"Sigma" notation (C)

We need a "shorthand" to represent sums with more than a few terms. If $f(n)$ is a rule which assigns the number $f(n)$ to each integer n in the set of integers $\{K, K+1, \ldots L\}$, such as $f(n)=2^{n}$, or $f(n)=2 n+6$, etc, then

$$
\sum_{n=K}^{L} f(n)
$$

denotes the sum of the values $f(K), f(K+1), \ldots, f(L)$, and is read " ${ }^{\text {The sum of } f(n)}$ from $n=K$ to $L^{\prime \prime}$. For example

$$
\sum_{n=2}^{5}(2 n+1)=(2 \cdot 2+1)+(2 \cdot 3+1)+(2 \cdot 4+1)+(2 \cdot 5+1)=5+7+9+11=32
$$

and

$$
\sum_{k=-2}^{5} 2^{k}=2^{-2}+2^{-1}+2^{0}+2^{1}+2^{2}+2^{3}+2^{4}+2^{5}=\frac{3}{4}+63
$$

Exercises Evaluate each of the following:
1.
$\sum_{j=-2}^{4}(2 j-3)$
;
2.
$\sum_{j=0}^{5} j^{2}$
3.
$\sum_{j=-8}^{-2} \sin (j \pi / 6)$
;
4.
$\sum_{a=0}^{4}(1 / 2)^{a}$
;

