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We are all familiar with the functional equation

F (x+ y) = F (x)F (y),

or its equivalent,

F (y) = F (y)F (x− y),

which under the additional condition that F be continuous at 0 implies that F =
A exp(Bx).

Surprisingly there is a similar result for sines and cosines (circular or hyperbolic)
and affine functions, based on the subtraction formula for sine functions. Roughly
speaking, if S and C satisfy

S(u− v) = S(u)C(v)− S(v)C(u),

or its equivalent,

S(h) = S(x+ h)C(x)− S(x)C(x+ h)(1)

and are well-behaved at 0, then S and C are sine and cosine functions or affine
functions.

That we care about this might at first appear to be idle mathematical curiosity.
However, in Abroell(1998), the problem of identifying which pairs of functions
satisfy the more general equation (2) below arises in design problems in Statistics.

Theorem 1. Suppose that U and V are two real valued functions of a single
real variable. Suppose that each function is differentiable at 0, and U ′(0)V (0) −
V ′(0)U(0) 6= 0. If

U(x+ h)V (x)− U(x)V (x+ h) = U(h)V (0)− V (h)U(0)(2)

for all x and h, then for some real number k

U ′′(x) = kU(x)
V ′′(x) = kV (x)

for all x.

Proof. Put D = U ′(0)V (0)− V ′(0)U(0), and

S(x) =
U(x)V (0)− U(0)V (x)

D

C(x) =
U ′(0)V (x)− V ′(0)U(x)

D

It follows from (2) that S and C satisfy (1), so the Theorem follows from the
following special case by observing that U and V are linear combinations of S and
C.

Lemma 2. Suppose that S and C are two real valued functions of a single real
variable. Suppose that each function is differentiable at 0, S(0) = C ′(0) = 0 and
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S′(0) = C(0) = 1. If S and C satisfy (1) for all x and h, then for some real number
k

S′′(x) = kS(x)
C ′′(x) = kC(x)

for all x.

Proof. Replacing h with −h and x with x+h in (1) gives S(−h) = S(x)C(x+h)−
S(x+ h)C(x) = −S(h), so we see that S is odd.

It now follows from (1) by setting h = t+ h and x = −t that

S(t+ h)− S(t)
h

= C(−t)S(h)− S(0)
h

+ S(t)
C(h)− C(0)

h
.

This last expression converges to C(−t) as h converges to 0, proving that S is
differentiable with S′(t) = C(−t). Since S is odd, S′ is even, so C is even. Therefore,
S′ = C.

Next we show that either S is periodic or S has only one zero. If S has more
than one zero, then S has a least positive zero since S is continuous and S′(0) = 1.
Call this zero x0. We will show that S has period 2x0. Since S(−x0) = 0, S cannot
have a period smaller than 2x0, else x0 would not be its smallest positive zero.

If we set x = x0 and h = −x0/2 in (1) we obtain −S(x0/2) = S(x0/2)C(x0) so
C(x0) = −1. Now substituting x0 for x in (1) shows that for any h,

S(h) = −S(x0 + h).(3)

Therefore S(h+ 2x0) = −S(h+ x0) = S(h), establishing that 2x0 is the period of
S.

In addition we see that (3) and the fact that C = S′ imply that

C(x) = −C(x+ x0).(4)

for all x.
Now we can show that C is differentiable. Replace h with 2x and x with −x in

(1) to obtain

S(2x) = S(x)C(−x)− S(−x)C(x)
= 2S(x)C(x)

Therefore C is differentiable at any value x where S(x) 6= 0. We assumed that
C is differentiable at 0. If S has other zeroes, then S is periodic. Recall that x0

denotes the smallest positive zero of S in this case. It then follows from (4) that C
is differentiable at the zeroes of S.

Since S′ = C we now know that S is twice differentiable. We may rewrite (1)
one last time as

S(h) = S(x+ h)S′(x)− S(x)S′(x+ h).

Differentiating with respect to x gives us

0 = S(x+ h)S′′(x)− S(x)S′′(x+ h).

Fix x1 so that S(x1) 6= 0. Then we have

S′′(x1 + h) =
S′′(x1)
S(x1)

S(x1 + h)
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or, by renaming variables,

S′′(x) = kS(x)

as claimed. This in turn implies that C ′′(x) = kC(x).
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