Calculus Survival Facts: Trigonometry Eric Key

Abstract

This is the bare minimum of trigonometry you need to be successful in the first semester of calculus.

1 Definitions

1. Radian measure. Suppose that an angle has vertex 0 . The radian measure of this angle is the length of the arc in intercepts in a circle of radius R centered at 0 divided by R. Radians are dimensionless.
2. Sine, Cosine and Tangent. Consider the circle of radius 1 centered at $(0,0)$, which has equation $x^{2}+y^{2}=1$. Suppose that if we move counter-clockwise a distance a along the circle from $(0,0)$ to (c, s). We then say that the sine of a, written $\sin (a)$, is s, the cosine of a, writen $\cos (a)$, is c, and the tangent of a, written $\tan (a)$, is the slope of the line passing through $(0,0)$ and (c, s). For negative values of a we move $|a|$ in the clockwise direction from $(0,0)$ and apply the same principle. If we end up at (c, s) then we have $\sin (a)=s$, $\cos (a)=c$ and $\tan (a)$ is the slope of the line joining $(0,0)$ and (c, s).

2 Functional Properties

1. Functional properties of sine. The domain of sine is all real numbers, and the range is $[-1,1]$. The sine function is periodic with period 2π, that is $\sin (a+2 \pi)=\sin (a)$ for all real numbers a, and if $\sin (a+p)=\sin (a)$ for all real numbers a, then $p=2 \pi k$ for some integer k.
2. Functional properties of cosine. The domain of cosine is all real numbers, and the range is $[-1,1]$. The cosine function is periodic with period 2π, that is $\cos (a+2 \pi)=\cos (a)$ for all real numbers a, and if $\cos (a+p)=\cos (a)$ for all real numbers a, then $p=2 \pi k$ for some integer k.
3. Functional properties of tangent. The domain of tangent is all real except those that can be written in the form $(\pi / 2)+k \pi$ for some integer k, and the range is all real numbers. The cosine function is periodic with period π, that is $\tan (a+\pi)=\tan (a)$ for all real numbers a in the domain of tangent, and if $\tan (a+p)=\tan (a)$ for all real numbers a in the domain of tangent, then $p=\pi k$ for some integer k.
4. Principle values:

a	$\sin (a)$	$\cos (a)$	$\tan (a)$
0	0	1	0
$\pi / 6$	$1 / 2$	$\sqrt{3} / 2$	$1 / \sqrt{3}$
$\pi / 4$	$\sqrt{2} / 2$	$\sqrt{2} / 2$	1
$\pi / 3$	$\sqrt{3} / 2$	$1 / 2$	$\sqrt{3}$
$\pi / 2$	1	0	undefined

3 Identities

1. The six basic identities:

$$
\begin{aligned}
\tan (a) & =\frac{\sin (a)}{\cos (a)} \\
(\sin (a))^{2}+(\cos (a))^{2} & =1 \\
\sin (-a) & =-\sin (a) \\
\cos (-a) & =\cos (a) \\
\sin (a+b) & =\sin (a) \cos (b)+\sin (b) \cos (a) \\
\cos (a+b) & =\cos (a) \cos (b)-\sin (a) \sin (b)
\end{aligned}
$$

2. The Law of Cosines: In any triangle, if the sides measure A, B and C and the measure of the angle opposite the side of length A is a, then

$$
A^{2}=B^{2}+C^{2}-2 B C \cos (a) .
$$

4 Additional Trigonometric Functions

1. Cosecant. The cosecant function, denoted by csc, is defined by $\csc (a)=1 / \sin (a)$, and is defined for all a such that $\sin (a) \neq 0$.
2. Secant. The secant function, denoted by sec, is defined by $\sec (a)=1 \cos (a)$ and is defined for all a such that $\cos (a) \neq 0$.
3. Cotangent. The cotangent function, denoted by cot, is defined by $\cot (a)=\cos (a) / \sin (a)$, and is defined for all a such that $\sin (a) \neq 0$.

5 Inverse Functions

1. Arccosine. The arccosine function, denoted by arccos, has domain $[-1,1]$, range $[0, \pi]$ and is defined by $\arccos (x)=a$ if $\cos (a)=x$. Therefore $\cos (\arccos (x))=x$ for $x \in[-1,1]$ and $\arccos (\cos (a))=a$ if $a \in[0, \pi]$.
2. Arcsine. The arcsine function, denoted by arcsin, has domain $[-1,1]$, range $[-\pi / 2, \pi / 2]$ and is defined by $\arcsin (x)=a$ if $\sin (a)=x$. Therefore $\sin (\arcsin (x))=x$ for $x \in[-1,1]$ and $\arcsin ((\sin (a))=a$ if $a \in[-p i / 2, \pi / 2]$.
3. Arctangent. The arctangent function, denoted by arctan, has domain all the real numbers, range $(-\pi / 2, \pi / 2)$ and is defined by $\arctan (x)=a$ if $\tan (a)=x$. Therefore $\tan (\arctan (x))=x$ for any real number x while $\arctan (\tan (a))=a$ if $a \in(-\pi / 2, \pi / 2)$.
4. Arcsecant. The arcsecant function, denoted by arcsec is defined by $\operatorname{arcsec}(x)=\arccos (1 / x)$. Its domain is $(-\infty,-1] \cup[1, \infty)$ and its range is $[0, \pi / 2) \cup(\pi / 2, \pi]$.
5. Arccosecant. The arccosecant function, denoted by arccsc is defined by $\operatorname{arccsc}(x)=$ $\arcsin (1 / x)$. Its domain is $(-\infty,-1] \cup[1, \infty)$ and its range is $[-\pi / 2,0) \cup(0, \pi / 2]$.
6. Arccotangent. The arccotangent function, denoted by arccot, has domain all real numbers, range $(0, \pi)$ and $\operatorname{arccot}(x)=a$ if $\cot (a)=x$. Therefore $\cot (\operatorname{arccot}(x))=x$ for every real number, while $\operatorname{arccot}(\cot (a))=a$ if $a \in(0, \pi)$.
