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A single ion channel is a membrane protein with an ion selectivity filter that allows only a 
single species of ions (such as potassium ions) to pass through in the “open” state. Its se-
lectivity filter also naturally separates a solvent domain into an intracellular domain and an 
extracellular domain. Such biological and geometrical characteristics of a single ion chan-
nel are novelly adopted in the construction of a new kind of dielectric continuum ion 
channel model, called the Poisson-Nernst-Planck single ion channel (PNPSIC) model, in this 
paper. An effective PNPSIC finite element solver is then developed and implemented as a 
software package workable for a single ion channel with a three-dimensional X-ray crys-
tallographic molecular structure and a mixture of multiple ionic species. Numerical results 
for a potassium channel confirm the convergence and efficiency of the PNPSIC finite ele-
ment solver and demonstrate the high performance of the software package. Moreover, the 
PNPSIC model is applied to the calculation of electric current and validated by biophysical 
experimental data.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

A system of Poisson-Nernst-Planck (PNP) equations is a basic tool for the development of dielectric continuum ion 
channel models. In the last three years, we developed several PNP ion channel (PNPic) models using novel boundary value 
and interface conditions and membrane surface charge densities to reflect real membrane environments, along with their 
finite element solvers and software packages, which are workable for a crystallographic three-dimensional (3D) molecular 
structure of an ion channel protein and a mixture of multiple ionic species [1–3]. We also have significantly improved 
an ion channel tetrahedral mesh generation software package to generate high-quality tetrahedral meshes for our PNP 
finite element solvers [4]. These models and software packages have been applied to the calculation of membrane kinetics 
such as membrane potentials, transport fluxes, and electric currents, making them valuable in the simulation of either 
a non-selective cation channel such as a gramicidin A [5], which allows multiple types of cations through the channel, 
or a voltage-dependent anion channel, which is the main conduit for different ions and metabolites into and out of a 
mitochondrion [6]. However, like other PNP ion channel models, our PNPic models do not work for a single ion channel — a 
membrane protein with an ion selectivity filter that only allows one species of ions to pass across a membrane in its “open” 
state.
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Typically, single ion channels can be classified into potassium channels, sodium channels, calcium channels, chloride 
channels, and proton channels [7]. They are found in the cellular membranes of virtually all living organisms, playing essen-
tial roles in coordinating contraction in the heart and skeletal muscle, controlling electrical activity in cells, and producing 
signals of the nervous system [7,8]. Among them, potassium channels are the most widely studied by molecular dynamics 
[9–15] and Brownian dynamics [16,17] due to the availability of high-quality X-ray crystallographic structural data [18–20]. 
However, either molecular dynamics or Brownian dynamics can be much more costly than PNP equations in the calcula-
tion of membrane kinetics since PNP equations not only treat the water solvent as a dielectric continuum medium based 
on the implicit solvent approach but also describe ionic distributions in continuous concentration functions based on the 
mean-field approach [21,22]. Thus, a lot of research work was also done toward the direction of developing PNP ion channel 
models [23]. Note that a PNP ion channel model cannot distinguish the two ions with the same charge, such as sodium 
and potassium ions, since it treats ions as volume less points. Hence, several size modified PNP and Poisson-Boltzmann 
models have been developed to reflect various ion size effects [24–30]. Unfortunately, they still do not work for a potassium 
channel because the selectivity filter of a potassium channel prefers larger potassium ions to smaller sodium ions. Such an 
unconventional ion selectivity behavior contradicts the physical law of momentum, under which, a sodium ion should be a 
stronger biological competitor to fight for space in the selectivity filter than a potassium ion since all the ions are assumed 
to have the same mass density in PNP equations. This fascinating phenomenon has motivated researchers to further modify 
Nernst-Planck equations by adding an additional solvation energy. For example, a Born solvation energy is selected to con-
struct a PNP single ion channel model, called the Born-energy modified PNP model, in [31] since sodium ions are observed 
to have larger Born solvation energy values than potassium ions. Similarly, a one-dimensional solvation energy modified 
PNP ion channel model is developed in [32]. These two models were shown numerically to be able to select potassium ions 
over sodium ions.

In this work, we develop a novel PNP single ion channel (PNPSIC) model according to the biological and geometrical 
characteristics of a single ion channel. In fact, in a current PNP ion channel model, all the ions have been assumed to 
be able to enter the selectivity filter since all the ionic concentrations are defined in a solvent domain, Ds . Clearly, such 
a hypothesis contradicts with the single ion selectivity property, which causes either the failure of the current PNP ion 
channel model or the difficulties of modifying the current PNP ion channel model for a single ion channel case. We observe 
that actually, a solvent domain, Ds , has been separated by the selectivity filter into an intracellular domain, Ds,I , and an 
extracellular domain, Ds,e . Since the ions of the single ionic species are the only ions that can transport between Ds,I and 
Ds,e through the selectivity filter, for a mixture of n ionic species, we can describe the ionic distributions of a single ion 
channel in terms of 2n − 1 concentration functions — a set of n − 1 concentration functions defined in Ds,I , another set 
of n − 1 concentration functions in Ds,e , and a concentration function of the single species in Ds . To define these 2n − 1
concentration functions, we need to construct 2n − 1 boundary value problems and we can do so using classical Nernst-
Planck equations. With these concentration functions, we then use Poisson equations to construct a boundary value problem 
for defining an electrostatic potential function in a simulation box domain, �, which consists of Ds , an ion channel protein 
region, and a membrane region. A combination of these 2n boundary value problems leads to a nonlinear system as the 
definition of our PNPSIC model.

One advantage of the PNPSIC model is to let us block all the other ions to enter the filter easily in comparison with 
a corresponding Born-energy modified PNP model. However, the PNPSIC model is more challenging to solve numerically 
because it involves more complicated physical domains and more unknown functions while it faces the same numerical 
difficulties caused by potential function singularities and positive sign restrictions on concentration functions as the PNP ion 
channel model does. Based on our current PNP ion channel work [1–3], we develop mathematical and numerical techniques 
to overcome these difficulties. We also develop a finite element method for solving the PNPSIC model since with a finite el-
ement method, we can approximate the geometrical shapes of the complex interfaces of the box domain � and the complex 
domains Ds,I , Ds,e , and Ds through properly constructing irregular tetrahedral meshes in a much higher degree of accuracy 
than the corresponding finite difference or finite volume method. Indeed, it is critical to retain the geometrical shapes of 
Ds,I , Ds,e , Ds , and the interfaces since the geometrical shapes can seriously affect not only the biological properties of an 
ion channel protein but also the solution properties of the PNPSIC model. However, the selectivity filter has a very narrow 
open pore. For example, the selectivity filter pore of a potassium channel has an average radius of 1.4 Å only [18]. Thus, 
generating such tetrahedral meshes is challenging and requires us to further improve the current ion channel mesh software 
package. This turns out to be one key step for us to develop a PNPSIC finite element solver. We have completed this mesh 
work and plan to report it in another paper due to its length in description.

In this work, we report an effective PNPSIC finite element iterative scheme and a related software package for a single 
ion channel protein with a three-dimensional crystallographic molecular structure and a mixture of multiple ionic species. 
Numerical experiments are then reported for a potassium channel to confirm the convergence and efficiency of the iterative 
scheme, to demonstrate the performance of the software package, and to validate our PNPSIC model. As one important 
application, we present a numerical scheme for computing the electric current of a single ion species flowing over the 
selectivity filter, which we have implemented as a part of our PNPSIC software package. Moreover, we report a comparison 
of our predicted current–voltage curves (or I-V curves) with those generated from biophysical experiments [33,34] to further 
validate our PNPSIC model.

The rest of the paper is organized as follows. In Section 2, we present the PNPSIC model. In Section 3, we present 
a PNPSIC solution decomposition. In Section 4, we present the variational formulations of the boundary value problems 
2
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Fig. 1. An illustration of the protein, solvent, and membrane regions Dp , Ds , and Dm given in the box domain partition (1) and the membrane location 
numbers Z1 and Z2.

Fig. 2. An illustration of the filter Ds, f (in red), intracellular and extracellular domains Ds,I and Ds,e , and filter location numbers f1 and f2 given in the 
solvent region partition (2). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

from the PNPSIC model and solution decomposition. In Section 5, we present the PNPSIC finite element approximation. In 
Section 6, we present the PNPSIC iterative method. In Section 7, we report our PNPSIC package and numerical results. In 
Section 8, we present an electric current computing scheme and validate computed I-V curves by biophysical experimental 
data. Finally, conclusions are made in Section 9.

2. Poisson-Nernst-Planck single ion channel model

Let a rectangular box open domain, �, be defined by

� = {
(x, y, z)|Lx1 < x < Lx2 , L y1 < y < L y2 , Lz1 < z < Lz2

}
,

such that it contains a membrane region, Dm , a solvent region, Ds , and a protein region, Dp , satisfying the partition

� = Dp ∪ Dm ∪ Ds, (1)

where Lx1 , Lx2 , L y1 , L y2 , Lz1 , and Lz2 are real numbers, Dp hosts a single ion channel protein, and Ds contains an ionic 
solution, Here we have set the origin of the rectangular coordinate system at the center of the ion channel protein and the 
z-axis direction to be one membrane normal direction. The membrane location can then be determined by the two numbers 
Z1 and Z2 of the z-axis. An illustration of the box domain partition (1) is given in Fig. 1.

