengths.

As banded waveguides are a spectrally decom-
posed version of digital waveguide synthesis, the
same constructions for digital waveguides still
hold. For example, Figure 6 shows two concate-
nated, banded waveguide structures that illustrate
the propagation of waves to a reflection point. The
reflection interaction is explicitly modeled, as is the
propagation back to the starting point. Note how by
splitting traveling paths, interaction and observation
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Figure 6. A banded wave-
guide system including ex-
plicit modeling of the
reflection.

Right traveling wave propagation

In
— rl] » BP | Delay — Out
t
e
r
i —»| BP |» Delay
t
i R
0 e
n | » BP (» Delay T
e
C
t
+ Delay <«| BP |« |
(o]
n
A
Delay l«| BP |«
Delay «| BP |«

Left traveling wave propagation

points can be made different, as can also be seen in
the location of the output in Figure 6.

Banded Digital Waveguides
in Higher Dimensions

The principle of closed wavetrains states that
modes and closed paths correspond. This is also
true in higher dimensions, in which case spatial
information of a banded waveguide model of an
instrument whose resonator is two- or three-
dimensional requires finding which geometric
paths correspond to which mode.

We start with the notion of ray paths in higher
dimensions as opposed to wave-front propagation

for a number of reasons. Waves traveling on rays
can be “discretized”” using waveguide structures,
which are computationally very efficient and well
understood. Also, a principle directly linking ray
paths and resonance—the principle of closed wave-
trains—is known and easily applicable. Finally, a
body of literature exists following this approach.
For a detailed discussion of the historic develop-
ment of this literature, see Essl (2002) and Essl and
Cook (2003) and the references therein.

Solutions for square, circular, and elliptical mem-
branes are well known. Musical instruments are
usually highly symmetric, so one can hope that a
precise or at least an approximate construction can
often be found.

It should be noted that in general, this is how-
ever a difficult problem and relates to Kac’s famous
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Figure 7. (a) Reflections of
a single ray; (b) types of re-
flections for ray families.

(1) (ii)
(1iii) (iv)

question ““Can you hear the shape of a drum?” (Kac
1966). It has since been found that for certain
asymmetric, non-smooth boundaries that a spec-
trum does not uniquely match one geometric shape
(Driscoll 1997).

Finding these paths has been studied in various
contexts; specifically, it was proposed by Rocchesso
as a synthesis paradigm (1995). The constructions
for the square and circular membrane were pre-
sented by Keller and Rubinow (1960).

Rectangular Membranes

As an example, let us examine a rectangular do-
main. Starting with a family of parallel rays “shoot-
ing off’”” at a certain angle, geometric reflection just
means an inversion of the travel direction normal
to the boundary. For our present discussion, the in-
tuitive notion of a ray as a line trajectory in space
suffices. A rigorous treatment can be found in
Keller and Rubinow (1960) and Chapman, Lawry,
Ockendon, and Tew (1999).
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(1)

(ii)

(iii) (iv)

This behavior is depicted in Figure 7. Figure 7a
shows the first four reflections of a ray (i-iv). Figure
7b shows the same general behavior for a whole
family of rays mirroring the same directional states
given in i to iv. This picture should be interpreted
as states rather than as actual ray paths, meaning
there are four possible propagation configurations
that change depending on reflections at the bound-
ary. Any family of rays with an angle different than
90° will eventually reflect and change directions.
As a ray propagates through the domain, it can re-
flect many times until it closes onto itself, but it
still can only be in one of these configurations.
This repeating configuration is usually interpreted
topologically and then used to study resonant be-
havior of closed paths. This constructions will not
be presented here but can be found in Essl (2002).

Obviously, these ray-families share the same
closed path-length and integer ratios of bounces in
the up—down to left-right dimension, yielding
closed paths of finite length. (Irrational ratios yield
infinitely long closed paths.) By combining the path
length of the closed loop with the phase change
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Figure 8. Topological
transformation of two
independent geometric
variables as coordinates
of a rectangle (i), to bent
planes (ii, iii), and to angle
and radius of a circle (iv).
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(1) (ii)

(iii)

(iv)

owing to wave reflection conditions at the bound-
ary, the frequency of the mode can be calculated.

For each closed traversal in one dimension, the
phase changes twice. If 6 is the angle of the ray
family from its horizontal dimension, a is the
length of the rectangular region in that dimension,
and k is the sought wave number, then the total re-
versed phase between two reflections will be 2ka
cosfl. The closure condition demands that the tra-
versal phase is a multiple of 2n. The same also
holds for the vertical direction of length b. Hence
we get

2ka cos 0 = 2rnn, (8)

2kb sin 0 = 2rn, (9)

Eliminating the angle and calculating the fre-
quency f from the wave number with the speed of
sound c yields

c c [n} n}
= — k=—- |14+ 2 10
Ar 2 \/ a* b> [10]
where n, and n, are integers. This result corre-
sponds to the well-known solution for modal fre-
quencies of the rectangular membrane. See also

Zhou and Chen (1991 for a similar calculation.

