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1. Introduction

We look at some new ways to identify normally distributed random variables.

One of these is related to some problems in abnormal returns in stock prices.

2. Main results

We begin with the following lemma.

Lemma 2.1. Suppose that φ is a characteristic function with φ′(0) = 0, φ′′(0) =

−σ2 < 0 and in some open neighborhood of 0,

aφ′(t)φ(at) = φ′(at)φ(t)(2.1)

for some a, where a 6= 0,±1. Then φ(t) = exp(−σ2t2/2) for all real numbers t.

Proof. Without loss of generality we may assume that (2.1) holds for some a with

0 < |a| < 1. It follows from (2.1) that for all t in some open neighborhood of 0,

and for all positive integers n

φ′(t)
φ(t)

=
φ′(ant)
anφ(ant)

(2.2)

For such t which are different from 0, divide both sides of (2.2) by t and let n→∞

to obtain

φ′(t)
tφ(t)

= −σ2.

Therefore in an open neighborhood of 0 we have

φ′(t) + σ2tφ(t) = 0.

Therefore in an open neighborhood of 0 we have φ(t) = exp(−σ2t2/2). This implies

that φ(t) = exp(−σ2t2/2) for all real numbers t since the moments of the normal

distribution uniquely characterize that distribution.
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Theorem 2.2. Suppose that X and Y are independent random variables with stan-

dard deviations σX > 0 and σY > 0 respectively, and (X − E[X])/σX and (Y −

E[Y])/σY are identically distributed. Then there exists a constant C such that

E[(CX− (1− C)Y)IX+Y≤t] = 0(2.3)

for all t iff C = σ2
Y /(σ

2
X + σ2

Y ), CE[X] = (1 − C)E[Y], and either X and Y are

identically distributed or X and Y are normally distributed.

Proof. We consider the easy direction first. Suppose that C = σ2
Y /(σ

2
X + σ2

Y ) and

CE[X] = (1−C)E[Y]. If X and Y are identically distributed then (2.3) is trivially

true. If X and Y are normally distributed, then C(X −E[X])− (1−C)(Y−E[Y])

and X + Y are uncorrelated, and, therefore, independent. Therefore

E[(CX− (1− C)Y)IX+Y≤t] = (CE[X]− (1− C)E[Y]) · Pr(X + aY ≤ t) = 0

as required.

Now for the interesting direction. Suppose that (2.3) holds. Letting t → ∞ we

see that CE[X]− (1− C)E[Y] = 0, so we have

E[(C(X− E[X])− (1− C)(Y − E[Y])IX+Y≤t] = 0.(2.4)

It follows from (2.4) that for all bounded continuous functions f ,

E[(C(X− E[X])− (1− C)(Y − E[Y])f(X + Y)] = 0.(2.5)

If we take f(u) = exp(it(u−E[X]−E[Y])) for any real number t, and let φX denote

the characteristic function of X−E[X] and let φY denote the characteristic function

of Y − E[Y] it follows from (2.4) that

Cφ′X(t)φY (t) = (1− C)φ′Y (t)φX(t).(2.6)

since X and Y have finite mean. Dividing both sides of (2.6) by t and letting t→ 0

gives Cσ2
X = (1 − C)σ2

Y as required. If σX = σY then X and Y have the same

mean and variance, so they are identically distributed. Suppose that σX 6= σY . Let

φ denote the common characteristic function of (X−E[X])/σX and (Y −E[Y])/σY.

Then from (2.6) we have

σ2
Y σXφ

′(σXt)φ(σY t) = σ2
XσY φ

′(σY t)φ(σXt).(2.7)
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If we set u = σXt and a = σY /σX in (2.7) we get

aφ′(u)φ(au) = φ′(au)φ(u)

and normality follows from the Lemma.

As an application of this theorem, we consider the following model for the return

on a stock, R, given in Vachadze[2001]. A, B, and J are independent random

variables. A and B are normal, and Pr(J = 1) = 1 − Pr(J = 0) = p ∈ (0, 1),

and it was assumed that R = A+ JB. The idea is that under usual circumstances

R is distributed like A, but from time to time there is unusual information which

changes the return distribution to be that of A+B.

It was subsequently shown in Vachadze[2002] that if we let fX denote the density

of a random variable X then

E[J|R] = p
fA+B(R)

fR(R)
(2.8)

and

E[J(B− E[B])|R] =
Var[B]

Var[A + B]
(R− E[A + B])E[J|R](2.9)

It is easy to check that (2.8) remains true so long as A and B have densities. The

same is not true for (2.9). In fact, we have

Theorem 2.3. Suppose that A, B and J are independent random variables, that

A and B have (absolutely) continuous distributions with variances σ2
A and σ2

B re-

spectively, that (A − E[A])/σA and (B − E[B])/σB are identically distributed, and

that Pr(J = 1) = 1− Pr(J = 0) = p ∈ (0, 1). Put R = A+ JB. If

E[J(B− E[B])|R] = C(R−D)p
fA+B(R)

fR(R)
(2.10)

for some constants C and D then C = σ2
B/(σ

2
A+σ2

B), D = E[A+B], and if σ2
A 6= σ2

B

then A and B are normally distributed.
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Proof. It follows from the definition of conditional expectation that if F is any

Borel subset of the real line then

pE[(B− E[B])IA+B∈F] = E[(B− E[B])IA+B∈FIJ=1]

= E[J(B− E[B])IA+JB∈FIJ=1]

= E[J(B− E[B])IR∈F]

= pCE[(R−D)
fA+B(R)

fR(R)
IR∈F]

= pC

∫
R

(R−D)fA+B(R)IF (R) dR]

= pCE[(A + B−D)IA+B∈F]

so

E[(C(A + E[B]−D)− (1− C)(B− E[B]))IA+B∈F] = 0(2.11)

for each Borel subset of the real line. Taking F = (−∞, t + D] we see that Theo-

rem 2.3 follows from Theorem 2.2.
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