"Sigma" notation (C)

We need a `shorthand" to represent sums with more than a few terms. If f(n) is a rule which assigns the number f(n) to each integer n in the set of integers $\{K, K+1, \ldots L\}$, such as $f(n) = 2^n$, or f(n) = 2n+6, etc, then

$$\sum_{n=K}^{L} f(n)$$

denotes the sum of the values f(K), f(K+1), . . . , f(L), and is read `The sum of f(n) from n = K to L". For example

$$\sum_{n=2}^{5} (2n+1) = (2 \cdot 2 + 1) + (2 \cdot 3 + 1) + (2 \cdot 4 + 1) + (2 \cdot 5 + 1) = 5 + 7 + 9 + 11 = 32$$

and

$$\sum_{k=-2}^{5} 2^k = 2^{-2} + 2^{-1} + 2^0 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 = \frac{3}{4} + 63$$

Exercises Evaluate each of the following:

1.

$$\sum_{j=-2}^{4} (2j - 3)$$

; 2.

$$\sum_{i=0}^{5} j^2$$

;

3.
$$\sum_{j=-8}^{-2} \sin(j\pi/6)$$
;
4.
$$\sum_{a=0}^{4} (1/2)^a$$

$$\sum_{a=0}^{4} (1/2)^a$$