Let Ds, f denote the ion selectivity filter of a single ion channel protein. Since it only allows the ions of a single species 
to enter across the membrane, it separates the solvent domain Ds into an intracellular domain, Ds,I , and an extracellular 
domain, Ds,e , yielding the natural partition of Ds:

Ds = Ds, f ∪ Ds,I ∪ Ds,e. (2)

With two selectivity filter location numbers, denoted by f1 and f2, we can express the three solvent subdomains Ds, f , Ds,I , 
and Ds,e as

Ds, f = {r ∈ Ds | r = (x, y, z) with f1 ≤ z ≤ f2},
Ds,I = {r ∈ Ds | r = (x, y, z) with z < f1}, Ds,e = {r ∈ Ds | r = (x, y, z) with z > f2}.

An illustration of the above solvent subdomains is given in Fig. 2.
3
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Fig. 3. An illustration of the solvent domain Ds , the intracellular and extracellular domains Ds,I and Ds,e , and their boundary surface partitions given in (3).

The boundary of � consists of six surfaces. For clarity, we denote its bottom surface by �D,I , top surface by �D,e , the 
bottom and top surfaces by �D , and the four side surfaces by �N . We then express the boundaries ∂Ds, ∂Ds,I , and ∂Ds,e of 
Ds, Ds,I , and Ds,e as follows:

∂Ds = �D ∪ �N,s ∪ �m ∪ �p, ∂Ds,I = �D,I ∪ �N,I ∪ �R,I , ∂Ds,e = �D,e ∪ �N,e ∪ �R,e, (3)

where �N,s, �N,I , and �N,e denote the side surfaces of Ds, Ds,I , and Ds,e , respectively; �m denotes the interface between 
Dm and Ds; �p denotes the interface between Dp and Ds; �R,I denotes the intracellular surface; and �R,e denotes the 
extracellular surface. An illustration of these boundary surfaces is given in Fig. 3.

We now construct the single ion channel model in the steady state. For clarity, we set Species 1 as the single ion species 
and denote its ionic concentration function by c1. Clearly, c1 is defined in the solvent domain Ds since the ions of the single 
ion species are allowed to pass the selectivity filter across the membrane. We also define a dimensionless potential function, 
u, by

u(r) = ec
kB T

�(r), r ∈ �, (4)

where � is an electrostatic potential function in volts, ec is the elementary charge, kB is the Boltzmann constant, and T is 
the absolute temperature.

Following our previous work [2], we define c1 by the Nernst-Planck boundary value problem:

∇ ·D1(r) [∇c1(r) + Z1c1(r)∇u(r)] = 0, r ∈ Ds, (5a)

c1(s) = g1(s), s ∈ �D , (5b)
∂c1(s)

∂ns(s)
= 0, s ∈ �N,s, (5c)

∂c1(s)

∂ns(s)
+ Z1c1(s)

∂u(s)

∂ns(s)
= 0, s ∈ �p ∪ �m, (5d)

where D1 and Z1 are the diffusion function and charge number of Species 1, respectively, g1 is a boundary value function, 
and ns denotes the unit outward normal direction of Ds .

Because of the selectivity filter Ds, f , the mixture solutions within the intracellular and extracellular domains Ds,I and 
Ds,e can be different. Thus, in general, Ds,I can contain a mixture of nI ionic species while Ds,e contains another mixture of 
ne ionic species so that we need two different sets of concentration functions, denoted by {ci,I }nI

i=1 and {ci,e}nei=1, to describe 
the ionic distributions within Ds,I and Ds,e , respectively. Here nI and ne denote the numbers of ionic species within Ds,I

and Ds,e , respectively. Note that both Ds,I and Ds,e contain the ions of Species 1. Hence, we can set c1,I = c1 and c1,e = c1
for clarity. We then define the concentration functions ci,I for i = 2, 3, . . . , nI within Ds,I using Nernst-Planck equations as 
follows:

∇ ·Di,I (r)
[∇ci,I (r) + Zi,I ci,I (r)∇u(r)

] = 0, r ∈ Ds,I , (6a)

ci,I (s) = gi,I (s), s ∈ �D,I , (6b)

∂ci,I (s) = 0, s ∈ �N,I , (6c)

∂ns(s)

4
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∂ci,I (s)

∂ns(s)
+ Zi,I ci,I (s)

∂u(s)

∂ns(s)
= 0, s ∈ �R,I , (6d)

and ci,e for i = 2, 3, . . . , ne within Ds,e by

∇ ·Di,e(r)
[∇ci,e(r) + Zi,eci,e(r)∇u(r)

] = 0, r ∈ Ds,e, (7a)

ci,e(s) = gi,e(s), s ∈ �D,e, (7b)

∂ci,e(s)

∂ns(s)
= 0, s ∈ �N,e, (7c)

∂ci,e(s)

∂ns(s)
+ Zi,eci,e(s)

∂u(s)

∂ns(s)
= 0, s ∈ �R,e, (7d)

where Di,I and Di,e are two diffusion functions; gi,I and gi,e are two boundary value functions; and Zi,I and Zi,e denote 
the charge numbers of Species i within Ds,I and Ds,e , respectively.

Note that we have used the Neumann boundary value conditions (5c), (6c), and (7c) to reflect the fact that none of ions 
come from the side surfaces of the box domain. We also have used the Robin boundary value conditions (5d), (6d), and (7d)
to reflect the fact that the membrane surfaces and ion channel walls are insulating (i.e., charged particles cannot penetrate 
them).

We next define the dimensionless potential function u in the box domain �.
We assume that a molecular structure of the single channel protein is given. Thus, a charge density function, ρp , within 

the protein region Dp can be estimated by

ρp = ec

np∑
j=1

z jδr j ,

where np is the number of atoms, z j and r j are the charge number and position vector of atom j, respectively, and δr j
denotes the Dirac delta distribution at r j .

Using the concentration functions c1, {ci,I }nI
i=2, and {ci,e}nei=2 defined in (5), (6), and (7), we can estimate the charge 

density functions ρI , ρ f , and ρe within the intracellular domain Ds,I , filter domain Ds, f , and extracellular domain Ds,e by

ρI = ec[Z1c1(r) +
nI∑
i=2

Zi,I ci,I (r)], ρ f = ec Z1c1, ρe = ec
[
Z1c1(r) +

ne∑
i=2

Zi,eci,e(r)
]
.

We then use Poisson equations to define u in Dp, Dm, Ds,I , Ds, f , and Ds,e , respectively, as follows:

−εp	u(r) = α

np∑
j=1

z jδr j , r ∈ Dp, (8a)

−εm	u(r) = 0, r ∈ Dm, (8b)

−εs	u(r) = β
[
Z1c1(r) +

nI∑
i=2

Zi,I ci,I (r)
]
, r ∈ Ds,I , (8c)

−εs	u(r) = β Z1c1(r), r ∈ Ds, f , (8d)

−εs	u(r) = β
[
Z1c1(r) +

ne∑
i=2

Zi,eci,e(r)
]
, r ∈ Ds,e, (8e)

where εp , εm , and εs are the permittivity constants within Dp , Dm , and Ds , respectively, and α and β denote the two model 
parameters to be given in (11). Note that none of charges from the membrane domain Dm are considered in (8b) and the 
permittivity constant εs is retained in the filter region Ds. f as done commonly in PNP ion channel modeling.

Similarly to what are done in [2,3], we can obtain the following three interface conditions:

u(s−) = u(s+), εp
∂u(s−)

∂np(s)
= εs

∂u(s+)

∂np(s)
, s ∈ �p, (9a)

u(s−) = u(s+), εm
∂u(s−)

∂nm(s)
= εs

∂u(s+)

∂nm(s)
+ τσ (s), s ∈ �m, (9b)

u(s−) = u(s+), εp
∂u(s−)

∂n (s)
= εm

∂u(s+)

∂n (s)
, s ∈ �pm, (9c)
p p

5
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and the following mixed boundary value conditions:

u(s) = g(s), s ∈ �D (Dirichlet boundary condition), (10a)

∂u(s)

∂nb(s)
= 0, s ∈ �N (Neumann boundary condition), (10b)

where np , nm , and nb are the unit outward normal directions of Dp , Dm , and �, respectively; �pm denotes the interfaces 
between Dp and Dm; g is a boundary value function; σ denotes a membrane surface charge density function; and τ is a 
related scaling constant as given in (11). Here σ is introduced for the purpose of partially reflecting the charge effects from 
the membrane domain.

