
The complex exponential function

1 Comment

You will not need this material in Math 231, but you will need it in later course in mathematics,
physics and electrical engineering.

2 Why a complex exponential function should exist

Recall that by definition,

exp(r) = lim
n→∞

(
1 +

r

n

)n
where r is any real number. It will be shown in Math 232 that

exp(r) = lim
n→∞

(
1 + r +

r2

2!
+
r3

3!
+ · · ·+ rn

n!

)
.

(We could do this now with the binomial theorem, but this topic is not a part of this course.)
In either case it is the case that we could consider r to be a complex number and have an

infinite sequence of complex numbers. In the case where r = it where t is a real number and
i2 = −1 we would get

exp(it) = lim
n→∞

(
1− t2

2!
+
t4

4!
+ · · ·+ (−1)n

t2n

(2n)!

)

+ i lim
n→∞

(
t− t3

3!
+
t5

5!
+ · · ·+ (−1)n

t2n−1

(2n− 1)!

)
= f(t) + ig(t).

The existence of the two limits, which I have called f(t) and g(t) is easily established via the
theorem on limits of monotone functions, and we can show that

f(0) = 1

g(0) = 0

f ′(t) = −g(t)

g′(t) = f(t)

all of which allows us to conclude that f(t) = cos(t) and g(t) = sin(t), as pretty remarkable
result:

Theorem 1 For each real number t,

exp(it) := lim
n→∞

(
1 +

it

n

)n
= cos(t) + i sin(t).

For example,
exp(2πi) = 1.
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It follows from the addition formulae for sine and cosine that for any two real numbers t
and s that

exp(it+ is) = cos(s+ t) + i sin(s+ t)

= (cos(t) cos(s)− sin(t) sin(s)) + i (sin(t) cos(s) + sin(s) cos(t))

= (cos(t) + i sin(t))× (cos(s) + i sin(s))

= exp(it) exp(is)

so the exponential function property is still valid. In fact, for any complex number a+ bi, we
may define

exp(a+ bi) = exp(a) exp(bi)

and we get an exponential function defined on all complex numbers. By this we mean that
exp(x) exp(y) = exp(x+ y) for x and y complex numbers, not just real numbers.

3 Applications to trigonometric identities

We have for any real numbers A and B:

(cos(A) cos(B)− sin(A) sin(B)) + i (sin(A) cos(B) + sin(B) cos(A))

= (cos(A) + i sin(A)) (cos(B) + i sin(B))

= exp(iA) exp(iB)

= exp((A+B)i)

= (cos(A) cos(B)− sin(A) sin(B)) + i (sin(A) cos(B) + sin(B) cos(A))

= cos(A+B) + i sin(A+B)

so the identity exp(iA) exp(iB) = exp(i(A+B) encapsulates both the sine and cosine addition
formulae. In fact, it follows by induction that

(cos(A) + i sin(A))N = cos(NA) + i sin(NA)

for any real number A and any integer (even negative integers!) N . For example, if we want
to find the triple angle formulae for sine and cosine:

cos(3A) + i sin(3A) = (cos(A) + i sin(A))3

= cos3(A) + 3i sin(A) cos2(A)− 3 sin2(A) cos(A)− i sin3(A)

so

cos(3A) = cos3(A)− 3 sin2(A) cos(A)

sin(3A) = 3 sin(A) cos2(A)− sin3(A)

Observe that we also have

cos(A) =
exp(iA) + exp(−iA)

2

sin(A) =
exp(iA)− exp(−iA)

2i
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We can then see that

cos(A) cos(B) =
1

4
(exp(iA) + exp(−iA))(exp(iB) + exp(−iB))

=
1

4
(exp(i(A+B)) + exp(−i(A+B)) + exp(i(B − A)) + exp(−i(A−B)))

=
1

2
(cos(A+B) + cos(A−B)),

sin(A) sin(B) = −1

4
(exp(iA)− exp(−iA))(exp(iB)− exp(−iB))

= −1

4
(exp(i(A+B)) + exp(−i(A+B))− [exp(i(B − A)) + exp(−i(A−B))])

