Calculus Survival Facts: Functions
 Eric Key

Abstract

This is the bare minimum knowledge of functions you need to be successful in the first semester of calculus.

1 Relations and Functions

Let X and Y be non-empty sets.

1. $X \times Y=\{(x, y): x \in X, y \in Y\}$, that is, the set of all ordered pairs whose first element is contained in X and whose second element is contained in Y.
2. A relation R is a non-empty subset of $X \times Y$. The domain of R is the set of all first coordinates of the elements of R and the range of R is the set of all second coordinates of elements of R.
3. A function F is a relation with the property that if $(c, d) \in F$ and $(a, b) \in F$ and $a=c$ then $b=d$. That is, if the first coordinates of two ordered pairs in F agree then they are the same ordered pair. This is the basis of the vertical line test.
4. If F is a function and $(a, b) \in F$ we will write $b=F(a) . F(a)$ is the value of F at a. Conversely, if $F(x)$ is an expression in x defined for all $x \in D$, then $\{(x, F(x)): x \in D\}$ defines a function whose domain is D. The convention is to call this function F. For example, if $F(x)=3 x+2$ for $x \in[-1,1]$, then F is the function $\{(x, 3 x+2):-1 l e q x \leq 1\}$. We can visualize F as the line segment joining $(-1,-1)$ to $(1,5)$.
5. If R is a relation, the inverse relation of R, denoted by R^{-1} is the set of ordered pairs $\{(y, x):(x, y) \in R\}$. It is the set of ordered pairs you get by switching the places of each ordered pair in R.
6. A function is said to be invertible if its inverse is also a function. This is the basis for the horizontal line test for invertible functions.
7. Formula notation for functions. If $f(x)$ is an expression applicable to all $x \in X$, then $y=f(x)$ is shorthand for the function $f=\{(x, f(x)): x \in X\} . f(x)$ is called the rule for $f . f^{-1}=\{(f(x), x): x \in X\}$ is the inverse of f.

2 Exponential functions

A function f is said to be an exponential function if for each x and y in its domain, $x+y$ is also in its domain and $f(x+y)=f(x) f(y)$. An example of an exponential function is the function whose domain is the non-negative rational numbers and whose rule is $f(x)=2^{x}$. Note that if f is exponential then $f(0)=f(0+0)=f(0) f(0)$ so either $f(0)=1$ or $f(0)=0$. If $f(0)=0$ then $f(x)=0$ for all x in the domain of f since $f(x)=f(x+0)=f(x) f(0)=0$. Hence not every exponential function can be written in the form $f(x)=a^{x}$ since we have the convention that $a^{0}=1$ for every base a.

Theorem 1 Suppose that the domain of f is all real numbers and

- $f(r+s)=f(r) f(s)$ for all $r \geq 0$ and $s \geq 0$;
- $f(r) f(-r)=1$ for all real numbers r.

Then f is an exponential function.
Reason: The fact that $f(r) f(-r)=1$ for any real number r means that $f(r) \neq 0$ for any r. There are 3 cases to consider.

- $r \leq 0$ and $s \leq 0$. Then

$$
f(-(r+s))=f((-r)+(-s))=f(-r) f(-s)
$$

Now multiply the extremes of this equation by $f(r+s) f(r) f(s)$.

- $r \geq 0, s \leq 0$ and $r+s \geq 0$. Then

$$
f(r+s) f(-s)=f((r+s)+(-s))=f(r)
$$

Multiply the extremes of this equation by $f(s)$.

- $r \geq 0, s \leq 0$ and $r+s \leq 0$. Then

$$
f(-(r+s)) f(r)=f(-(r+s)+r)=f(-s) .
$$

Multiply the extremes of this equation by $f(r+s) f(s)$.

3 Logarithmic functions

A function f is said to be a logarithmic function if for each x and y in its domain $x y$ is also in its domain and $f(x y)=f(x)+f(y)$. The inverse of each exponential function is a logarithmic function. Note that if a function f is logarithmic then $f(1)$ must equal 0 since $f(1)=f(1 \times 1)=f(1)+f(1)$. If f is logarithmic and 0 is in the domain of f then $f(x)=0$ for all x in the domain of f, since $f(0)=f(0 \times x)=f(0)+f(x)$.

