Exponents

If b is a complex number and $n>1$ is an integer, the symbol

$$
b^{n}
$$

represents the product of n factors of b. Thus

$$
\begin{aligned}
3^{3} & =27 \\
(1 / 2)^{4} & =1 / 16 \\
(-3)^{5} & =-243
\end{aligned}
$$

The number b is called the base of b^{n} and the number n is called the exponent of the expression, or the power of b, or the logarithm of b^{n} in the base b if $b>0$.

We if $b \neq 0$ we DEFINE

$$
b^{0}=1
$$

as it would be nonsensical to speak of zero factors, and for any complex number, we DEFINE

$$
b^{1}=b
$$

since it would be nonsensical to speak of the product of a single factor.
If n is a negative integer and $b \neq 0$ is a complex number we DEFINE

$$
b^{n}=\frac{1}{b^{-n}}=\frac{1}{b|n|}
$$

since it would make no sense to speak of a product of a negative number of factors. For example,

$$
(1+i)^{-1}=\frac{1}{1+i}=\frac{1}{2}-\frac{1}{2} i .
$$

It is straightforward to check that if $a \neq 0, b \neq 0$ and m and n are any integers then

$$
a^{n} b^{n}=(a b)^{n},
$$

$$
\begin{gathered}
b^{n} \times b^{m}=b^{m+n} \\
\frac{b^{n}}{b^{m}}=b^{n-m},
\end{gathered}
$$

and

$$
\left(b^{\mathrm{n}}\right)^{\mathrm{m}}=\mathrm{b}^{\mathrm{nm}}
$$

For example,

$$
\begin{gathered}
(2+i)^{3}(2-i)^{3}=5^{3} \\
(9+7 i)^{3} \times(9+7 i)^{-4}=(9+7 i)^{-1}=\frac{1}{9+7 i}=\frac{9}{130}-\frac{7}{130} i \\
\frac{10^{5}}{10^{-2}}=10^{7}
\end{gathered}
$$

and

$$
\left(2^{3}\right)^{2}=64=2^{6}
$$

We now restrict our attention to positive bases. If d is a positive integer and $b>0$ we define

$$
b^{1 / d}
$$

to be the POSITIVE solution to the equation $x^{d}=b$. For example,

$$
8^{1 / 3}=2
$$

since $2^{3}=8$ and $2>0$.
Finally if n and d are integers and $d>0$ then we define

$$
b^{n / d}=\left(b^{1 / d}\right)^{n} .
$$

We have, then, for all $b>0$ and all rational numbers r defined the symbol b^{r}. It can be checked in a straightforward matter that

$$
a^{r} b^{r}=(a b)^{r}
$$

$$
\begin{gathered}
b^{r} \times b^{s}=b^{r+s} \\
\frac{b^{r}}{b^{s}}=b^{r-s}
\end{gathered}
$$

and

$$
\left(b^{r}\right)^{\mathrm{s}}=\mathrm{b}^{\mathrm{rs}}
$$

for any pair of rational numbers r and s, and any $a>0$ and $b>0$.
It should be noted that for some rational numbers r it is possible to extend the definition of b^{r} to negative bases. We shall not consider that here, and in the case of reciprocals of positive integers, that is $1 / d$, we suggest the notation $\sqrt[4]{6}$ to refer to solutions to $x^{d}=b$ when $b \leq 0$ provided such solutions exist.

Exercises

1.

Write each expression in the form b^{r} :
(a)
$6^{1 / 3} 6^{3 / 5}$
(b)
$(1 / 3)^{6}(3 / 2)^{6}$
(c)
$6^{1 / 3} 6^{-3 / 5}$
(d)
$\left(6^{1 / 3}\right)^{-3 / 5}$
(e)
$\frac{7^{-3 / 5}}{7^{-4 / 9}}$
(f)
$3^{1 / 3} 5^{1 / 3}$
2.

Combine exponents where possible.
(a)
$\left(a^{2} b^{3}\right)^{5}$.
(b)
$\left(a^{2} b^{-1}\right)^{3}\left(a^{2}+b^{3}\right)$.
(c)

$$
\frac{\left(x^{3} y^{2} z^{-3}\right)^{2}}{\left(x y^{2} z^{3}\right)^{2}}
$$

(d)

$$
\frac{\left(x^{1 / 3} y^{2} z^{-3}\right)^{2}}{\left(x y^{-1 / 2} z^{3}\right)^{2}}
$$

(e)

$$
\frac{\left(x^{-1} y^{2} z^{-1 / 3}\right)^{5}}{\left(x^{-1} y^{2} z^{3}\right)^{1 / 7}}
$$

