Quadratic Formula (C)

A quadratic equation is an equation of the form

$$
\begin{equation*}
A z^{2}+B z+C=0 \tag{1}
\end{equation*}
$$

where $\mathrm{A} \neq 0, B, C$ and z are complex numbers. We regard z as unknown, and A, B, and C as known. The ojective is to determine z. Completing the square gives us

Theorem 2622 (Quadratic Formula)

If A $\neq 0, B$ and C are complex numbers and z satisfies $A z^{2}+B z+C=0$ then

$$
z=\frac{-B-\sqrt{B^{2}-4 A C}}{2 A} \text { or } z=\frac{-B+\sqrt{B^{2}-4 A C}}{2 A}
$$

where $\left(\sqrt{B^{2}-4 A C}\right)^{2}=B^{2}-4 A C .$.
Note that we have to be careful about the meaning of $\sqrt{B^{2}-4 A C}$ when $B^{2}-4 A C$ is not a non-negative real number. If B is a real number and $\mathrm{AC} \leq 0$, then the discriminant $B^{2}-4 A C$ is a non-negative real number, and so is its square root. If either B or C is zero, it is more efficient to solve quadratic equations by factoring.

Exercises

1.

Solve each equation for the indicated variable:
(a)
$z^{2}+3 z+2=0$, solve for z.
(b)
$x^{2}+7 x+2=0$, solve for x.
(c)
$x^{2}+7 x-2=0$, solve for x.
(d)
$x^{2}+4 x+5=0$, solve for x.
(e)
$2 x^{2}-9 x+11=0$, solve for x.
(f)
$(2+i) x^{2}+20 x+(2-i)=0$, solve for x.
(g)
$(2+3 i) x^{2}+2 i x+(2-3 i)=0$, solve for x.
(h)
$2 z^{2}+i z+11=0$, solve for z.
(i)
$2 x^{2}+4 x y+y^{2}+2 y+3 x-12=0$, solve for y.
(j)
$16 x^{2}+4 x y+y^{2}+2 y+3 x-12=0$, solve for y.
(k)
$5 x^{2}+4 x y+4 y^{2}+2 y+3 x-12=0$, solve for y.
For which real numbers x are there real numbers y so that $2 x^{2}+4 x y+y^{2}+2 y+$ $3 x-12=0$?
3.

Derive the quadratic formula by completing the square.

