The complex exponential function

1 Comment

You will not need this material in Math 231, but you will need it in later course in mathematics, physics and electrical engineering.

2 Why a complex exponential function should exist

Recall that by definition,

$$
\exp (r)=\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}
$$

where r is any real number. It will be shown in Math 232 that

$$
\exp (r)=\lim _{n \rightarrow \infty}\left(1+r+\frac{r^{2}}{2!}+\frac{r^{3}}{3!}+\cdots+\frac{r^{n}}{n!}\right) .
$$

(We could do this now with the binomial theorem, but this topic is not a part of this course.)
In either case it is the case that we could consider r to be a complex number and have an infinite sequence of complex numbers. In the case where $r=i t$ where t is a real number and $i^{2}=-1$ we would get

$$
\begin{aligned}
\exp (i t)= & \lim _{n \rightarrow \infty}\left(1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}+\cdots+(-1)^{n} \frac{t^{2 n}}{(2 n)!}\right) \\
& +i \lim _{n \rightarrow \infty}\left(t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}+\cdots+(-1)^{n} \frac{t^{2 n-1}}{(2 n-1)!}\right) \\
= & f(t)+i g(t) .
\end{aligned}
$$

The existence of the two limits, which I have called $f(t)$ and $g(t)$ is easily established via the theorem on limits of monotone functions, and we can show that

$$
\begin{aligned}
f(0) & =1 \\
g(0) & =0 \\
f^{\prime}(t) & =-g(t) \\
g^{\prime}(t) & =f(t)
\end{aligned}
$$

all of which allows us to conclude that $f(t)=\cos (t)$ and $g(t)=\sin (t)$, as pretty remarkable result:

Theorem 1 For each real number t,

$$
\exp (i t):=\lim _{n \rightarrow \infty}\left(1+\frac{i t}{n}\right)^{n}=\cos (t)+i \sin (t)
$$

For example,

$$
\exp (2 \pi i)=1
$$

It follows from the addition formulae for sine and cosine that for any two real numbers t and s that

$$
\begin{aligned}
\exp (i t+i s) & =\cos (s+t)+i \sin (s+t) \\
& =(\cos (t) \cos (s)-\sin (t) \sin (s))+i(\sin (t) \cos (s)+\sin (s) \cos (t)) \\
& =(\cos (t)+i \sin (t)) \times(\cos (s)+i \sin (s)) \\
& =\exp (i t) \exp (i s)
\end{aligned}
$$

so the exponential function property is still valid. In fact, for any complex number $a+b i$, we may define

$$
\exp (a+b i)=\exp (a) \exp (b i)
$$

and we get an exponential function defined on all complex numbers. By this we mean that $\exp (x) \exp (y)=\exp (x+y)$ for x and y complex numbers, not just real numbers.

3 Applications to trigonometric identities

We have for any real numbers A and B :

$$
\begin{aligned}
& (\cos (A) \cos (B)-\sin (A) \sin (B))+i(\sin (A) \cos (B)+\sin (B) \cos (A)) \\
= & (\cos (A)+i \sin (A))(\cos (B)+i \sin (B)) \\
= & \exp (i A) \exp (i B) \\
= & \exp ((A+B) i) \\
= & (\cos (A) \cos (B)-\sin (A) \sin (B))+i(\sin (A) \cos (B)+\sin (B) \cos (A)) \\
= & \cos (A+B)+i \sin (A+B)
\end{aligned}
$$

so the identity $\exp (i A) \exp (i B)=\exp (i(A+B)$ encapsulates both the sine and cosine addition formulae. In fact, it follows by induction that

$$
(\cos (A)+i \sin (A))^{N}=\cos (N A)+i \sin (N A)
$$

for any real number A and any integer (even negative integers!) N. For example, if we want to find the triple angle formulae for sine and cosine:

$$
\begin{aligned}
\cos (3 A)+i \sin (3 A) & =(\cos (A)+i \sin (A))^{3} \\
& =\cos ^{3}(A)+3 i \sin (A) \cos ^{2}(A)-3 \sin ^{2}(A) \cos (A)-i \sin ^{3}(A)
\end{aligned}
$$

so

$$
\begin{aligned}
\cos (3 A) & =\cos ^{3}(A)-3 \sin ^{2}(A) \cos (A) \\
\sin (3 A) & =3 \sin (A) \cos ^{2}(A)-\sin ^{3}(A)
\end{aligned}
$$

Observe that we also have

$$
\begin{aligned}
& \cos (A)=\frac{\exp (i A)+\exp (-i A)}{2} \\
& \sin (A)=\frac{\exp (i A)-\exp (-i A)}{2 i}
\end{aligned}
$$

We can then see that

$$
\begin{aligned}
\cos (A) \cos (B) & =\frac{1}{4}(\exp (i A)+\exp (-i A))(\exp (i B)+\exp (-i B)) \\
& =\frac{1}{4}(\exp (i(A+B))+\exp (-i(A+B))+\exp (i(B-A))+\exp (-i(A-B))) \\
& =\frac{1}{2}(\cos (A+B)+\cos (A-B))
\end{aligned}
$$

$$
\begin{aligned}
\sin (A) \sin (B) & =-\frac{1}{4}(\exp (i A)-\exp (-i A))(\exp (i B)-\exp (-i B)) \\
& =-\frac{1}{4}(\exp (i(A+B))+\exp (-i(A+B))-[\exp (i(B-A))+\exp (-i(A-B))]) \\
& =\frac{1}{2}(\cos (A-B)-\cos (A+B))
\end{aligned}
$$

