## Complex Conjugate Root (C)

If $p(z)$ is a polynomial with real coefficients, $a$ and $b$ are real numbers, and $p(a+b i)=$ 0 then $p(a-b i)=0$ as well. In this case we have $z-(a+b i)$ and $z-(a-b i)$ are factors, so $(z-(a+b i))(z-(a-b i))=z^{2}+2 a z+\left(a^{2}+b^{2}\right)$
is also a factor, and can be divided out from $p(z)$.