A combination of (8) with (9) and (10) gives the boundary value interface problem for defining u in the box domain �.
Consequently, we derive the Poisson-Nernst-Planck single ion channel (PNPSIC) model as a system of the boundary 

value interface problem in the box domain � and the three boundary value problems (5), (6), and (7) in the solvent domain 
Ds , intracellular domain Ds,I , and extracellular domain Ds,e . A solution of the PNPSIC model gives the potential function u
and ionic concentrations c1, {ci,I }nI

i=2, and {ci,e}nei=2.
In the PNPSIC model, we use the following physical units: angstroms (Å) for length, moles per liter (mol/L) for ionic 

concentrations, volts for the potential function �, Kelvins (K) for temperature, Coulombs (C) for charges, squared angstroms 
per picosecond (Å2/ps) for diffusion functions, and micro-coulombs per squared centimeter (μC/cm2) for the surface charge 
density σ . These units are often adopted to ion channel modelings and simulations. Under these units, we can derive the 
expressions of the model parameters α, β , and τ as follows:

α = 1010e2c
ε0kB T

, β = NAe2c
1017ε0kB T

, τ = 10−12ec
ε0kB T

, (11)

where ε0 is the permittivity of the vacuum and NA is the Avogadro constant, which gives the number of ions per mole. 
With the values of ε0, ec, kB , and T listed in [35, Table 1] and NA = 6.02214129 × 1023, we can estimate the values of α, β , 
and τ as

α ≈ 7042.9399, β ≈ 4.2414, τ ≈ 4.392.

In numerical tests, we can set εp = 2, εs = 80, εm = 2, and a value of σ between 0 and 30.
Similarly to what is done in [2], we define the membrane surface charge density σ and the boundary value functions g1

and g by the piecewise expressions:

σ(s) =
{

σI , s ∈ �m,I ,

σe, s ∈ �m,e,
g1(s) =

{
g1,I , s ∈ �D,I ,

g1,e, s ∈ �D,e,
g(s) =

{
uI , s ∈ �D,I ,

ue, s ∈ �D,e,
(12)

where σI and σe denote the surface charge density functions on the membrane intracellular and extracellular surfaces �m,I

and �m,e , respectively; g1,I and g1,e are two boundary value functions; uI and ue are two boundary potential functions.
When u is known, we recover the electrostatic potential function � by

�(r) = kB T

ec
u(r), r ∈ �.

At T = 298.5 Kelvins, the factor kB Tec
can be estimated as

kB T

ec
≈ 0.026 volts.

Thus, u = 1 corresponds to about 0.026 volts. Hence, from the boundary value functions uI and ue of (12) we can derive a 
voltage, V , across the membrane in volts by

V = kB T

ec
(uI − ue) ≈ 0.026(uI − ue) volts. (13)

In practice, we often set ue = 0 so that for a voltage in millivolts (mV), uI can be estimated by

uI = 10−3 ec
kB T

V ≈ 0.038921 V . (14)

For example, to get a voltage of 100 mV, we can set uI = 3.8921 and ue = 0.
6
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3. PNPSIC solution decomposition

To overcome the singularity difficulty caused by atomic charges, we can follow what is done in [2] to split the electro-
static potential function u as follows:

u(r) = G(r) + �(r) + �̃(r) ∀r ∈ �, (15)

where G is given by

G(r) = α

4πεp

np∑
j=1

z j∣∣r− r j
∣∣ , (16)

�(r) is a solution of a linear interface boundary value problem as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	�(r) = 0, r ∈ Dp ∪ Ds ∪ Dm,

�(s−) = �
(
s+

)
, εp

∂�(s−)
∂np(s)

= εs
∂�(s+)
∂np(s)

+ (εs − εp)
∂G(s)
∂np(s)

, s ∈ �p,

�(s−) = �
(
s+

)
, εm

∂�(s−)
∂nm(s) = εs

∂�(s+)
∂nm(s) + (εs − εm)

∂G(s)
∂nm(s) + τσ (s), s ∈ �m,

�(s−) = �
(
s+

)
, εp

∂�(s−)
∂np(s)

= εm
∂�(s+)
∂np(s)

+ (εm − εp)
∂G(s)
∂np(s)

, s ∈ �pm,

∂�(s)
∂nb(s)

= − ∂G(s)
∂nb(s)

, s ∈ �N ,

�(s) = g(s) − G(s), s ∈ �D ,

(17)

and �̃ satisfies the linear interface boundary value problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	�̃(r) = 0, r ∈ Dm ∪ Dp,

−εs	�̃(r) = β
[
Z1c1(r) +

nI∑
i=2

Zi,I ci,I (r)
]
, r ∈ Ds,I ,

−εs	�̃(r) = β Z1c1(r), r ∈ Ds, f ,

−εs	�̃(r) = β
[
Z1c1(r) +

ne∑
i=2

Zi,eci,e(r)
]
, r ∈ Ds,e,

�̃(s+) = �̃(s−), εp
∂�̃(s−)
∂np(s)

= εs
∂�̃(s+)
∂np(s)

, s ∈ �p,

�̃(s+) = �̃(s−), εm
∂�̃(s−)
∂nm(s) = εs

∂�̃(s+)
∂nm(s) , s ∈ �m,

�̃(s−) = �̃(s+), εp
∂�̃(s−)
∂np(s)

= εm
∂�̃(s+)
∂np(s)

, s ∈ �pm,

∂�̃(s)
∂nb(s)

= 0, s ∈ �N ,

�̃(s) = 0, s ∈ �D .

(18)

Here, ∂G(s)
∂n(s) = ∇G(s) · n(s), and ∇G can be found in the expression

∇G(s) = − α

4πεp

np∑
j=1

z j
(s − r j)

|s − r j|3 .

Note that the boundary value problem (18) only depends on ionic concentrations. Hence, we can treat G , �, and their 
gradient vectors ∇G(r) and ∇�(r) as known functions during a search for �̃ and ionic concentrations. Thus, we introduce 
a function, w , by

w(r) = G(r) + �(r), r ∈ �, (19)

and treat it as a known function. We then substitute the potential function u with �̃ + w to modify the boundary value 
problems (5), (6), and (7) as follows:

• The boundary value problem (5) is modified as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ ·D1(r)
[
∇c1(r) + Z1c1(r)∇(�̃(r) + w(r))

]
= 0, r ∈ Ds,

c1(s) = g1(s), s ∈ �D,I ∪ �D,e,
∂c1(s)
∂ns(s)

= 0, s ∈ �N,s,

∂c1(s) + Z1c1(s)
∂(�̃(s)+w(s)) = 0, s ∈ �p ∪ �m.

(20)
∂ns(s) ∂ns(s)

7
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• The boundary value problem (6) is modified as
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ ·Di,I (r)
[
∇ci,I (r) + Zi,I ci,I (r)∇(�̃(r) + w(r))

]
= 0, r ∈ Ds,I ,

ci,I (s) = gi,I (s), s ∈ �D,I ,
∂ci,I (s)
∂ns(s)

= 0, s ∈ �N,I ,

∂ci,I (s)
∂ns(s)

+ Zi,I ci,I (s)
∂(�̃+w)
∂ns(s)

= 0, s ∈ �R,I .

(21)

• The boundary value problem (7) is modified as
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ ·Di,e(r)
[
∇ci,e(r) + Zi,eci,e(r)∇(�̃(r) + w(r))

]
= 0, r ∈ Ds,e,

ci,e(s) = gi,e(s), s ∈ �D,e,
∂ci,e(s)
∂ns(s)

= 0, s ∈ �N,e,

∂ci,e(s)
∂ns(s)

+ Zi,eci,e(s)
∂(�̃(s)+w(s))

∂ns(s)
= 0, s ∈ �R,e.

(22)

A combination of the above modified boundary value problems with (18) gives a nonlinear system for computing �̃, c1, 
{ci,I }nI

i=2, and {ci,e}nei=2. Similarly to what is done in [2,35], we can show that this system is well defined without involving 
any singularity point of u. Hence, this system can be much easier to solve numerically than the original PNPSIC model. 
Since the linear boundary value interface problem (17) has been solved numerically in our previous work [2], we focus on 
the numerical solution of this nonlinear system in this paper.

4. Variational formulations

One key step for us to develop a PNPSIC finite element solver is to reformulate the boundary value problems (17), (18), 
(20), (21), and (22) into variational forms. To do so, we introduce the following function spaces

V (�) = {u ∈ H1(�) | u = 0 on �D}, V (Ds) = {v ∈ H1(Ds) | v = 0 on �D}, (23)

V (Ds,I ) = {v ∈ H1(Ds,I ) | v = 0 on �D,I }, V (Ds,e) = {v ∈ H1(Ds,e) | v = 0 on �D,e}, (24)

where H1(�), H1(Ds), H1(Ds,I ), and H1(Ds,e) denote the regular Sobolev function spaces defined in the box domain �
and solvent domains Ds , Ds,I , and Ds,e , respectively [36]. We then define a bilinear functional, a(u, v), for u ∈ H1(�) and 
v ∈ V (�) by

a(u, v) = εp

∫
Dp

∇u · ∇vdr+ εm

∫
Dm

∇u · ∇vdr+ εs

∫
Ds

∇u · ∇vdr. (25)

Following what was done in our previous work [2], we can obtain the variational problems of the boundary value 
problems (17), (18), (20), (21), and (22) as follows:

1. Variational problem of (17): Find � ∈ H1(�) satisfying � = g − G on �D such that

a(�, v) =(εs − εp)

∫
�p

∂G(s)

∂np(s)
vds+ (εs − εm)

∫
�m

∂G(s)

∂nm(s)
vds+ (εm − εp)

∫
�pm

∂G(s)

∂np(s)
vds

− εm

∫
�N∩∂Dm

∂G(s)

∂nb(s)
vds− εs

∫
�N,s

∂G(s)

∂nb(s)
vds+ τ

∫
�m

σ vds ∀v ∈ V (�),

(26)

where ∂Dm denotes the boundary of membrane domain Dm and �N,s = �N ∩ ∂Ds .
2. Variational problem of (18): Find �̃ ∈ V (�) such that

a(�̃, v) =β

∫
Ds,I

[
Z1c1(r) +

nI∑
j=2

Z j,I c j,I (r)
]
v(r)dr+ β

∫
Ds, f

Z1c1(r)v(r)dr

+ β

∫
D

[
Z1c1(r) +

ne∑
j=2

Z j,ec j,e(r)
]
v(r)dr ∀v ∈ V (�).

