General Equation of a Line (C)

Every line in the plane is described by an equation of the form

$$
A x+B y=C
$$

where at least one of A and B is not zero. Here we are assuming x denotes the first coordinate of a point P in the plane, and y denotes the second coordinate of this point.

Each line has many such equations. In fact, if

$$
A x+B y=C
$$

is an equation of a line, so is

$$
A D x+B D y=C D
$$

for any non-zero real number D . To effect a standardization, one can require that A and B are always chosen so that

$$
A^{2}+B^{2}=1
$$

and that A is not negative. If A is zero, make B equal to 1 . If we make this choice, then there is a geometric interpretation which makes it easy to see why all lines can be described by such equations.
Suppose that $P=\left(x_{0}, y_{0}\right)$ is a point on the given line. Draw a circle of radius 1 about about P, and then draw the diameter of this circle which is perpendicular to the given line. Then one of the endpoints of this $\left(A+x_{0}, B+y_{0}\right)$ where A and B meet the requirements outlined above. From diameter has coordinates the Pythagorean Theorem, if ${ }^{(x, y)}$ is another point on the line we must have

$$
\left(\sqrt{A^{2}+B^{2}}\right)^{2}+\left(\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}\right)^{2}=\left(\sqrt{\left(A+x_{0}-x\right)^{2}+\left(B+y_{0}-y\right)^{2}}\right)^{2}
$$

which simplifies to

$$
0=A\left(x-x_{0}\right)+B\left(y-y_{0}\right)
$$

or

$$
A x+B y=A x_{0}+B y_{0}
$$

so. $C=A x_{0}+B y_{0}$.
To find a form of the general equation of a line given two points we proceed as in the following example:
Given: The line passes through $(8,4)$ and $(3,11)$.

Find: A, B, and C so that $A x+B y=C$ that describes this line.
Solution: We must have

$$
8 A+4 B=C=3 A+11 B
$$

or

$$
5 A=7 B
$$

We also want $A^{2}+B^{2}=1$ or $49 A^{2}+49 B^{2}=49$. Since $25 A^{2}=49 B^{2}$ we have $49 A^{2}+25 A^{2}=49$ or $74 A^{2}=49$.

From here we can find A, then B, and finally C, since $C=8 A+4 B$.

