
1. Suppose that (Ω,F ,Pr) is a probability space. Prove that Pr(∅) = 0.

2. Suppose that (Ω,F ,Pr) is a probability space. Prove that Pr is finitely additive.

3. Suppose that (Ω,F ,Pr) is a probability space, and A ∈ F . Prove that Pr(Ac) = 1− Pr(A).

4. Suppose that (Ω,F) is a measurable space, and Q : F → [0, 1] satisfies

• Q(Ω) = 1;

• Q is finitely additive;

• For each sequence of events {Ak}∞k=1 with An+1 ⊂ An for each positive integer n and

∩∞n=1Ak = ∅

we know Q(An)→ 0 as n→∞.

Prove that Q is a probability measure.

5. Prove that all distribution functions are non-decreasing, are right-continuous with left-hand
limits, converge to 1 at infinity and 0 at negative infinity.

6. Suppose that Ω = [0, 1], F is the set of all Lebesgue measurable subsets of Ω and Pr(F ) is the
integral of f(x) = x with respect to Lebesgue measure over F if F does not contain 1/3, and is
the integral of f(x) = x with respect to Lebesgue measure over F plus 1/2 if F contains 1/3.
Let X : Ω→ (−∞,∞) defined by X(ω) = ω2.

Verify that X is a real valued random variable, find and graph its distribution function, and
compute its mean, variance and characteristic function.

7. Let U be a random variable such that

Pr(ω : U(ω) ∈ (a, b]) = b− a

for 0 ≤ a ≤ b ≤ 1. Let F : (−∞,∞) → [0, 1] be a distribution function. Define G : (0, 1) →
(−∞,∞) by G(y) = sup{x : F (x) ≤ y}. Show that G(U) is a random variable and that
its distribution function is F . Illustrate this theorem with the distribution function in the
preceding problem. This problem shows that each distribution function on the real line is
the distribution function of a real valued random variable so long as the uniform distribution
function is the distribution function of a real valued random variable.

8. (From Chung’s book) Suppose that X is a real valued random variable whose distribution
function F is continuous. What is the distribution function of F (X)? What happens if F is
not continuous?

9. Suppose that Xn, n = 0, 1, 2, . . . is an infinite sequence of independent, identically distributed
generalized random variables on (Ω,F ,Pr). Let C be a measurable set in their range such that
Pr(X1 ∈ C) > 0. Let

Ω′ := {ω ∈ Ω : Xn(ω) ∈ C for some n > 0}.

Define T : Ω→ [0,∞) by

T (ω) =
{

0 if ω ∈ (Ω′)c

min{n : Xn(ω) ∈ C} if ω ∈ Ω′

Show that Ω′ ∈ F , that Pr(Ω′) = 1 and find a formula for Pr(ω : T (ω) = n) for each positive
integer n. What does the value of T tell us?

10. (continuation) Define
Y (ω) = XT (ω)(ω).

Show that Y is a generalized random variable on (Ω,F), and show that for each measurable
set F ,

Pr(Y ∈ F ) = Pr(X1 ∈ F |X1 ∈ C).
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11. (continuation) Use the preceding to show that if Un, n = −1, 0, 1, 2, . . . are independent, iden-
tically distributed uniform random variables on [−1, 1], and we put Xn = (U2n−1, U2n) for
n = 0, 1, 2, . . . and C = {(x, y) ∈ R2 : x2 + y2 ≤ 1}, then Y is uniformly distributed on C.

Note: The suite of problems 7 and 9, 10 and 11 form the backbone for a large part of the
theory of simulation of sequences of psuedo-random numbers with specified distributions. 7
goes by the name of the inverse transform method, and 10 is called the rejection method. See
S. Ross’s book on simulation methods for more examples and details.

12. (From Chung) Suppose that E[X2] = 1 and E[|X|] ≥ a > 0. Show that Pr(|X| ≥ ta) ≥
(1− t)2a2 for t ∈ [0, 1].

13. Suppose that Pr(X ≥ 0) = 1. Show that E[X] <∞ if and only if

∞∑
n=1

Pr(X ≥ n) <∞.

14. We say that a random variable X has a Poisson distribution with rate a if for some a > 0,

Pr(X = x) =
ax

x!
exp(−a)

for each non-negative integer x, and

Pr(X = x) = 0

otherwise. Suppose now that (Xk)∞k=1 is a sequence of mutually independent Poisson random
variables, and Xk has rate ak. Put Sn = X1 + . . . + Xn. Show that Sn is a Poisson random
variable with rate a1 + · · ·+ an. Under what additional assumption on the ak will

Pr
(

lim
n→∞

Sn
E[Sn]

= 1
)

= 1?

15. (continuation) Under what condition on the ak is there is a random variable X such that

Pr( lim
n→∞

Sn = X) = 1?

Determine the distribution of X.

16. Suppose that X and Y are independent random variables. Show that

Pr(X > 0, X + Y > 0) + Pr(Y > 0, X + Y > 0) = Pr(X > 0) Pr(Y > 0) + Pr(X + Y > 0).

17. Show that if X and Y are independent normal random variables with zero mean then so is
X + Y .

18. For each c > 0 we can define the density function fc by

fc(x) =
c

π(x2 + c2)
.

Show that if fc is the density of X then for a > 0, the density of aX is fac. Compute fc ∗ fd(t)
for each positive real number t.

19. Suppose that Q : (0, 1] → [0,∞) is a strictly decreasing continuous function with Q(1) = 0.
Show that the following procedure recursively defines a probability mass function on the positive
integers.

• f1 ∈ (0, 1) is the unique solution of Q(x) = x.

• Given fj ∈ (0, 1) and f1+· · ·+fd < 1, fd+1 is the unique solution of Q(f1+· · ·+fd+x) = x
for x ∈ (0, 1− f1 − · · · − fd). Find the fj if Q(x) = 1− x and if Q(x) = (1− x)2/x.

2



20. Suppose that the sequence of random variables (Xn)∞n=1 satisfies

Pr
(
Xn =

j

n

)
=

1
n

for j ∈ {1, . . . , n}. Put Fn(t) = Pr(Xn ≤ t). Show that the sequence of distribution func-
tions (Fn)∞n=1 converges in distribution, and find a closed form expression for the limiting
distribution.

21. Repeat the preceding problem with Pr
(
Xn = j

n

)
= 2j

n(n+1) .

22. Suppose that (Xn)∞n=1 are iid with Pr(Xn = 0) = Pr(Xn = 1) = 1/2. Put

YN =
N∑
n=1

2−nXn.

Determine if the sequence (YN )∞N=1 converges in distribution and if it converges almost surely.
If it converges in distribution, what is the limiting distribution?

23. Show that φ(t) = cos(t) is a characteristic function. Show that

n∏
k=1

cos(t/2n)

converges as n→∞ and find the limit.
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