Rationalizing Expressions (C)

The formula for summing a geometric progression can be used to rewrite expressions containing the difference of two roots of the same order.

For example, we have for $a \geq 0$ and $b \geq 0$

$$
a-b=(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})
$$

so, for example,

$$
\begin{aligned}
\frac{\sqrt{x+h}-\sqrt{x}}{h} & =\frac{\sqrt{x+h}-\sqrt{x}}{h} \times \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\frac{1}{\sqrt{x+h}+\sqrt{x}} .
\end{aligned}
$$

Another example is

$$
a-b=(\sqrt[2]{a}-\sqrt[8]{b}) \times\left((\sqrt[2]{a})^{2}+\sqrt[2]{a} \sqrt[2]{b}+(\sqrt[2]{b})^{2}\right)
$$

so

$$
\begin{aligned}
\frac{\sqrt[3]{x+h}-\sqrt[3]{x}}{h} & =\frac{\sqrt[3]{x+h}-\sqrt[2]{x}}{h} \times \frac{(\sqrt[3]{x+h})^{2}+\sqrt[3]{x+h} \sqrt[3]{x}+(\sqrt[3]{x})^{2}}{(\sqrt[3]{x+h})^{2}+\sqrt[3]{x+h} \sqrt[3]{x}+(\sqrt[3]{x})^{2}} \\
& =\frac{x+h-x}{h\left((\sqrt[3]{x+h})^{2}+\sqrt[3]{x+h} \sqrt[3]{x}+(\sqrt[3]{x})^{2}\right)} \\
& =\frac{1}{(\sqrt[3]{x+h})^{2}+\sqrt[3]{x+h} \sqrt[3]{x}+(\sqrt[3]{x})^{2}}
\end{aligned}
$$