(27)
s,e

8
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3. Variational problem of (20): Find c1 ∈ H1(Ds) satisfying c1 = g1 on �D such that∫
Ds

D1

[
∇c1(r) + Z1c1(r)∇(�̃(r) + w(r))

]
∇v(r)dr = 0 ∀v ∈ V (Ds), (28)

subject to the sign constraint conditions c1 > 0.
4. Variational problem of (21): Find ci,I ∈ H1(Ds,I ) satisfying ci,I = gi,I on �D,I such that∫

Ds,I

Di,I

[
∇ci,I (r) + Zi,I ci,I (r)∇(�̃(r) + w(r))

]
∇vdr = 0 ∀v ∈ V (Ds,I ), (29)

subject to the sign constraint conditions ci,I > 0 for i = 2, 3, . . . , n.
5. Variational problem of (22): Find ci,e ∈ H1(Ds,e) satisfying ci,e = gi,e on �D,e such that∫

Ds,e

Di,e

[
∇ci,e(r) + Zi,eci,e(r)∇(�̃(r) + w(r))

]
∇vdr = 0 ∀v ∈ V (Ds,e), (30)

subject to the sign constraint conditions ci,e > 0 for i = 2, 3, . . . , n.

Here w is defined in (19) and has been calculated prior to solving (28), (29), and (30).
However, the sign constraint conditions may cause difficulties in the numerical solutions of the variational problems (28), 

(29), and (30). To overcome such difficulties, we introduce the Slotboom variable transformations

c1 = e−Z1uc̄1, ci,I = e−Zi,I u c̄i,I , ci,e = e−Zi,euc̄i,e, (31)

where c̄1, c̄i,I , and c̄i,e are called the Slotboom variables.
With (31), we can get the identities

∇c1 + Z1c1∇u = e−Z1u∇ c̄1,

∇ci,I + Zi,I ci,I∇u = e−Zi,I u∇ c̄i,I , (32)

∇ci,e + Zi,eci,e∇u = e−Zi,eu∇ c̄i,e.

Using the boundary conditions (5c), (5d), (6c), (6d), (7c), (7d), and (10), and the fact that e−Zi,I u > 0 and e−Zi,eu > 0, we 
can obtain the Neumann boundary conditions

∂ c̄1(s)
∂nb(s)

= 0, s ∈ �N,s,
∂ c̄1(s)
∂ns(s)

= 0, s ∈ �p ∪ �m,

∂ c̄i,I (s)
∂nb(s)

= 0, s ∈ �N,I ,
∂ c̄i,I (s)
∂ns(s)

= 0, s ∈ �R,I ,

∂ c̄i,e(s)
∂nb(s)

= 0, s ∈ �N,e,
∂ c̄i,e(s)
∂ns(s)

= 0, s ∈ �R,e,

and the Dirichlet boundary conditions

c̄1(s) = ḡ1(s) on �D , c̄i,I (s) = ḡi,I (s) on �D,I , c̄i,e(s) = ḡi,e(s) on �D,e,

where ḡ1 = eZ1g g1, ḡi,I = eZi,I g gi,I , and ḡi,e = eZi,e g gi,e .
Applying (32) and the above boundary value conditions to (28), (29), and (30), we can derive the variational problems 

that define the Slotboom variables c̄1, c̄i,I , and c̄i,e as follows:

1. Variational problem for defining c̄1: Find c̄1 ∈ H1(Ds) with c̄1 = ḡ1 on �D such that∫
Ds

D1e
−Z1(�̃+w)∇ c̄1∇vdr = 0 ∀v ∈ V (Ds). (33)

2. Variational problem for defining c̄i,I : Find c̄i,I ∈ H1(Ds,I ) with c̄i,I = ḡi,I on �D,I for i = 2, 3, . . . , nI such that∫
Ds,I

Di,I e
−Zi,I (�̃+w)∇ c̄i,I∇vidr = 0 ∀vi ∈ V (Ds,I ) for i = 2,3, . . . ,nI . (34)

3. Variational problem for defining c̄i,e : Find c̄i,e ∈ H1(Ds,e) with c̄i,e = ḡi,e on �D,e for i = 2, 3, . . . , ne such that∫
D

Di,ee
−Zi,e(�̃+w)∇ c̄i,e∇vidr = 0 ∀vi ∈ V (Ds,e) for i = 2,3, . . . ,ne. (35)
s,e

9
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Note that the boundary value problems (33), (34), and (35) do not involve any sign constraint condition since their solutions 
c̄1, c̄i,I , and c̄i,e are always positive (see [37, page 27] for a proof).

Furthermore, we use (31) to transform the variational equation (27) to a nonlinear variational problem as follows: Find 
�̃ ∈ V (�) such that

a(�̃, v) − b(�̃, c̄1, c̄2,I , c̄3,I , . . . , c̄nI ,I , c̄2,e, c̄3,e, . . . , c̄ne,e; v) = 0 ∀v ∈ V (�), (36)

where the bilinear functional a(·, ·) is defined in (25) and the nonlinear functional b is defined by

b(�̃, c̄1, c̄2,I , c̄3,I , . . . , c̄nI ,I , c̄2,e, c̄3,e, . . . , c̄ne,e; v) = β

∫
Ds,I

v(r)
nI∑
j=2

Z j,I e
−Z j,I (�̃+w)c̄ j,I (r)dr

+β

∫
Ds

Z1e
−Z1(�̃+w)c̄1(r)v(r)dr+ β

∫
Ds,e

v(r)
ne∑
j=2

Z j,ee
−Z j,e(�̃+w)c̄ j,e(r)dr. (37)

We now combine (36) with (33), (34), and (35) to derive a system of nonlinear variational equations for computing the 
functions �̃, c̄1, {c̄ j,I }nI

j=2, and {c̄ j,e}nej=2 as follows:

Find �̃ ∈ V (�), c̄1 ∈ H1(Ds) with c̄1 = ḡ1 on �D , c̄i,I ∈ H1(Ds,I ) with c̄i,I = ḡi,I on �D,I for i = 2, 3, . . . , nI , and c̄i,e ∈
H1(Ds,e) with c̄i,e = ḡi,e on �D,e for i = 2, 3, . . . , ne such that⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫
Ds

D1e−Z1(�̃+w)∇ c̄1∇vdr = 0 ∀v ∈ V (Ds),∫
Ds,I

Di,I e−Zi,I (�̃+w)∇ c̄i,I∇vidr = 0 ∀vi ∈ V (Ds,I ) for i = 2,3, . . . ,nI ,∫
Ds,e

Di,ee−Zi,e(�̃+w)∇ c̄i,e∇vidr = 0 ∀vi ∈ V (Ds,e) for i = 2,3, . . . ,ne,

a(�̃, v) − b(�̃, c̄1, c̄2,I , c̄3,I , . . . , c̄nI ,I , c̄2,e, c̄3,e, . . . , c̄ne,e; v) = 0 ∀v ∈ V (�),

(38)

where w = G + � with G and � being given in (16) and (26), respectively, which have been calculated prior to solving the 
above system.

When a solution of the nonlinear system (38) is found, we can use (31) to derive the ionic concentration functions c1, 
{ci,I }nI

i=2, and {ci,e}nei=2, and claim them to be positive due to the positivity of the Slotboom variable functions c̄1, {c̄i,I }nI
i=2, 

and {c̄i,e}nei=2. Furthermore, we use (15) to derive the potential function u. Consequently, we obtain a solution of the PNPSIC 
model.

5. A finite element approximation

In this section, we present a finite element approximation to the nonlinear variational system (38). We start with a 
generation of a tetrahedral mesh, Dp,h , of the protein region Dp , a tetrahedral mesh, Dm,h , of the membrane region Dm , 
and a tetrahedral mesh, Ds,h , of the solvent region Ds . Using them, we construct an interface fitted tetrahedral mesh, �h , 
of the box domain � by

�h = Dp,h ∪ Dm,h ∪ Ds,h.

We then from the solvent mesh Ds,h extract a tetrahedral mesh, Ds,I,h , of the intracellular domain Ds,I , a tetrahedral mesh, 
Ds, f ,h , of the selectivity filter domain Ds, f , and a tetrahedral mesh, Ds,e,h , of the extracellular domain Ds,e such that they 
satisfy

Ds,I,h ∪ Ds, f ,h ∪ Ds,e,h = Ds,h.