Circular Membrane

Paths of rays on a circular membrane can be con-
structed in a related fashion. Both examples have
two independent spatial dimensions. In fact, a top-
ological mapping of a rectangle to a disk can be
achieved by shrinking one edge to point size while
forming a closed circle with the opposite edge and
““gluing’’ the remaining edges together, as depicted
in Figure 8. Such a topological mapping is called

Figure 9. Path construction
on the circular domain

(cf. Keller and Rubinow
1960, Figures 3 and 5).

(a) Closed path touching

(b) a purely circular path;
(c) path containing rays
traveling from interior cir-
cular region to boundary
and back.

the interior circular region;

(a) (b) (c)

homeomorphism and is not limited to these partic-
ular shapes.

Again, all rays with the same reflection angle at
the boundary belong to a family of rays with the
same resonant properties. Any ray with a non-zero
radial propagation component (see Figure 9a) thus
alternates between reflecting at the boundary and
an enclosed circular region. An integer ratio be-
tween radius and angular component yields finite
length paths.

Application to Non-Physical Entities

The abstract structure, and even the filter interpre-
tation thereof, does not necessarily need a physical
interpretation. In this case, banded waveguides can
be seen as a purely abstract synthesis method with
certain properties. The choice of parameters then
becomes aesthetically motivated rather than physi-
cally motivated.

An example of non-physical application of this
structure, discovered by accident, is the following;:
if the sum of the band-limited delay lines is numer-
ically integrated (accumulated sum), and the appro-
priate ‘“physical”’ interpretation of the result of
reconstruction becomes displacement, we obtain a
quantity that is not properly physically informed. If
this integrated displacement is then fed into a stan-
dard bowing interaction model, rich, chaotic
sounds can be produced in a stable manner. Non-
physical applications of banded waveguides are dis-
cussed in more detail in Essl (2003).

Beating Banded Waveguides

Beating occurs in objects, both physical and non-
physical, for various reasons. The modes of the ob-
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ject itself can be so close that they form a beating
pair. Without this small detuning between modes,
a phenomenon called degeneracy appears in which
two different modes have almost the same fre-
quency. The interaction may also be low in fre-
quency and hence have a beating envelope with
respect to the sound produced by the instrument.
Beating has been modeled in the context of coupled
piano strings (Bank 2000) and plucked strings with
sympathetic coupling (Karjalainen, Viliméki, and
Tolonen 1998). In this article, we describe another
possibility of implementing beating for banded
waveguides.

The beating modes combined with weak damp-
ing pose a challenge. For two neighboring banded
wave paths whose center frequencies converge, the
respective frequency bands start to overlap
strongly. This means that energy will contribute to
traveling waves in both bands simultaneously.
Beating can be implemented as two banded wave-
guides slightly detuned in frequency.

To guarantee stability within the frequency re-
gion, the sum gain of both waveguides cannot ex-
ceed unity, as both are added together for
interaction or feedback. More specifically, the gain
of the respective banded wave paths can be calcu-
lated from the maximum of the overlapping band-
pass filter amplitude characteristics. This
maximum must be tuned to the desired gain, and
the respective gains of the band-pass filters are ad-
justed by the weight of the overlap.

The simulation of an isolated beating mode pair
can be seen in Figure 10. The relative ratio between
the modes is 1:1.05.

Essl et al. (2003) presents an application of beat-
ing banded waveguides to the Tibetan bowl.

Banded Waveguide Mesh

As described in the previous section, banded wave-
guides are an efficient synthesis technique for in-
harmonic structures where the number of modes is
relatively low. In situations in which complex reso-
nators with many modes are considered, an exten-
sion of banded waveguides called the banded
waveguide mesh has been proposed (Serafin,
Huang, and Smith 2001).
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Figure 10. (Left) Evolution
of an isolated simulation
of a beating mode pair;
(right) initial transient and
the first beating period.
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Figure 11 shows the structure of a banded wave-
guide mesh. The banded waveguide mesh is a gen-
eralization to multiple dimensions of the banded
waveguide to efficiently implement a complex res-
onator without using too many banded waveguides.

As in the case of banded waveguides, we divide
the spectrum of a vibrating system into frequency
bands. For frequency bands where a single reso-
nance is present, a one-dimensional digital wave-
guide is used. For bands where resonances are more
complex, we use either a two-dimensional or three-
dimensional digital waveguide mesh whose dimen-
sions are chosen to match statistically and
psychoacoustically the resonances of the modeled
object. This creates a connection of banded wave-
guides and waveguide meshes. As in the one-
dimensional case, reflection filters are included in
the structure to achieve desired decay characteris-
tics.

Let f, be the cutoff frequency above which an ad-
equately high concentration of modes appears in
the spectrum, and let f,,, be the fundamental fre-
quency of the mesh, i.e., the lowest mode gener-
ated by the mesh. In all applications, f, = f,,,, so
the role of the waveguide mesh is to model reso-
nances above f,.

Note that the higher the value of f,,,, the smaller
the dimensions of the waveguide mesh and the
more efficient the implementation. The choice of
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Figure 11. A banded wave-
guide mesh with two one-
dimensional digital
waveguides and a digital
waveguide mesh.
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1., therefore, is an important decision that affects
the resulting computational cost.

