Factoring (C)

In most cases, however, we do not have even a disguised quadratic equation, and our only recourse is to factor the polynomial expression. We have the following useful result:

Theorem 2685
If $p(z)$ is a polynomial then $p(a)=0$ if and only if there is a polynomial $q(z)$ so that $p(z)=(z-a) q(z)$.

This is easy to prove. If we can write $p(z)=(z-a) q(z)$ then $p(a)=(a-a) q(a)=0$. On the other hand, suppose that
$p(z)=A_{M} z^{N}+A_{M-1} z^{M-1}+\cdots+A_{1} z+A_{0}$
and $p(a)=0$. Then
$p(z)=p(z)-p(a)=A_{M}\left(z^{M}-a^{M Y}\right)+A_{M-1}\left(z^{M-1}-a^{M-1}\right)+\cdots+A_{1}(z-a)$
and for every positive integer M we have
$z^{M}-a^{M}=(z-a)\left(z^{M-1}+z^{M-2} a+z^{n-3} a^{2}+\cdots+z a^{M-2}+a^{M-1}\right)$
so we can see that z - a divides $p(z)$. (Another use of geometric progressions!) QED
Once one has found one zero, say $z=a$, one finds (by long division), the polynomial q so that $p(z)=(z-a) q(z)$ and then looks for the zeros of q, since every zero of q is a zero of p. Now our problem is to find an intelligent way to find some of the zeros.