In particular,

$$
\begin{equation*}
\sin \left(\frac{x}{2}\right) \sin (k x)=\frac{1}{2}\left(\cos \left(k x-\frac{x}{2}\right)-\cos \left([k+1] x-\frac{x}{2}\right)\right) \tag{1}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
\sin (A) \cos (B)= & \frac{1}{4 i}(\exp (i A)-\exp (-i A))(\exp (i B)+\exp (-i B)) \\
= & \frac{1}{4 i}(\exp (i(A+B))-\exp (-i(A+B))+[\exp (i(A-B))-\exp (-i(A-B))]) \\
= & \frac{1}{2}(\sin (A+B)+\sin (A-B)) \\
= & \frac{1}{2}(\sin (A+B)-\sin (B-A)) \\
& \sin \left(\frac{x}{2}\right) \cos (k x)=\frac{1}{2}\left(\sin \left((k+1) x-\frac{x}{2}\right)-\sin \left(k x-\frac{x}{2}\right)\right) \tag{2}
\end{align*}
$$

Another application, a bit fancier, is the following. Suppose that $\cos (A) \neq 1$. Then

$$
\begin{aligned}
\sum_{k=0}^{N-1}(\cos (k x)+i \sin (k x)) & =\sum_{k=0}^{N-1}(\cos (x)+i \sin (x))^{k} \\
& =\frac{1-(\cos (x)+i \sin (x))^{N}}{1-(\cos (x)+i \sin (x))} \\
& =\frac{1-\cos (N x)-i \sin (N x))}{1-\cos (x)-i \sin (x)} \\
& =\frac{1-\cos (N x)-i \sin (N x))}{1-\cos (x)-i \sin (x)} \times \frac{1-\cos (x)+i \sin (x)}{1-\cos (x)+i \sin (x)} \\
& =\frac{(1-\exp (i N x))(1-\exp (-i x))}{(1-\cos (x))^{2}+\sin ^{2}(x)} \\
& =\frac{1-\exp (i N x)-\exp (-i x)+\exp (i(N-1) x)}{2(1-\cos (x))}
\end{aligned}
$$

$$
\begin{aligned}
\sum_{k=0}^{N-1} \cos (k x) & =\frac{1-\cos (N x)-\cos (x)+\cos ((N-1) x)}{2(1-\cos (x))} \\
& =\frac{1}{2}-\frac{\cos (x)-\cos ((N-1) x)}{4 \sin ^{2}(x / 2)} \\
\sum_{k=0}^{N-1} \sin (k x) & =\frac{-\sin (N x)+\sin (x)+\sin ((N-1) x)}{2(1-\cos (x))} \\
& =\frac{-\sin (N x)+\sin (x)+\sin ((N-1) x)}{4 \sin ^{2}(x / 2)}
\end{aligned}
$$

Note that these identities could also be derived from (1) and (2).

4 The relation to the geometric properties of complex numbers

Recall that we may interpret $a+b i$ as a point in the place corresponding to the point (a, b). From the Pythagorean Theorem and the definition of absolute value as the distance from a number to 0 we see that

$$
|a+b i|^{2}=a^{2}+b^{2}=(a+b i)(a-b i)
$$

so $|a+b i|=\sqrt{a^{2}+b^{2}}=|a-b i|$. Recall that the number $a-b i$ is called the complex conjugate of $a-b i$. If $|a+b i| \neq 0$ then

$$
a+b i=|a+b i|\left(\frac{a}{|a+b i|}+i \frac{b}{|a+b i|}\right)=|a+b i|(\cos (\theta)+i \sin (\theta))
$$

where θ is an angle measured (in radians, please) from the ray joining 0 to 1 to the ray joining 0 and $a+b i$. We usually choose $0 \leq \theta<2 \pi$, but we don't have to. Once you choose θ you can replace it by $\theta+2 n \pi$ where n is any integer.

Now that we have the complex exponential function, we see that we can write any non-zero complex number $a+b i$ as $\exp (c+i \theta)$ where θ is as above and $c=\ln (|a+b i|)$. For example,

$$
1+i=\sqrt{2}\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=\exp \left(\ln (\sqrt{2})+i \frac{\pi}{4}\right) .
$$

5 Derivatives

If c is any complex number it is easy to check that

$$
\frac{d}{d x} \exp (c x)=c \exp (c x)
$$

by proceeding in two steps. First, write $c=a+b i$ so $\exp (c x)=\exp (a x) \exp (i b x)$. If we can differentiate the second term then we can apply the product rule.

$$
\begin{aligned}
\frac{d}{d x} \exp (i b x) & =\frac{d}{d x}(\cos (b x)+i \sin (b x)) \\
& =-b \sin (b x)+i b \cos (b x) \\
& =i b(i \sin (b x)+\cos (b x)) \\
& =i b \exp (b x) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} \exp (c x) & =\frac{d}{d x}(\exp (a x) \exp (i b x)) \\
& =a \exp (a x) \exp (i b x)+\exp (a x)(i b \exp (i b x) \\
& =(a+b i) \exp (a x) \exp (i b x) \\
& =c \exp (c x)
\end{aligned}
$$

For example, if $f(x)=\exp ((2+3 i) x)$ then $f^{\prime}(x)=(2+3 i) \exp ((2+3 i) x)$.

