Geometric Progessions (C)

If r is a complex number and N is a positive integer, then the sum

$$
\sum_{k=0}^{M-1} r^{k} \equiv 1+r+\cdots+r^{M-1}
$$

is called a geometric progression with N terms. It is easy to verify by long division that if $r \neq 1$ then

$$
\sum_{k=0}^{M-1} r^{k}=\frac{r^{M}-1}{r-1}=\frac{1-r^{M}}{1-r}
$$

Of course, if $r=1$ we have

$$
\sum_{k=0}^{N-1} r^{k}=N
$$

Geometric progressions often arise as the soution of factoring problems involving differences of powers:

$$
\frac{x^{4}-16}{x-2}=8 \frac{\left(\frac{x}{2}\right)^{4}-1}{\frac{x}{2}-1}
$$

and by letting $r=x / 2$ we see that

$$
\begin{aligned}
\frac{x^{4}-16}{x-2} & =8 \frac{r^{4}-1}{r-1} \\
& =8\left(r^{3}+r^{2}+r+1\right) \\
& =8\left(\frac{x^{3}}{8}+\frac{r^{2}}{4}+\frac{r}{2}+1\right) \\
& =x^{3}+2 x^{2}+4 x+8
\end{aligned}
$$

The general formula for N an positive integer and z and a distinct complex numbers is that

$$
\frac{z^{M}-a^{M}}{z-a}=\sum_{k=0}^{M-1} z^{k} a^{M-1-k}
$$

which is easily verified by the same technique as in the example. Well-known special cases are

$$
\begin{gathered}
\frac{z^{2}-a^{2}}{z-a}=z+a \text { or } z^{2}-a^{2}=(z-a)(z+a) ; \\
\frac{z^{3}-a^{3}}{z-a}=z^{2}+a z+a^{2} \text { or } z^{3}-a^{3}=(z-a)\left(z^{2}+a z+z^{2}\right) ;
\end{gathered}
$$

and

$$
\frac{z^{3}+a^{3}}{z+a}=\frac{z^{3}-(-a)^{3}}{z-(-a)}=z^{2}-a z+a^{2} \text { or } z^{3}+a^{3}=(z+a)\left(z^{2}-a z+z^{2}\right)
$$

Exercises

1. Find $\sum_{k=0}^{10} 2^{k}$
2.

Find $\sum_{k=0}^{11}\left(\frac{1}{2}\right)^{k}$
3.

Find $\sum_{k=0}^{10} 2^{-k}$
4.

Find $\sum_{k=3}^{11}\left(\frac{-1}{2}\right)^{k}$
5.

If $x^{6}-64$ is divided by $x-2$, what is the result?
6.

If $x-2$ is divided by $\sqrt{x}-\sqrt[3]{2}$, what is the result?

