1. Suppose that $(\Omega, \mathcal{F}, \operatorname{Pr})$ is a probability space. Prove that $\operatorname{Pr}(\emptyset)=0$.
2. Suppose that $(\Omega, \mathcal{F}, \operatorname{Pr})$ is a probability space. Prove that Pr is finitely additive.
3. Suppose that $(\Omega, \mathcal{F}, \operatorname{Pr})$ is a probability space, and $A \in \mathcal{F}$. Prove that $\operatorname{Pr}\left(A^{c}\right)=1-\operatorname{Pr}(A)$.
4. Suppose that (Ω, \mathcal{F}) is a measurable space, and $Q: \mathcal{F} \rightarrow[0,1]$ satisfies

- $Q(\Omega)=1$;
- Q is finitely additive;
- For each sequence of events $\left\{A_{k}\right\}_{k=1}^{\infty}$ with $A_{n+1} \subset A_{n}$ for each positive integer n and

$$
\cap_{n=1}^{\infty} A_{k}=\emptyset
$$

we know $Q\left(A_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Prove that Q is a probability measure.
5. Prove that all distribution functions are non-decreasing, are right-continuous with left-hand limits, converge to 1 at infinity and 0 at negative infinity.
6. Suppose that $\Omega=[0,1], \mathcal{F}$ is the set of all Lebesgue measurable subsets of Ω and $\operatorname{Pr}(F)$ is the integral of $f(x)=x$ with respect to Lebesgue measure over F if F does not contain $1 / 3$, and is the integral of $f(x)=x$ with respect to Lebesgue measure over F plus $1 / 2$ if F contains $1 / 3$. Let $X: \Omega \rightarrow(-\infty, \infty)$ defined by $X(\omega)=\omega^{2}$.

Verify that X is a real valued random variable, find and graph its distribution function, and compute its mean, variance and characteristic function.

