The complex exponential function

1 Comment

You will not need this material in Math 231, but you will need it in later course in mathematics,
physics and electrical engineering.

2 Why a complex exponential function should exist

Recall that by definition,
exp(r) = lim (1 + Z)
n—oo n

where 7 is any real number. It will be shown in Math 232 that
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(We could do this now with the binomial theorem, but this topic is not a part of this course.)

In either case it is the case that we could consider r to be a complex number and have an
infinite sequence of complex numbers. In the case where r = it where ¢ is a real number and

i? = —1 we would get
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The existence of the two limits, which I have called f(¢) and g(t) is easily established via the
theorem on limits of monotone functions, and we can show that

fo) =1
g(0) = 0
fit) = —gt)
gty = [t

all of which allows us to conclude that f(¢) = cos(t) and ¢(t) = sin(t), as pretty remarkable
result:

Theorem 1 For each real number t,

exp(it) := lim (1 + ﬂf)n = cos(t) + isin(t).

n—oo n

For example,
exp(2mi) = 1.



It follows from the addition formulae for sine and cosine that for any two real numbers ¢
and s that

exp(it +1is) = cos(s+t)+isin(s +1)

(cos(t) cos(s) — sin(t) sin(s)) + i (sin(t) cos(s) + sin(s) cos(t))
(cos(t) +isin(t)) x (cos(s) + isin(s))

= exp(it) exp(is)

so the exponential function property is still valid. In fact, for any complex number a + bi, we
may define
exp(a + bi) = exp(a) exp(bi)

and we get an exponential function defined on all complex numbers. By this we mean that
exp(z) exp(y) = exp(z + y) for z and y complex numbers, not just real numbers.

3 Applications to trigonometric identities
We have for any real numbers A and B:

(cos(A) cos(B) — sin(A) sin(B)) + i (sin(A) cos(B) + sin(B) cos(A))
= (cos(A) + isin(A)) (cos(B) + isin(B))
= exp(iA)exp(iB)
= exp((A+ B)i)
= (cos(A)cos(B) — sin(A)sin(B)) + i (sin(A) cos(B) + sin(B) cos(A))
= cos(A+ B) +isin(A+ B)

so the identity exp(iA) exp(iB) = exp(i(A+ B) encapsulates both the sine and cosine addition
formulae. In fact, it follows by induction that

(cos(A) + isin(A))Y = cos(NA) + isin(NA)

for any real number A and any integer (even negative integers!) N. For example, if we want
to find the triple angle formulae for sine and cosine:

cos(3A4) + isin(34) = (cos(A) + isin(A))?
cos®(A) + 3isin(A) cos*(A) — 3sin?(A) cos(A) — isin®(A)

SO

cos(3A) = cos®(A) — 3sin?(A) cos(A)
sin(34) = 3sin(A)cos*(A) — sin®(A)

Observe that we also have

exp(1A) + exp(—iA)
2

exp(iA) — exp(—iA)
21

cos(A) =

sin(A) =



We can then see that

cos(A) cos(B) — i(exp(iA) + exp(—id))(exp(iB) + exp(—iB))

= i (exp(i(A + B)) + exp(—i(A + B)) + exp(i(B — A)) + exp(—i(A — B)))

= ;(COS(A + B) + cos(A — B)),

sin(A)sin(B) — —i(exp(iA) — exp(—iA))(exp(iB) — exp(—iB))
= 2 (exp(i(A+ B)) + exp(~i(A + B)) — [exp(i(B — A) + exp(~i(4 - B)))
= %(COS(A — B) —cos(A + B)),

In particular,

sin (g) sin(kz) = % (cos (k;x - g) — oS ([k: + 1]z — g)) (1)
Similarly,
sin(A) cos(B) = %Z,(exp(i/l) —exp(—iA))(exp(iB) + exp(—iB))

LeDi(A+ B)) — exp(—i(A+ B)) + [expli(A — B)) — exp(~i(A~ B)))

_ %(sin(A + B) +sin(A — B))

_ ;(sin(A + B) —sin(B — A))

sin <:§) cos(kx) = ; (sin <(k: + 1)z — ;) — sin <l€x - ;)) (2)

Another application, a bit fancier, is the following. Suppose that cos(A) # 1. Then

Z_ (cos(kz) + isin(kz)) = (cos(z) + isin(z))"

k=0

=

1 — (cos(z) + isin(z))"
1 — (cos(z) + isin(x))
1 —cos(Nz) —isin(Nzx))
1 — cos(z) — isin(x)
1 —cos(Nz) —isin(Nx)) 1 — cos(z)+ isin(zx)
1 — cos(z) — isin(x) 1 — cos(x) + isin(x)
(1 —exp(iNz))(1 — exp(—iz))
(1 — cos(z))? + sin*(x)
1 —exp(iNz) — exp(—iz) + exp(i(N — 1)z)
2(1 — cos(z))




SO

N-1 1 — cos(Nz) — cos(x) + cos((N — 1)x)
cos(kz) =
] (kx) 2(1 — cos(z))
_ 1 cos(z) — cos((N — 1)z)
2 4sin’(x/2)

—sin(Nz) + sin(z) + sin((N — 1)x)
2(1 — cos(x))
—sin(Nz) + sin(z) + sin((N — 1)z)
4sin*(z/2)
Note that these identities could also be derived from (1) and (2).

> sin(kz) =

=0
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4 The relation to the geometric properties of complex
numbers

Recall that we may interpret a + bi as a point in the place corresponding to the point (a,b).
From the Pythagorean Theorem and the definition of absolute value as the distance from a
number to 0 we see that

la +bi|*> = a® + b* = (a + bi)(a — bi)
so |a + bi] = va?+b*> = |a — bi|. Recall that the number a — bi is called the complex
conjugate of a — bi. If |a + bi| # 0 then

a w b
1
la+bi] |a+ bi

a+ bi = |a+ bi| ( > = |a + bi| (cos(#) + isin(6))

where 6 is an angle measured (in radians, please) from the ray joining 0 to 1 to the ray joining
0 and a + bi. We usually choose 0 < 6 < 27, but we don’t have to. Once you choose 6 you can
replace it by 6 + 2nm where n is any integer.

Now that we have the complex exponential function, we see that we can write any non-zero
complex number a + bi as exp(c + i) where 6 is as above and ¢ = In(|a + bi|). For example,

: r 1 s
1+i= \/5(\/§ +2\@> = exp (ln(\/i) —l—z4> .
5 Derivatives

If ¢ is any complex number it is easy to check that

— exp(cx) = cexp(cx
- exp(ez) = cexp(cx)
by proceeding in two steps. First, write ¢ = a + bi so exp(cx) = exp(az) exp(ibx). If we can

differentiate the second term then we can apply the product rule.

L expliba) = (cos(ba) + isin(ba))
—bsin(bx) + ib cos(bx)
ib(i sin(bz) + cos(bx))

ibexp(br).
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Therefore

% exp(cz) = % (exp(ax) exp(ibx))
= aexp(ax)exp(ibr) + exp(az)(ibexp(ibz)
= (a+ bi)exp(ax)exp(ibr)

= cexp(cx)

For example, if f(x) = exp((2 + 3i)x) then f'(z) = (2 + 3i) exp((2 + 3i)x).



