Sign Changes (C)

From calculus we have the following useful result.

Theorem 2728

If $p(z)$ is a polynomial with real coefficients, $a<b$ and the sign of $p(a)$ is different from the sign of $p(b)$ then p has a zero between a and b.

We also have some bits of common sense:

- If all of the exponents in the polynomial $p(z)$ are even or all of the exponents are odd and $p(a)=0$ then $p(-a)=0$.
- If all of the coefficents of the polynomial have the same sign, then the polynomial has no positive roots.
- If all coefficient of the even powered terms of $p(z)$ are positive and all the odd powered terms have coefficients which are negative, or vice-versa, then the polynomial has no negative roots.

Exercises

1.

Find all the zeros of each of the following polynomials:
(a)
$x^{3}-6 x^{2}+11 x-6$;
(b)
$x^{4}-7 x^{3}+17 x^{2}-17 x+6 ;$
(c)
$10 x^{3}-37 x^{2}+37 x-6$;
(d)
$5 x^{4}-7 x^{3}-3 x^{2}+7 x-2 ;$
(e)
$54 x^{3}-21 x^{2}-7 x+2 ;$
(f)

$$
x^{4}+4 x^{3}+4 x^{2}-4 x-5 ;
$$

2.

Suppose that $p(z)=z^{4}+3 z^{3}+2 z^{2}+3 z+1$. Show that $p(i)=0$ and then find all the zeros of p.

