Geometric Progessions (C)

If r is a complex number and N is a positive integer, then the sum
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Is called a geometric progression with N terms. It is easy to verify by long division
that if r#1 then
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Of course, if r=1 we have
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Geometric progressions often arise as the soution of factoring problems involving
differences of powers:
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and by letting r = x/2 we see that
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The general formula for N an positive integer and z and a distinct complex numbers is
that
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which is easily verified by the same technique as in the example. Well-known special
cases are
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If x® - 64 is divided by x-2, what is the result?
6.

If x - 2 is divided by vx — /2, what is the result?



