Hidden Quadratic Equations (C)

Sometimes quadratic equations come in disguise like
$u^{4}-3 u^{2}+4=0$ or $\frac{u+2}{u^{2}+1}=4$
or even
$\frac{e^{x}-e^{-x}}{2}=4$
(2)
which can be seen to be a quadratic equation in e^{x} by multiplying through by $2 e^{x}$.
Hidden quadratic equations such as (2) are most easily solved by substitution. For example, in (2) x only appears as $e^{x}\left(e^{-x}=1 / e^{x}\right)$, we let $w=e^{x}$ to get
$\frac{w-(1 / w)}{2}=4$
(3)

Multiplying (3) through by 2 w yields $w^{2}-1=8 w$ or $w^{2}-8 w-1=0$, with the side condition that $w>0$. Ignoring the side condition for the moment and applying the quadratic formula gives
$w=\frac{8 \pm \sqrt{64+4}}{2}=\frac{8 \pm \sqrt{68}}{2}=4 \pm \sqrt{17}$

Since $w>0$ we have $e^{x}=w=4+\sqrt{17}$, so $x=\ln (4+\sqrt{17})$.
Exercises In each case, solve for x. Remember, x could be a complex number.
1.
$x^{4}+2 x^{2}+1=0 ;$
2.
$\frac{x^{2}+9 x+1}{x^{2}+5 x+3}=\frac{1}{3}$
3.
$\frac{x^{2}+9 x+1}{5 x+3}=5 x-3$
4.
$e^{x}+e^{-x}=8$.
5.

Find the length of the equal sides of an isosceles triangle if the area of the triangle is 5 and the remaining side has length 4.