The banded waveguide mesh has been applied to
the modeling of bowed plates and bowed cymbals,
as described in Essl et al. (2003). A structure similar
to the banded waveguide mesh has also been used
to model the body of complex resonators such as
the violin (Huang, Serafin, and Smith 2000).

So far, we have described only models for the res-
onating part of musical instruments. In the follow-
ing section we describe how the excitations are
modeled and coupled to the banded waveguides.

Modeling the Excitation

The banded waveguides described in the previous
section can be excited either by a sustained or a
transient mechanism. In this section, we examine
how to model transient inputs such as hitting the
resonators and sustained inputs such as frictional
interactions between dry surfaces.

Modeling a Transient Excitation

While attempting to simulate complex transient
excitations, we first experimented with physical
models proposed in the literature (Marhefka and
Orin 1999; Avanzini and Rocchesso 2001; van den

Figure 12. Exciter and res-
onator connected in a
feed-forward loop.

EXCITER RESONATOR
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Doel, Kry, and Pai 2001), but we noticed they were
not able to reproduce faithfully the strength of the
impact between hard surfaces such as a metal and a
hard mallet, as in the case of the instruments pro-
posed in Essl et al. (2003). We therefore decided to
use a spectral approach. Using a force hammer, we
recorded the impulse response of the instruments
while struck at different positions and with differ-
ent excitation forces. We then analyzed the fre-
quency response to detect the main resonance
frequencies. By using inverse filtering through
second-order notch filters, we removed such fre-
quencies from the impulse response, which gave us
samples of different excitations at different posi-
tions (i.e., the residual). The residual obtained was
modified through a filtering procedure in the syn-
thesis step according to the input parameters, i.e.,
the excitation force and position.

Such transient excitation was fed into the reso-
nator in a feed-forward loop, as shown in Figure 12.

A similar approach is also proposed in Cook
(2002). Here, the excitation duration is modeled
with a filter excited by noise.

A Physical Model of the Sustained Excitation

Banded waveguides can be excited through a
““stick-slip’’ process that is similar to the one of a
violin bow exciting a string. The frictional interac-
tion between dry surfaces is a phenomenon of in-
terest to various fields of engineering in which
friction is considered an unpleasant source of noise
and instabilities that must be reduced.

In the literature, velocity-dependent friction
models have been used for their simplicity yet abil-
ity to reproduce most of the phenomena that derive
from friction. Recently, dynamic friction models
have been proposed (Hayward and Armstrong 2000)
and applied to the sonic simulation of rigid bodies
in frictional contact (Avanzini, Serafin, and Roc-
chesso 2002).
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Figure 13. Exciter and res-
onator connected in a

feedback loop.
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In this article, we use the velocity-dependent
friction curve:
(1 = pavo
W=y il (1]
VU + vm]

where u, and u, are the static and dynamic friction
coefficients, respectively, v, is the initial velocity of
the excitation, and v,,, represents the relative veloc-
ity between the exciter and the resonator.

The values of the friction coefficients that de-
pend on the characteristics of the materials in con-
tact are taken from Rabinowicz (1995). In this
friction model, the unknown variable is the veloc-
ity of the waves propagating in the resonator. By
using the same time-domain simulation first pro-
posed in Mclntyre, Schumacher, and Woodhouse
(1983), it is possible to obtain the new values of the
dynamic friction coefficient and the velocity waves
by solving a system of two equations. The first is a
linear equation that represents the velocity waves
propagating along the resonant structure, and the
second is a nonlinear equation that is the friction
function of Equation 11.

Despite its simplicity, the friction model of
Equation 11 gives satisfactory results from a per-
ceptual point of view. Moreover, this model allows
us to analytically solve the coupling between the
friction curve and the waves propagating along the
waveguides. This is an important advantage for ef-
ficiency in real-time implementation and for avoid-
ing numerical errors. The waveguide resonator is
coupled to the friction excitation in a feedback loop
as shown in Figure 13.

Conclusions

In this article, we proposed banded waveguides as
an efficient technique to model complex resonators
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with few modes. The theory of banded waveguides
is by no means a closed chapter. Many open ques-
tions regarding the scope and applicability of this
technique remain. For instance, what kind of ge-
ometries can be modeled usefully using banded
waveguides? Although the difference between
banded waveguides and traditional waveguides is
clear, some questions may still be raised on the ad-
vantages of banded waveguides versus modal syn-
thesis. First of all, in banded waveguides, the
excitation’s position does not need to be imposed
on the modes of the structure by varying their rela-
tive amplitudes, but rather it derives naturally from
the structure of the model itself. Moreover, in
banded waveguides, the transient attack is enriched
by the fact that, in each waveguide, the fundamen-
tal frequency of each mode and its harmonics ap-
pear for few msec before the band-pass filtering
takes effect. In this way, we achieved interestingly
rich interactions between rubbed surfaces without
using a complex friction model. A companion arti-
cle Essl et al. (2003) presents a number of success-
ful applications developed by the authors so far. We
hope that with future explorations of theory and
applications, we will learn more about this and see
the range of applications, advantages, and limita-
tions be clearly and fully explored.
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