Binomial Formula (C)

We will have on many occasions the need to expand expressions of the form

$$
(a+b)^{N}
$$

where N is a positive integer. There is a simple formula for this, known as the binomial formula, which says that

Theorem 2864 (Binomial Formula)

If N is a positive integer and a and b are complex numbers then

$$
(a+b)^{M}=\sum_{k=0}^{N}\binom{N}{k} a^{k} b^{M-k}
$$

where

$$
\binom{N}{k}=\frac{N!}{k!(N-k)!} .
$$

It is not surprising that the terms in $(a+b)^{N}$ involve powers of a and b. The remarkable thing is the coefficients. The theorem becomes transparent when one realizes that $\binom{N}{k}$ counts the number of ways of choosing k things out of N things. Thus, to obtain $a^{k} b^{N-k}$ one had to choose $k a^{\prime}$ s out of the N factors in $(a+b)^{N}$, and there are $\binom{N}{k}$ ways to do this.

Here is an example:

$$
(a+b)^{4}=\binom{4}{0} a^{0} b^{4}+\binom{4}{1} a^{1} b^{3}+\binom{4}{2} a^{2} b^{2}+\binom{4}{3} a^{3} b^{1}+\binom{4}{4} a^{4} b^{0}
$$

so

$$
(a+b)^{4}=b^{4}+4 a b^{3}+6 a^{2} b^{2}+4 a^{3} b+a^{4} .
$$

Remark: The binomial coefficients

$$
\binom{p}{k}
$$

can be given a meaning even if p is not a positive integer, so long as k is positive integer.

We put

$$
\binom{p}{0}=1
$$

and

$$
\binom{p}{1}=p
$$

For $k \geq 2$

$$
\binom{p}{k}=\frac{p(p-1) \cdots(p-(k-1))}{k!} .
$$

This conforms to the case where p is a positive integer since

$$
p!=p(p-1) \cdots(p-(k-1))(p-k)!
$$

For example

$$
\binom{\frac{1}{3}}{2}=\frac{\frac{1}{3} \frac{-2}{3}}{2!}
$$