Using these meshes, we construct four linear Lagrange finite element spaces, denoted by U(�h), U(Ds,h), U(Ds,I,h), and 
U(Ds,e,h), as the finite dimensional subspaces of the function spaces H1(�), H1(Ds), H1(Ds,I ), and H1(Ds,e), respectively. 
We then define their subspaces V(�h), V(Ds,h), V(Ds,I,h), and V(Ds,e,h) by

V(�h) = {u ∈ U(�h) | u = 0 on �D}, V(Ds,h) = {v ∈ U(Ds,h) | v = 0 on �D},
V(Ds,I,h) = {v ∈ U(Ds,I,h) | v = 0 on �D,I }, V(Ds,e,h) = {v ∈ U(Ds,e,h) | v = 0 on �D,e}.

To communicate functions from one finite element function space to another one, we construct three restriction opera-
tors,

Rs : U(�h) → U(Ds,h), RI : U(�h) → U(Ds,I,h), Re : U(�h) → U(Ds,e,h), (39)

as the natural restrictions. That is, for any u ∈ U(�h),
10
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Rsu(r) = u(r) for r ∈ Ds,h ,RI u(r) = u(r) for r ∈ Ds,I,h , andReu(r) = u(r) for r ∈ Ds,e,h, (40)

since the meshes Ds,h , Ds,I,h , and Ds,e,h are the submeshes of the box mesh �h .
We also construct three prolongation operators,

Ps : U(Ds,h) → U(�h), PI : U(Ds,I,h) → U(�h), Pe : U(Ds,e,h) → U(�h). (41)

as the natural extensions in the following senses:

Psu(r) =
{
u(r), r ∈ Ds,h,

0, otherwise
for u ∈ U(Ds,h), (42)

PI u(r) =
{
u(r), r ∈ Ds,I,h,

0, otherwise
for u ∈ U(Ds,I,h), (43)

Peu(r) =
{
u(r), r ∈ Ds,e,h,

0, otherwise
for u ∈ U(Ds,e,h). (44)

Using the above finite element spaces and operators, we can derive a finite element approximation of (38) as a system 
of nonlinear finite element equations as follows:

Find �̃ ∈ V(�h), c̄1 ∈ U(Ds,h) with c̄1 = ḡ1 on �D , c̄i,I ∈ U(Ds,I,h) with c̄i,I = ḡi,I on �D,I for i = 2, 3, . . . , nI , and c̄i,e ∈
U(Ds,e,h) with c̄i,e = ḡi,e for i = 2, 3, . . . , ne on �D,e such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ds,h

D1e−Z1Rs(�̃+w)∇ c̄1∇vdr = 0 ∀v ∈ V(Ds,h),∫
Ds,I,h

Di,I e−Zi,IRI (�̃+w)∇ c̄i,I∇vidr = 0 ∀vi ∈ V(Ds,I,h), i = 2,3, . . . ,nI ,∫
Ds,e,h

Di,ee−Zi,eRe(�̃+w)∇ c̄i,e∇vidr = 0 ∀vi ∈ V(Ds,e,h), i = 2,3, . . . ,ne,

ah(�̃, v) − bh(�̃, c̄1, c̄2,I , c̄3,I , . . . , c̄nI ,I , c̄2,e, c̄3,e, . . . , c̄ne,e; v) = 0 ∀v ∈ V(�h),

(45)

where w = G +� with � being calculated as a finite element solution of the linear variational problem (26) with � ∈ U(�h)

and v ∈ V(�h), ah(�̃, v) is defined by

ah(�̃, v) = εp

∫
Dp,h

∇�̃ · ∇vdr+ εm

∫
Dm,h

∇�̃ · ∇vdr+ εs

∫
Ds,h

∇�̃ · ∇vdr, (46)

which is a finite element approximation of (25), and bh is defined by

bh(�̃, c̄1, c̄2,I , c̄2,I , . . . , c̄nI ,I , c̄2,e, c̄2,e, . . . , c̄ne,e; v) = β Z1

∫
Ds,h

e−Z1(�̃+w)Psc̄1(r)v(r)dr (47)

+ β

∫
Ds,I,h

v(r)
nI∑
j=2

Z j,I e
−Z j,I (�̃+w)PI c̄ j,I (r)dr+ β

∫
Ds,e,h

v(r)
ne∑
j=2

Z j,ee
−Z j,e(�̃+w)Pec̄ j,e(r)dr.

which is a finite element approximation of (37).

6. Nonlinear finite element iterative methods

In this section, we present a block relaxation iterative scheme for solving the nonlinear system (45), along with a mod-
ified Newton iterative method for solving each related nonlinear finite element equation. Let �̃k, ̄ck1, {c̄ki,I }nI

i=2, and {c̄ki,e}nei=2

denote the kth iterates generated from the block relaxation iterative scheme. When the initial iterates �̃0, c̄01, {c̄0i,I }nI
i=2, and 

{c̄0i,e}nei=2 are given, we define the (k + 1)th iterates �̃k+1, c̄k+1
1 , {c̄k+1

i,I }nI
i=2, and {c̄ki,e}nei=2 for k ≥ 0 as follows:

c̄k+1
1 = c̄k1 + ω(p̄1 − c̄k1), (48a)

c̄k+1
i,I = c̄ki,I + ω(p̄i,I − c̄ki,I ), i = 2,3, . . . ,nI , (48b)

c̄k+1
i,e = c̄ki,e + ω(p̄i,e − c̄ki,e), i = 2,3, . . . ,ne, (48c)

�̃k+1 = �̃k + ω(q̄ − �̃k), (48d)

where ω is a relaxation parameter between 0 and 2, p̄1 is a solution of the linear finite element problem: Find p̄1 ∈ U(Ds,h)

satisfying p̄1 = ḡ1 on �D such that
11
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∫
Ds,h

D1e
−Z1Rs(�̃

k+w)∇ p̄1∇vdr = 0 ∀v ∈ V(Ds,h), (49)

p̄i,I is a solution of the linear finite element problem: Find p̄i,I ∈ U(Ds,I,h) satisfying p̄i,I = ḡi,I on �D,I such that∫
Ds,I,h

Di,I e
−Zi,IRI (�̃

k+w)∇ p̄i,I∇vidr = 0 ∀vi ∈ V(Ds,I,h), i = 2,3, . . . ,nI , (50)

p̄i,e is a solution of the linear finite element problem: Find p̄i,e ∈ U(Ds,e,h) satisfying p̄i,e = ḡi,e on �D,e such that∫
Ds,e,h

Di,ee
−Zi,eRe(�̃

k+w)∇ p̄i,e∇vidr = 0 ∀vi ∈ V(Ds,e,h), i = 2,3, . . . ,ne, (51)

and q̄ is a solution of the nonlinear finite element problem: Find q̄ ∈ V(�h) such that

ah(q̄, v) − bh(q̄, c̄
k+1
1 , c̄k+1

2,I , c̄k+1
3,I , . . . , c̄k+1

nI ,I
, c̄k+1

2,e , c̄k+1
3,e , . . . , c̄k+1

ne,e ; v) = 0 ∀v ∈ V(�h), (52)

where ah and bh are defined in (46) and (47), respectively, and w = G + �, which has been calculated prior to the above 
iterations.

One simple selection of initial concentration iterates is to set

c̄01 = cb1, c̄0i,I = cbi,I for i = 2,3, . . . ,nI , c̄0i,e = cbi,e for i = 2,3, . . . ,ne,

where cb1 is a bulk concentration of Species 1, cbi,I is a bulk concentration of Species i in Ds,I , and cbi,e is a bulk concentration 
of Species i in Ds,e . With such selections, the last equation of the nonlinear system (45) is reduced to a nonlinear equation 
of �̃ as follows: Find �̃ ∈ V(�h) such that

ah(�̃, v) − β Z1c
b
1

∫
Ds,h

e−Z1(�̃+w)vdr− β

∫
Ds,I,h

v
nI∑
j=2

Z j,I c
b
i,I e

−Z j,I (�̃+w)dr

−β

∫
Ds,e,h

v
ne∑
j=2

Z j,ec
b
i,ee

−Z j,e(�̃+w)dr = 0 ∀v ∈ V(�h), (53)

Solving the above equation numerically gives the initial iterate �̃0.
We next present two modified Newton iterative methods for solving the nonlinear finite element systems (52) and (53), 

respectively.
Similar to what is done in [2], for each k ≥ 0, we solve (52) by a modified Newton iterative method as defined below:

q̄ j+1
k = q̄ j

k + ξ
j
k , j = 0,1,2, . . . ,

where ξ j
k is a solution of the linear variational problem: Find ξ j

k ∈ V(�h) such that for all v ∈ V(�h),

ah(ξ
j
k , v) + β Z2

1

∫
Ds,h

Psc̄
k+1
1 e−Z1(q̄

j
k+w)ξ

j
k vdr+ β

∫
Ds,I,h

vξ
j
k

nI∑
i=2

Z2
i,IPI c̄

k+1
i,I e−Zi,I (q̄

j
k+w)dr

+ β

∫
Ds,e,h

vξ
j
k

ne∑
i=2

Z2
i,ePec̄

k+1
i,e e−Zi,e(q̄

j
k+w)dr = β

∫
Ds,I,h

v
nI∑
i=2

Zi,IPI c̄
k+1
i,I e−Zi,I (q̄

j
k+w)dr (54)