=
1

2
(cos(A−B)− cos(A+B)),

In particular,

sin
(
x

2

)
sin(kx) =

1

2

(
cos

(
kx− x

2

)
− cos

(
[k + 1]x− x

2

))
(1)

Similarly,

sin(A) cos(B) =
1

4i
(exp(iA)− exp(−iA))(exp(iB) + exp(−iB))

=
1

4i
(exp(i(A+B))− exp(−i(A+B)) + [exp(i(A−B))− exp(−i(A−B))])

=
1

2
(sin(A+B) + sin(A−B))

=
1

2
(sin(A+B)− sin(B − A))

sin
(
x

2

)
cos(kx) =

1

2

(
sin

(
(k + 1)x− x

2

)
− sin

(
kx− x

2

))
(2)

Another application, a bit fancier, is the following. Suppose that cos(A) 6= 1. Then

N−1∑
k=0

(cos(kx) + i sin(kx)) =
N−1∑
k=0

(cos(x) + i sin(x))k

=
1− (cos(x) + i sin(x))N

1− (cos(x) + i sin(x))

=
1− cos(Nx)− i sin(Nx))

1− cos(x)− i sin(x)

=
1− cos(Nx)− i sin(Nx))

1− cos(x)− i sin(x)
× 1− cos(x) + i sin(x)

1− cos(x) + i sin(x)

=
(1− exp(iNx))(1− exp(−ix))

(1− cos(x))2 + sin2(x)

=
1− exp(iNx)− exp(−ix) + exp(i(N − 1)x)

2(1− cos(x))
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so
N−1∑
k=0

cos(kx) =
1− cos(Nx)− cos(x) + cos((N − 1)x)

2(1− cos(x))

=
1

2
− cos(x)− cos((N − 1)x)

4 sin2(x/2)
N−1∑
k=0

sin(kx) =
− sin(Nx) + sin(x) + sin((N − 1)x)

2(1− cos(x))

=
− sin(Nx) + sin(x) + sin((N − 1)x)

4 sin2(x/2)

Note that these identities could also be derived from (1) and (2).

4 The relation to the geometric properties of complex

numbers

Recall that we may interpret a + bi as a point in the place corresponding to the point (a, b).
From the Pythagorean Theorem and the definition of absolute value as the distance from a
number to 0 we see that

|a+ bi|2 = a2 + b2 = (a+ bi)(a− bi)
so |a + bi| =

√
a2 + b2 = |a − bi|. Recall that the number a − bi is called the complex

conjugate of a− bi. If |a+ bi| 6= 0 then

a+ bi = |a+ bi|
(

a

|a+ bi|
+ i

b

|a+ bi|

)
= |a+ bi| (cos(θ) + i sin(θ))

where θ is an angle measured (in radians, please) from the ray joining 0 to 1 to the ray joining
0 and a+ bi. We usually choose 0 ≤ θ < 2π, but we don’t have to. Once you choose θ you can
replace it by θ + 2nπ where n is any integer.

Now that we have the complex exponential function, we see that we can write any non-zero
complex number a+ bi as exp(c+ iθ) where θ is as above and c = ln(|a+ bi|). For example,

1 + i =
√

2

(
1√
2

+ i
1√
2

)
= exp

(
ln(
√

2) + i
π

4

)
.

5 Derivatives

If c is any complex number it is easy to check that

d

dx
exp(cx) = c exp(cx)

by proceeding in two steps. First, write c = a + bi so exp(cx) = exp(ax) exp(ibx). If we can
differentiate the second term then we can apply the product rule.

d

dx
exp(ibx) =

d

dx
(cos(bx) + i sin(bx))

= −b sin(bx) + ib cos(bx)

= ib(i sin(bx) + cos(bx))

= ib exp(bx).
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Therefore

d

dx
exp(cx) =

d

dx
(exp(ax) exp(ibx))

= a exp(ax) exp(ibx) + exp(ax)(ib exp(ibx)

= (a+ bi) exp(ax) exp(ibx)

= c exp(cx)

For example, if f(x) = exp((2 + 3i)x) then f ′(x) = (2 + 3i) exp((2 + 3i)x).
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