Level Payment Problem (C)

One important application of formula for the sum of a geometric progression is the Level Payment Problem. You borrow A dollars for N periods at a rate of r per period. What should your payment P per period be?

Observe that at the end of the first period, when you make your payment you will owe

$$
A(1+r)-P
$$

since your new balance was $A+r A$ and you paid off P of it. At the end of the second period you will owe

$$
(A(1+r)-P)(1+r)-P=A(1+r)^{2}-P((1+r)+1)
$$

At the end of the third period you will owe

$$
\left(A(1+r)^{2}-P((1+r)+1)\right)(1+r)-P=A(1+r)^{3}-P\left((1+r)^{2}+(1+r)+1\right)
$$

Continuing in this fashion, we see that at the end of the $N^{\text {th }}$ period you owe

$$
A(1+r)^{M}-P\left((1+r)^{M-1}+\cdots+(1+r)+1\right)=A(1+r)^{M}-P \frac{(1+r)^{M}-1}{r}
$$

if $r \neq 0$ and

$$
A-N P
$$

if $r=0$. If you are to owe zero after the $N^{\text {th }}$ payment then

$$
P=A \frac{r(1+r)^{M}}{(r+1)^{M}-1}=\frac{A r}{1-(1+r)^{-M}}
$$

if ${ }^{r \neq 0}$ and

$$
P=\frac{A}{N}
$$

if $r=0$.

