Perfect Squares and Completing the Square (C)

A quadratic expression of the form $A z^{2}+B z+C$, where $\mathrm{A} \neq 0, B$ and C are complex numbers can often be analysed by writing is in the form

$$
A z^{2}+B z+C=A\left((z+a)^{2} \pm b^{2}\right.
$$

Doing so is called completing the square. Since we may always factor out A, we shall illustrate this in cases where $A=1$. The idea is based on the obsevation that

$$
(z+a)^{2}=z^{2}+2 a z+a^{2} .
$$

Notice that a is half the coefficient of z. We shall stick to examples where the coefficients are real numbers, as these occur most often, but the method is quite general.

$$
\begin{gathered}
z^{2}+4 z+5=\left(z^{2}+2 \cdot 2 z+2^{2}\right)+5-2^{2}=(z+2)^{2}+1^{2} \\
2 z^{2}+12 z+4=2\left(z^{2}+2 \cdot 3 z+2\right)=2\left(\left(z^{2}+2 \cdot 3 z+9\right)+(2-9)\right)=2\left((z+3)^{2}-(\sqrt{7})^{2}\right)
\end{gathered}
$$

From this we see that the least value of $2 z^{2}+12 z+4$ as z ranges over the real numbers occurs when $z=-3$, and this least value is -14 .

Sometimes there is more that one variable, and we can complete the square variable by variable:

$$
\begin{aligned}
5 x^{2}+4 x y+y^{2}+6 x+2 y+2= & y^{2}+(4 x+2) y+5 x^{2}+6 x+2 \\
= & \left(y^{2}+2(2 x+1) y+(2 x+1)^{2}\right) \\
& +5 x^{2}+6 x+2-(2 x+1)^{2} \\
= & (y+2 x+1)^{2}+x^{2}+2 x+1 \\
= & (y+2 x+1)^{2}+(x+1)^{2}
\end{aligned}
$$

so we can see that the expression $5 x^{2}+4 x y+y^{2}+6 x+2 y+2$ is never negative, and in fact is exactly when $x+1=0$ and $y+2 x+1=0$, that is when $x=-1$ and $y=1$.

Exercises

1.

In each case write as a sum or difference of squares. If there is more than one variable there will be more than one answer.
(a)

$$
x^{2}+12 x+2
$$

(b)
$4 x^{2}-4 x+11 ;$
(c)
$-x^{2}+9 x+2 ;$
(d)
$e^{2 x}+4 e^{x}+9$; (hint: treat e^{x} as the variable.)
(e)
$x^{2}+4^{*} x+4 y^{2}+16 y+9 ;$
(f)
$4 x^{2}+12 y^{2}+6 x+2 y-5 ;$
(g)
$x^{2}+6 x y+2 y^{2}+10 x+3 y+5$;
(h)
$x^{2}+6 x y-2 y^{2}+10 x+3 y+5 ;$
2.

Find the minimum value of each of the following expressions as the variables range over all real numbers.
(a)
$x^{2}+10 x+2 ;$
(b)
$x^{2}-7 x-3 ;$
(c)
$x^{2}+4 x y-2 y^{2}+3 x+2 y+3 ;$
(d)
$x^{2}+2 y^{2}+3 z^{2}+2 x y+2 x z+4 y z+2 z+10$.
3.

Write as a perfect square:
(a)
$\frac{1}{x^{6}}+x^{6}+2$
(b)
$\left(\frac{1}{4 x^{6}}-x^{6}\right)^{2}+1$
(c)

$$
\left(\frac{1}{12 x^{3}}-3 x^{3}\right)^{2}+1
$$

4.

Find an equivalent expression which does not involve a square root:
(a)

$$
\sqrt{\left(x^{-2}-\frac{x^{2}}{4}\right)^{2}+1}
$$

(b)

$$
\sqrt{\left(2 x^{-3}-\frac{x^{3}}{8}\right)^{2}+1}
$$