+ β

∫
Ds,e,h

v
ne∑
i=2

Zi,ePec̄
k+1
i,e e−Zi,e(q̄

j
k+w)dr+ β Z1

∫
Ds,h

Psc̄
k+1
1 e−Z1(q̄

j
k+w)vdr− ah(q̄

j
k, v),

and q̄0k is an initial guess, which is set as �̃(0) for k = 0 and �̃k for k ≥ 1, and ah is defined in (46).
We also define a modified Newton iterative scheme for solving (53) by the recursive formula

�̃( j+1) = �̃( j) + ξ j for j = 0,1,2, . . . , (55)

where �̃( j) denotes the jth iterate of the modified Newton iterative scheme, ξ j is a solution of the linear variational 
problem: Find ξ j ∈ V(�h) such that
12
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a(ξ j, v) + β Z2
1c

b
1

∫
Ds,h

e−Z1(�̃( j)+w)ξ j vdr+ β

∫
Ds,I,h

vξ j
nI∑
i=2

Z2
i,I c

b
i,I e

−Zi,I (�̃( j)+w)dr

+ β

∫
Ds,e,h

vξ j
ne∑
i=2

Z2
i,ec

b
i,ee

−Zi,e(�̃( j)+w)dr = β

∫
Ds,I,h

nI∑
i=2

Zi,I c
b
i,I e

−Zi,I (�̃( j)+w)dr (56)

+ β

∫
Ds,e,h

v
ne∑
i=2

Zi,ec
b
i,ee

−Zi,e(�̃
( j)+w)dr+ β Z1c

b
1

∫
Ds,h

e−Z1(�̃( j)+w)vdr− a(�̃( j), v) ∀v ∈ V(�h),

and �̃(0) is a solution of a linearized problem of (53) as follows: Find �̃(0) ∈ V(�h) such that

a(�̃(0), v) + β

nI∑
i=2

Z2
i,I c

b
i,I

∫
Ds,I,h

v�̃(0)dr+ β

ne∑
i=2

Z2
i,ec

b
i,e

∫
Ds,e,h

v�̃(0)dr

+ β Z2
1c

b
1

∫
Ds,h

�̃(0)vdr = −β Z2
1c

b
1

∫
Ds,h

wvdr− β

nI∑
i=2

Z2
i,I c

b
i,I

∫
Ds,I,h

wvdr (57)

− β

ne∑
i=2

Z2
i,ec

b
i,e

∫
Ds,e,h

wvdr ∀v ∈ V(�h).

In the above linear variational problem, we have used the electroneutrality conditions:

Z1c
b
1 +

nI∑
i=2

Zi,I c
b
i,I = 0 in Ds,I , Z1c

b
1 +

ne∑
i=2

Zi,ec
b
i,e = 0 in Ds,e.

In the above nonlinear iterations, we solve all the related linear finite element equations (49), (50), (51), (54), (56), and 
(57), numerically, by using either an iterative method such as the generalized minimal residual method using incomplete 
LU preconditioning (GMRES-ILU) or a direct method such as the LU factorization method.

We control the iterative process using the following termination rules:

‖�̃k+1 − �̃k‖ < ε, ‖c̄k+1
1 − c̄k1‖ < ε, max

2≤i≤nI

‖c̄k+1
i,I − c̄ki,I‖ < ε, max

2≤i≤ne
‖c̄k+1

i,e − c̄ki,e‖ < ε, (58)

where ε is a tolerance and ‖ · ‖ denotes the L2 norm. By default, we set ε = 10−3.

7. Finite element package and numerical results

We developed a PNPSIC finite element program package in Python and Fortran based on the state-of-the-art finite el-
ement library from the FEniCS project [38], our PNP ion channel finite element software [2], and a new version of our 
ion channel finite element mesh program package [4], which we plan to report in another paper due to the length of its 
description. In fact, the implementation of our PNPSIC finite element solver requires three new tetrahedral meshes — an 
intracellular domain mesh, Ds,I,h , an extracellular domain mesh, Ds,e,h , and a selectivity filter mesh, Ds, f ,h , which cannot 
be generated from our current mesh package; new mesh generation schemes are required to generate these new meshes. 
We did so and used them to update the current mesh package. We then adapted the updated mesh package as a part of 
our PNPSIC finite element program package.

To demonstrate the performance of the PNPSIC package, we did numerical tests for a potassium channel protein, called 
KcsA, since its potassium selectivity properties have been well studied (see [18] for example) and its molecular structure 
(with the protein data bank identification number (PDB ID) 1BL8) can be downloaded from the Orientations of Proteins in 
Membranes database https://opm .phar.umich .edu, along with the membrane location numbers Z1 = −17 and Z2 = 17. An 
illustration of the KcsA molecular structure is given in Plot (a) of Fig. 4, where we plotted the molecular structure in cartoon 
and three potassium ions in red balls to highlight the location of a narrow selectivity filter. From this figure it can be seen 
that there is an empty space below the filter, which is the location of an ionic solvent-filled cavity.

Using the molecular structure, we determined the selectivity filter location numbers f1 = 2 and f2 = 14 and generated a 
molecular triangular surface mesh of the KcsA channel by the MSMS software package (https://ccsb .scripps .edu /msms/). Here 
the two MSMS parameters were set as 0.6 for the triangulation mesh density and 1.0 for the radius of the probe ball to 
ensure the molecular surface to retain an open selectivity pore properly. We refined the triangular surface mesh to make it 
suitable for finite element calculation before generating tetrahedral meshes.
13
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Fig. 4. (a) A molecular structure of the potassium channel protein (PDB ID: 1BL8) in cartoon with three potassium ions bound in the channel filter part 
(shown in red). (b) A view of the molecular structure in ball-stick warped by a protein tetrahedral mesh, Dp,h , generated by our mesh generation package. 
Here different atoms are represented as colored balls.

Fig. 5. Tetrahedral meshes generated by our mesh package for a potassium channel protein (PDB ID: 1BL8). In (a), the meshes of protein and membrane 
regions Dp and Dm are colored in green and yellow, respectively. In (b, d), the filter mesh Ds, f ,h is colored in red.

We set the box domain � = [−47, 47] × [−47, 47] × [−65, 54] and then generated an interface fitted tetrahedral box 
domain mesh, �h , and the tetrahedral meshes Ds,I,h , Ds,e,h , Ds, f ,h , and Ds,h from our mesh generation package. The mesh 
data are listed in Table 1 and a view of these meshes is displayed in Fig. 5. To clearly display the complex interfaces �p , �m , 
and �pm , we highlight the protein and membrane meshes in green and yellow colors, respectively, in Fig. 5(a). A comparison 
of the protein mesh domain Dp,h with a van der Waals protein domain (a union of all atomic spheres of a molecule with 
each atom being treated as a sphere with a van der Waals atomic radius) is given in Fig. 4(b) to show that the mesh Dp,h
has high-quality in wrapping the geometric shape of the KcsA molecular structure. From Fig. 5 it can be seen that our 
tetrahedral meshes Ds,h , Ds,I,h , Ds, f ,h , and Ds,e,h have well retained the irregular geometric shapes of the solvent domains 
Ds , Ds,I , Ds, f , and Ds,e and the complex interfaces of box domain �.
14
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Table 1
Mesh data for the seven meshes used in numerical tests.
Number of Vertices

�h Dp,h Ds,h Dm,h Ds,I,h Ds,e,h Ds, f ,h

33,024 25,077 12,822 11,454 7194 5305 306

Number of Tetrahedra

198,805 111,847 47,450 39,508 26,370 20,087 798

Table 2
Convergence and performance of our nonlinear finite element iterative scheme (48) for solv-
ing the nonlinear system (45). Here Ite denotes the number of iterations determined by the 
termination rule (58) and CPU the computer time spent by our PNPSIC package in seconds.

ω = 0.8 ω = 0.9 ω = 1.0 ω = 1.1

Ite CPU Ite CPU Ite CPU Ite CPU

Test 1 10 100.39 8 83.40 3 48.87 9 83.94
Test 2 11 102.16 8 81.68 7 61.78 13 93.06

In numerical tests, we used a mixture of 0.2 mol/L KCl and 0.1 mol/L NaCl within Ds,I and Ds,e and ordered the three 
ionic species K+ , Na+ , and Cl− from 1 to 3 (i.e. nI = ne = 3). Thus, c1 denotes the concentration of K+ ions in Ds , c2,I the 
concentration of Na+ ions in Ds,I , c3,I the concentration of Cl− ions in Ds,I , c2,e the concentration of Na+ ions in Ds,e , and 
c3,e the concentration of Cl− ions in Ds,e . Also, the charge numbers and bulk concentrations of K+ , Na+ , and Cl− are given 
by

Z1 = 1, Z2,I = Z2,e = 1, Z3,I = Z3,e = −1, cb1 = 0.2, cb2,I = cb2,e = 0.1, cb3,I = cb3,e = 0.3.

From the website https://www.aqion .de /site /194 we got the diffusion constants Db
1, Db

2, and Db
3 for K+ , Na+ , and Cl− , re-

spectively, as

Db
1 = 0.196, Db

2 = 0.133, Db
3 = 0.203.

Using them, we set the diffusion functions

D2,I (r) = Db
2, D3,I (r) = Db

3 for r ∈ Ds,I , D2,e(r) = Db
2, D3,e(r) = Db

3 for r ∈ Ds,e.

