
Symmetry and Simpson's Rule  
Mathematicians appreciate that exploiting symmetry is a powerful tool. We shall show that in Simpson's 
rule for estimating integrals, better error bounds and a simpler derivation result from symmetry 
considerations. These ideas may be applied to all Newton-Cotes formulae.  

Suppose that h > 0. Recall that Simpson's rule says that if f is continuous on [a,a+2h] and four times 
differentiable on (a,a+2h) then    

 
  

(1) 

Generally Simpson's rule is applied to integrals of the form  

 

by letting N be a positive even integer, letting h= (B-A)/N and writing  

 

to obtain the familiar formula    

 
  

(2) 

This bound on the error is clearly not optimum because it assumes that the maximum value of |f(4)| on all 
of (A,B) occurs on every subinterval, but it is quick and easy (relatively speaking). However, one cannot 
find the maximum of |f(4)| on every subinterval before one knows how many subintervals are to be used. 
Hence the cruder estimate in (2) is used to get an upper bound on the number of subintervals needed.  

Put  

 

We shall show now that that symmetry gives a painless improvement of (2) to    

 
  

(3) 
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It is easy to check that    

 
  

(4) 

and that the Simpson's rule estimate of each of these integrals is given by exactly the same expression:  

 

Applying Simpson's rule to the integral in the right-hand side of (4) then gives (3).  

By way of examples, consider two standard calculations:  

 

and  

 

In the latter, using symmetry guarentees that the difference between and the Simpson's rule estimate of 

the integral is no more than (42/180)N-4 compared with the usual bound of (96/180)N-4. Thus to obtain an 

error tolerance of not more than 10-8 we need only take N = 70 versus 86 with the conventional estimate, 

or more generally, an improvement by a factor of . In the former example, the 

difference between and the Simpson's rule estimate of the integral is no more than (24/180)N-4 by the 

usual estimate compared with when symmetry is taken into account, allowing us 

to use a value of N about 85% smaller to be guaranteed the same accuracy of the estimate. Of course, one 

can produce examples where there is no improvement and where the improvement is overwhelming.  

Considering symmetry also simplifies the derivation and proof of (1). We will show that for an even 

function which is sufficiently smooth,    

 
  

(5) 

It is clear from the discussion above that (5) leads quickly to an improved version of (1). As we shall now 
demonstrate, (5) is easier to derive than (1).  
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The key to deriving and proving (5) is that even polynomials should be used to interpolate even functions, 
and that it is easy to find such polynomials if only two interpolation points are needed. In fact, all one has 
to do is look at the form for linear interpolation as in the trapezoid rule and one sees what to do.  

If the trapezoid rule were to be employed to estimate  

 

we would replace the integral of g with the integral of the affine function L(u) = g(h)(h-u)/h + g(0)u/h 

since y=L(x) is an equation of the line which passes through (0,g(0)) and (h,g(h)). It is then clear that since 

g is even, we should try to change the variable u in L(u) to u2 to find a quadratic polymomial with the 

same property. It is not hard to see that what we want is P(u) = g(0)(h2-u2)/h2 + g(h)u2/h2, and that y=P(x) 

passes through all three points (0,g(0)) and . Note that we did not have to solve any 

systems of equations to find P, nor did we need higher order interpolation formulae, we simply proceeded 

by analogy with the linear case. It is then easy to check that    

 
  

(6) 

We see that (6) tells us that to complete the proof of (5) we can estimate |g(u)-P(u)| on [0,h]. We proceed 

in a well-known fashion. Since g -p is an even function, we try to identify the constant C such that  

g(u)-P(u) = Cu2(h2-u2),  

where u is a fixed element of (0,h). Our goal is to express C in terms of the some derivative of g. For put 

E(x) = g(x)-P(x)-Cx2(h2-x2). Note that E continuous on [-h,h], four times differentiable on (-

h,h) and even. Therefore, not only do we have E(u) = E(0) = E(h) = 0, but also E'(0) = E(3)(0) = 0. 

Therefore we may apply Rolle's Theorem successively to E, E', E'' and E(3) and we find that for some we 

have E(4)(z) = 0. Of course, E(4)(z) = g(4)(z) + 24C, so .  

Take C=0 if u=0 or u=h. This tells us that  

which is (5).  
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