Superiority of Root Test over Ratio Test
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Suppose that tala) } Is a sequence of strictly positive terms with a(0) = 1.
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The weak form of the root test says that if
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Using elementary properties of logarithms these tests can be reformulated to say:
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Root Test: If
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we have
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So the weak form of the root test will decide the convergence/divergence of A(n) whenever the
weak form of the ratio test does, and potentially will decide the convergence/divergence

of A(n) when the weak form of the ratio test fails to give any information. The demonstration
above makes it clear why: The ratio test only uses one ratio, while the root test uses all the
ratios. One might say, the root test is better because it remembers it roots.