We also used a smooth diffusion function, D1, given in the expression

D1(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Db
1, r ∈ Ds,I ∪ Ds,e,

D f
1 + (D f

1 −Db
1)It(r), r ∈ Ds, f with f2 − η ≤ z ≤ f2 (extracellular buffer),

D f
1 , r ∈ Ds, f with f1 + η ≤ z ≤ f2 − η,

D f
1 + (D f

1 −Db
1)Ib(r), r ∈ Ds, f with f1 ≤ z ≤ f1 + η (intracellular buffer),

(59)

where D f
1 denotes a parameter for controlling a diffusion-limited conduction (or current) rate within the selectivity filter 

Ds, f under a voltage across the membrane; Ib and It are the two interpolation functions given in [39, eq. (27)]; and η
is a parameter for adjusting the size of a buffer region. Since none of the experimental values of D f

1 can be found in the 
literature, we can determine a proper value of D f

1 through fitting I-V experimental data in numerical tests.
For simplicity, we fixed the parameters η = 3, εp = 2, εm = 2, and εs = 80 in all the numerical tests. We then set 

D f
1 = 0.01078 and used the membrane surface charge density σ and boundary value functions g1 and g given in (12) with 

gi,I = gi,e = cbi and the following values of uI , ue, σI , and σe in two particular tests, called Tests 1 and 2:

Test 1. A test using uI = 0, ue = 0, σI = 0, and σe = 0.
Test 2. A test using uI = −1, ue = 1, σI = −10, and σe = 10.

Note that in Test 1, we did not consider any external voltage and any membrane charge as a comparison to Test 2. We solved 
each related linear finite element equation, approximately, by a generalized minimal residual method using incomplete LU 
preconditioning with the absolute and relative residual error tolerances being 10−5. The numerical tests were done on one 
core of our Mac Studio with Apple silicon M1 Max and 64 GB memory. Numerical results are reported in Tables 2 and 3
and Figs. 6 and 7.

Table 2 reports the number of iterations and computer CPU time produced by our nonlinear finite element iterative 
scheme (48) in the numerical solution of the nonlinear system (45). From it we can see that our scheme reached the smallest 
15
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Fig. 6. A color mapping of the electrostatic potentials and ionic concentrations generated by our PNPSIC model in Test 1. Here the protein and membrane 
regions are colored in green and yellow, respectively, to clearly display the color mapping.

Table 3
Computer CPU time distributions for our PNPSIC package in seconds. Here ω = 1.0 and c̄ denotes a set of 
c̄1, ̄c2,I , ̄c3,I , ̄c2,e , and c̄3,e defined in the nonlinear system (45).

Compute G , ∇G Solve (26) for � Solve (53) for �̃0 Solve (45) for �̃ and c̄

Test 1 0.689 0.367 15.79 48.87
Test 2 0.686 0.371 16.16 61.78

number of iterations at ω = 1.0 with three iterations in Test 1 and seven iterations in Test 2 to satisfy the termination rule 
(58), showing a fast rate of convergence. Note that our scheme in Test 2 took more iterations than in Test 1, indicating that 
the non-homogeneous boundary value conditions and membrane surface charges can cause the nonlinear system (45) to 
become more difficult to solve numerically.

Table 3 reports the CPU times spent on the four major parts of our PNPSIC software package for Tests 1 and 2 in seconds. 
From it we can see that the linear boundary value problem (26) was solved in only about 0.4 seconds by the GMRES using 
the ILU preconditioning. This indicates that the GMRES method is an effective linear iterative solver for our PNPSIC software 
package. Our modified Newton iterative method (55) took only about 16 seconds to solve the nonlinear finite element 
equation (53) for an initial guess, �̃0, demonstrating its efficiency in CPU time. Our iterative scheme (48) found a numerical 
solution of the nonlinear system (45) in about one minute only, showing the high computer performance of its program 
package.

Fig. 6 displays the color mappings of the electrostatic potentials u, u+ , and u− and the concentrations of cations K+ and 
Na+ and anions Cl− on the cross section x = 0 of the solvent domain Ds in the case of Test 1. Here u+ and u− denote the 
positive and negative potential parts of u, whose sum gives u. We calculate them by

u+(r) = u(r) + |u(r)|
, u−(r) = u(r) − |u(r)|

, r ∈ Ds. (60)

2 2
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Fig. 7. The electrostatic potential functions u+ and u− and concentration functions of K+ , Na+ , and Cl− produced by the PNPSIC model in Tests 1 and 2.

From Plot (c) it can be seen that the values of u− , in blue color, are distributed mostly within the channel pore and 
surround the ion channel protein, attracting most K+ and Na+ ions as shown in Plots (d, e). From Plots (e, f) we do not 
see any sodium ion or any chloride ion within the selectivity filter, confirming that our PNPSIC model retains the potassium 
selectivity property.

In the area having negative electrostatic potential values, both potassium and sodium ions are found to have similar 
distribution patterns as shown in Plot (d, e), however, from which it is difficult for us to tell which species dominates the 
other since the color mapping only reflects the potential and concentration values on one across section. We need more 
color mappings to view more values. Doing so is prolix. Hence, we turn to using a 2D curve mapping scheme reported in 
[2] to explore their distribution profiles over the whole solvent domain Ds as done in Figs. 7 and 8.

In details, each point of a 2D curve in Figs. 7 and 8 represents an average value of a 3D function over a block of the 
solvent domain Ds . For example, the j-th point (z j, c j

1) of a 2D curve that represents a concentration function, c1, is set 
with z j being the j-th partition number of the interval [Lz1 , Lz2 ] and c j

1 being an average value of c1 over the j-th block B j

of a block partition of the solvent domain Ds , which is calculated by

c j
1 = 1

‖B j‖
∫
B j

c1(r)dr, j = 1,2, . . . ,m,

where ‖B j‖ denotes the volume of B j and m is the total number of blocks. In Figs. 7 and 8, we set m = 70, each block to 
have the same length 8 in the z-axis direction, and the set of partition numbers, {z j }mj=1, to contain the membrane location 
numbers Z1 = −17 and Z2 = 17, the filter location numbers f1 = 2 and f2 = 14, and the channel pore location numbers, 
which we found as z = −37 and z = 26. We highlighted the filter interval 2 ≤ z ≤ 14, membrane interval −17 ≤ z ≤ 17, and 
channel pore interval −37 ≤ z ≤ 26 in yellow, light-cyan, and green colors, respectively, to clearly display the distribution 
pattern of a 3D function in the z-axis direction, which coincides with the channel pore direction or a membrane normal 
direction.

Fig. 7 displays the distribution patterns of the electrostatic potential functions u+ and u− and concentration functions of 
K+ , Na+ , and Cl− produced by the PNPSIC model in Tests 1 and 2. From Plots (a, b) it can be seen that there exist the strong 
positive and negative potentials u+ and u− within the selectivity filter range 2 ≤ z ≤ 14 (in yellow color). Even so, as shown 
in Plots (c, d), the sodium and chloride ions have been prevented permeation from the filter while potassium ions transport 
through the filter across the membrane range −17 ≤ z ≤ 17 (in light-cyan color). This confirms that our PNPSIC model can 
17
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Fig. 8. Concentration functions of K+ , Na+ , and Cl− produced by our PNPic model [2].

retain the ion selectivity property of a potassium channel. In addition, from a comparison of Test 1 results with Test 2 
results we can see that boundary values and membrane surface charges can have a little affection on the concentration of 
potassium ions within the filter, implying that the molecular structure and atomic charges within the filter play a major 
role in the determination of potassium distribution profiles.

Fig. 8 displays the concentration functions generated by a current PNP ion channel (PNPic) finite element software 
package developed in our previous work [2]. Here we repeated Tests 1 and 2 using this package as a comparison of the 
PNPSIC model with the PNPic model. We do not report the potential functions u− and u+ generated by the PNPic package 
since they are found to have the distribution patter similar to those given in Plots (a, b) of Fig. 7.

From Figs. 7 and 8 we can see that potassium ions dominate sodium ions over the solvent domain Ds , especially within 
the ion selectivity filter, since the bulk concentration of K+ is double that of Na+ (0.2 vs. 0.1 mol/L). This indicates that both 
PNPSIC and PNPic models retain one basic physical property — An ionic species having a larger bulk concentration can be 
stronger in competition for space among the species having the same charge number. We also can see that chloride ions 
become dominating within the cavity near the left side of the filter (about −15 < z < −10) since the bulk concentration of 
Cl− is larger than the bulk concentrations of K+ and Na+ (0.3 vs. 0.2 and 0.1 mol/L). This indicates that both PNPSIC and 
PNPic models can retain another feature of a potassium channel — the cavity is filled with an ionic solution. However, from 
the PNPic prediction results reported in Fig. 8 it can be seen that both sodium and chloride ions have entered the filter, 
along with potassium ions, due to the strong negative and positive potentials u− and u+ within the filter. These prediction 
results contradict the ion selectivity property of a potassium channel. Hence, we should substitute the PNPic model with 
the PNPSIC model in the study of a potassium channel.

Remark. Note that the curves of Fig. 7 cannot be used to understand the Slotboom variable transformation formulas of 
(31) since they are plotted by the average values of potentials and concentrations. For example, u has a value around 3 in 
Fig. 7(b) while the concentration c1 of potassium ions has a value around 70 in Fig. 7(d) near z = 17. Applying these two 
values to the formula c̄1 = c1eu , we get a large value of c̄1:

c̄1 = 70e3 ≈ 1405.98.

