Equivalent Defintions of ¢
It is well-known that for all complex numbers z,
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What follows below is a direct proof of this fact in the case where z is a positive real number.
The proof is elementary in that it does not depend on limits superior and inferior, but instead
on the Pinching Theorem.
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Suppose that & and V' are positive integersand —  .Then
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Proof: The lemma is clearly true if
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since the righthand side expression is never negative. Therefore, suppose that
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In this case the proof is by induction on k along with the observation that for
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N> 2
It follows directly from the Binomial Theorem thatfor — andx>0
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so on the one hand we have



while by applying the Lemma we have
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so that

T\ Yol |
‘(”E) —@W)‘iz— Pk
Since it is readily established that
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exists for positive x by using comparison to a geometric series, we see that
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has the same limitas NV — co.



