Quadratic Formula (C)

A quadratic equation is an equation of the form

$$Az^2 + Bz + C = 0 \tag{1}$$

where $A \neq 0$, B, C and z are complex numbers. We regard z as unknown, and A, B, and C as known. The ojective is to determine z. Completing the square gives us

Theorem 2622 (Quadratic Formula)

If A \neq 0, B and C are complex numbers and z satisfies $Az^2 + Bz + C = 0$ then

$$z = \frac{-B - \sqrt{B^2 - 4AC}}{2A}$$
 or $z = \frac{-B + \sqrt{B^2 - 4AC}}{2A}$

where
$$(\sqrt{B^2 - 4AC})^2 = B^2 - 4AC$$
...

Note that we have to be careful about the meaning of $\sqrt{B^2 - 4AC}$ when $B^2 - 4AC$ is not a non-negative real number. If B is a real number and $AC \le 0$, then the **discriminant** $B^2 - 4AC$ is a non-negative real number, and so is its square root. If either B or C is zero, it is more efficient to solve quadratic equations by factoring.

Exercises

1.

Solve each equation for the indicated variable:

$$z^2 + 3z + 2 = 0$$
, solve for z.

$$x^2 + 7x + 2 = 0$$
, solve for x.

$$x^2 + 7x - 2 = 0$$
, solve for x.

$$x^{2} + 4x + 5 = 0$$
, solve for x.

(e)

$$2x^2-9x+11=0$$
, solve for x .
(f)
 $(2+i)x^2+20x+(2-i)=0$, solve for x .
(g)
 $(2+3i)x^2+2ix+(2-3i)=0$, solve for x .
(h)
 $2z^2+iz+11=0$, solve for z .
(i)
 $2x^2+4xy+y^2+2y+3x-12=0$, solve for y .
(j)
 $16x^2+4xy+y^2+2y+3x-12=0$, solve for y .
(k)
 $5x^2+4xy+4y^2+2y+3x-12=0$, solve for y .

- For which real numbers x are there real numbers y so that $2x^2 + 4xy + y^2 + 2y + 3x 12 = 0$?
- 3. Derive the quadratic formula by completing the square.