The above value is incorrect because the range of c̄1 is between 0 and 1 only in Test 2. Actually, the formula c̄1 = c1eu does 
not hold in the average values as shown below:∫

B

c̄1(r)dr =
∫
B

c1(r)e
u(r)dr =

∫
B

c1(r)dr
∫
B

eu(r)dr,

where B is a block of a block partition of the solvent domain.

8. Electric current calculation and validation

One important application of a PNP ion channel model is to calculate the electric current I S flowing over a cross-sectional 
surface, S , of an ion channel pore. In the current PNPic models (see [1–3,39] for examples), all the ions are supposed to be 
possible to enter the ion channel pore. Thus, for a mixture of n ionic species in Ds , I S is usually estimated in the expression

I S = −ecNA

103

n∑
i=1

ZiD f
i,e

∫ [
∂ci(s)

∂z
+ Zici(s)

∂u(s)

∂z

]
ds, (61)
S
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Fig. 9. A block B used in the formula (63) for electric current calculations.

where D f
i,e and Zi are the diffusion constant and charge number of Species i within the channel pore, respectively, I S is 

measured in picoampere (pA; 1 pA = 10−12 ampere), and the normal direction of S coincides with the z-axis direction from 
the outside of a cell to the insider of the cell.

In the PNPSIC model, Species 1 is the unique species transporting ions across the membrane. Thus, we modify the 
formula (61) as

I S = −ecNA

103
Z1D f

1

∫
S

[
∂c1(s)

∂z
+ Z1c1(s)

∂u(s)

∂z

]
ds.

To improve the numerical accuracy of computing electric current, following what is done in [1], we can approximate I S as 
an averaged current, Iave , using the volume integral

Iave = − Z1

hB

ecNA

103
D f

1

∫
B

[
∂c1(r)

∂z
+ Z1c1(r)

∂u(r)

∂z

]
dr, (62)

where B is one block of the selectivity filter and hB is the height of B in the z-axis direction. The above formula also avoids 
the difficulty of computing the related surface integral. To improve the numerical accuracy pf computing partial derivatives 
∂c1
∂z and ∂u

∂z , we use the first identity of (32) to reformulate the expression of Iave as

Iave = − Z1

hB

ecNA

103
D f

1

∫
B

e−Z1u ∂ c̄1(r)

∂z
dr, (63)

where c̄1 is the Slotboom variable defined in (31), since c̄1 is smoother than both c1 and u. We then calculate ∂ c̄1(r)
∂z using 

the numerical techniques developed in our previous work [3] to further improve the numerical accuracy of computing 
electric currents. We implemented such a current computing scheme in Python as a part of our PNPSIC software package. 
We then calculated electric currents for the potassium channel and compared them with the experimental data reported in 
[34].

In our current calculation tests, the z-axis direction was set from the intracellular solvent domain Ds,I to the extracellular 
solvent domain Ds,e , as illustrated in Fig. 1. The block B , as displayed in Fig. 9, was extracted from the selectivity filter mesh 
Ds, f ,h for 6 ≤ z ≤ 10. Table 4 lists the eight values of voltage V and the corresponding values of the experimental electric 
current Iexp, which we extracted from one I-V curve reported in [34, Figure 2B] using the WebPlotDigitizer web server [40]. 
Table 4 also lists the predicted electric currents Ipre1, Ipre2, and Ipre3 by the PNPSIC model, which we got, respectively, for 
the following three mixtures:

Mixture 1 100 mM KCl and 10 mM NaCl in Ds,I and 100 mM KCl in Ds,e for Ipre1.
Mixture 2 100 mM KCl and 50 mM NaCl in Ds,I and 100 mM KCl in Ds,e for Ipre2.
Mixture 3 100 mM KCl and 100 mM NaCl in Ds,I and 100 mM KCl in Ds,e for Ipre3.

In the above three mixtures, there are three ionic species (K+ , Na+ , and Cl−; i.e. nI = 3) in Ds,I and two ionic species (K+
and Cl−; i.e. ne = 2) in Ds,e . Here three different amounts of sodium ions are added to the intercellular solvent domain Ds,I , 
respectively.

In these tests, we set η = 3 and determined D f
1 through fitting the values of Iexp in the case of Mixture 1. These values of 

D f were listed in Table 4 and applied to the calculation of Ipre1, Ipre2, and Ipre3. With cubic spline interpolation techniques 
1
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Table 4
Experimental current data (Iexp) extracted from [34, Figure 2B], three predicted current data (Ipre1, Ipre2, and Ipre3) by our PNPSIC model with the current 
formula (63), and the values of D f

1 used in the calculation of Ipre1, Ipre2 , and Ipre3. Here V is the voltage defined in (13) with ue = 0 in millivolts (mV) 
and currents are in pA.
V -100 -75 -50 -30 0 30 50 75 100

Iexp -5.21 -4.10 -3.42 -2.60 0 2.99 4.76 6.28 6.76
Ipre1 -5.32 -4.03 -3.58 -2.63 0 2.81 4.78 6.32 6.80
Ipre2 -5.1 -3.85 -3.4 -2.49 0 2.69 4.47 5.75 5.68
Ipre3 -4.91 -3.69 -3.24 -2.36 0 2.57 4.20 5.24 4.69

D f
1 0.00686 0.00784 0.01176 0.01568 0.01078 0.02058 0.02254 0.02352 0.02744

Fig. 10. Three I-V curves predicted by our PNPSIC model and a comparison with the experimental data [34, Figure 2B]. Here the solid, dash, and dot-dash 
curves are generated from the current data listed in Table 4 as cubic spline interpolation current functions for three mixtures of 100 milimolar (mM) KCl 
with 10, 50, and 100 mM NaCl in the intracellular solvent domain Ds,I , respectively, while 100 mM KCl is set in the extracellular solvent domain Ds,e .

and the data of Table 4, we constructed three I-V curves and displayed them in Fig. 10, along with a comparison with the 
experimental data report in [34, Figure 2B].

Fig. 10 shows that the PNPSIC model is able to produce electric currents close to experimental data. It also shows that 
the two predicted I-V curves in the case of Mixtures 2 and 3 can well retain the pattern of the I-V curve fitted by the 
experimental data in the case of Mixture 1. Moreover, from Fig. 10 we can see that the predicted currents are reduced, 
monotonically and significantly, with the increase of sodium ions in the intracellular solvent domain Ds,I . These test results 
agree with one characteristic of potassium channels — intracellular sodium ions can severely block the outward potassium 
ion flux through the selectivity filter, causing the reduction of outward potassium currents [33,34]. These test results further 
validate the PNPSIC model.

9. Conclusions

We have constructed the Poisson-Nernst-Planck single ion channel (PNPSIC) model based on a partition of a solvent 
domain, Ds , into an intracellular domain, Ds,I , an extracellular domain, Ds,e , and a selectivity filter domain, Ds, f , produced 
naturally from the ion selectivity property of a single channel protein. In the PNPSIC model, a concentration of a single 
ionic species is defined in the solvent domain Ds while two sets of ionic concentrations are introduced to describe the 
ion distribution profiles within Ds,I and Ds,e , respectively. With this feature, the PNPSIC model can fully retain the ion 
selectivity property of a single channel protein. It also allows us to use different mixtures within Ds,I and Ds,e to mimic 
various biophysical experiments as is done in the electric current calculation in Section 8. In contrast, in current PNP ion 
channel models, all the ionic concentration functions are defined in the whole solvent domain Ds , causing that these current 
models do not work on any single channel and modifying them becomes very difficult.

However, our PNPSIC model is much more difficult to solve numerically than the current PNP ion channel models because 
it involves more unknown functions and more complex solvent domains. We have overcome these difficulties in this work 
through developing a new version of our current ion channel mesh generation package and an effective PNPSIC finite 
element solver. Moreover, we have implemented our PNPSIC finite element solver as a software package for a single ion 
channel protein with a three-dimensional X-ray crystallographic molecular structure and a mixture of multiple ionic species.

As one important application, we have introduced a new scheme for calculating an electric current flowing through the 
selectivity filter and validated our predicted I-V curves for a potassium channel by biophysical experimental data. Further-
more, numerical tests have been done for the potassium channel in a mixture of two different salts (sodium chloral and 
20



D. Xie and Z. Chao Journal of Computational Physics 481 (2023) 112043
potassium chloral), confirming the convergence and efficiency of our PNPSIC finite element solver and demonstrating the 
high performance of our PNPSIC software package.

It has been known that there are no water molecules in the selectivity filter of potassium [41]. Even so, we still follow 
the traditional PNP ion channel modeling approach to treat the filter region as a part of the solvent domain so that we can 
use a Poisson equation to fast calculate the electrostatic potential within the filter region. Although this simple treatment 
works in the calculation of electric current, as done in this work, it is attractive for us to substitute the Poisson equation 
(8d) with Coulomb, Lennard–Jones, or other potentials developed in molecular dynamics in line with the selectivity filter 
characteristic. Such a modification may significantly improve the quality of our PNPSIC model, especially in the calculation 
of an electrostatic potential within the filter region. We plan to do so in the future.
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