Calculus Survival Facts: Trigonometry Eric Key

Abstract

This is the bare minimum of trigonometry you need to be successful in the first semester of calculus.

1 Definitions

- 1. Radian measure. Suppose that an angle has vertex 0. The radian measure of this angle is the length of the arc in intercepts in a circle of radius R centered at 0 divided by R. Radians are dimensionless.
- 2. Sine, Cosine and Tangent. Consider the circle of radius 1 centered at (0,0), which has equation $x^2 + y^2 = 1$. Suppose that if we move counter-clockwise a distance *a* along the circle from (0,0) to (c,s). We then say that the sine of *a*, written $\sin(a)$, is *s*, the cosine of *a*, written $\cos(a)$, is *c*, and the tangent of *a*, written $\tan(a)$, is the slope of the line passing through (0,0) and (c,s). For negative values of *a* we move |a| in the clockwise direction from (0,0) and apply the same principle. If we end up at (c,s) then we have $\sin(a) = s$, $\cos(a) = c$ and $\tan(a)$ is the slope of the line joining (0,0) and (c,s).

2 Functional Properties

- 1. Functional properties of sine. The domain of sine is all real numbers, and the range is [-1, 1]. The sine function is periodic with period 2π , that is $\sin(a + 2\pi) = \sin(a)$ for all real numbers a, and if $\sin(a + p) = \sin(a)$ for all real numbers a, then $p = 2\pi k$ for some integer k.
- 2. Functional properties of cosine. The domain of cosine is all real numbers, and the range is [-1, 1]. The cosine function is periodic with period 2π , that is $\cos(a + 2\pi) = \cos(a)$ for all real numbers a, and if $\cos(a + p) = \cos(a)$ for all real numbers a, then $p = 2\pi k$ for some integer k.
- 3. Functional properties of tangent. The domain of tangent is all real except those that can be written in the form $(\pi/2) + k\pi$ for some integer k, and the range is all real numbers. The cosine function is periodic with period π , that is $\tan(a + \pi) = \tan(a)$ for all real numbers a in the domain of tangent, and if $\tan(a + p) = \tan(a)$ for all real numbers a in the domain of tangent, then $p = \pi k$ for some integer k.
- 4. Principle values:

a	$\sin(a)$	$\cos(a)$	$\tan(a)$
0	0	1	0
$\pi/6$	1/2	$\sqrt{3}/2$	$1/\sqrt{3}$
$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1
$\pi/3$	$\sqrt{3}/2$	1/2	$\sqrt{3}$
$\pi/2$	1	0	undefined

3 Identities

1. The six basic identities:

$$\tan(a) = \frac{\sin(a)}{\cos(a)}$$
$$(\sin(a))^2 + (\cos(a))^2 = 1$$
$$\sin(-a) = -\sin(a)$$
$$\cos(-a) = \cos(a)$$
$$\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$$
$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

()

2. The Law of Cosines: In any triangle, if the sides measure A, B and C and the measure of the angle opposite the side of length A is a, then

$$A^2 = B^2 + C^2 - 2BC\cos(a).$$

4 Additional Trigonometric Functions

- 1. Cosecant. The cosecant function, denoted by csc, is defined by $\csc(a) = 1/\sin(a)$, and is defined for all a such that $\sin(a) \neq 0$.
- 2. Secant. The secant function, denoted by sec, is defined by $\sec(a) = 1\cos(a)$ and is defined for all a such that $\cos(a) \neq 0$.
- 3. Cotangent. The cotangent function, denoted by \cot , is defined by $\cot(a) = \cos(a)/\sin(a)$, and is defined for all a such that $\sin(a) \neq 0$.

5 Inverse Functions

- 1. Arccosine. The arccosine function, denoted by $\arccos(x)$ has domain [-1, 1], range $[0, \pi]$ and is defined by $\arccos(x) = a$ if $\cos(a) = x$. Therefore $\cos(\arccos(x)) = x$ for $x \in [-1, 1]$ and $\arccos(\cos(a)) = a$ if $a \in [0, \pi]$.
- 2. Arcsine. The arcsine function, denoted by arcsin, has domain [-1, 1], range $[-\pi/2, \pi/2]$ and is defined by $\arcsin(x) = a$ if $\sin(a) = x$. Therefore $\sin(\arcsin(x)) = x$ for $x \in [-1, 1]$ and $\arcsin((\sin(a)) = a$ if $a \in [-pi/2, \pi/2]$.
- 3. Arctangent. The arctangent function, denoted by $\arctan(x) = a$ if $\tan(a) = x$. Therefore $\tan(\arctan(x)) = x$ for any real number x while $\arctan(\tan(a)) = a$ if $a \in (-\pi/2, \pi/2)$.
- 4. Arcsecant. The arcsecant function, denoted by arcsec is defined by $\operatorname{arcsec}(x) = \operatorname{arccos}(1/x)$. Its domain is $(-\infty, -1] \cup [1, \infty)$ and its range is $[0, \pi/2) \cup (\pi/2, \pi]$.
- 5. Arccosecant. The arccosecant function, denoted by arccsc is defined by $\operatorname{arccsc}(x) = \operatorname{arcsin}(1/x)$. Its domain is $(-\infty, -1] \cup [1, \infty)$ and its range is $[-\pi/2, 0] \cup (0, \pi/2]$.
- 6. Arccotangent. The arccotangent function, denoted by arccot, has domain all real numbers, range $(0, \pi)$ and $\operatorname{arccot}(x) = a$ if $\cot(a) = x$. Therefore $\cot(\operatorname{arccot}(x)) = x$ for every real number, while $\operatorname{arccot}(\cot(a)) = a$ if $a \in (0, \pi)$.