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Abstract 
 
 
In the last decade, online social networks have become an integral part of life. These networks 
play an important role in the dissemination of news, individual communication, disclosure of 
information, and business operations. Understanding the structure and implications of these 
networks is of great interest to both academia and industry. However, the unstructured nature of 
the graphs and the complexity of existing network analysis methods limit the effective analysis of 
these networks, particularly on a large scale. In this research, we propose a simple but effective 
node embedding method for the analysis of graphs with a focus on its application to online social 
networks. Our proposed method not only quantifies social graphs in a structured format, but also 
enables the user preference identification, community detection, and link prediction in online 
social networks. We demonstrate the effectiveness of our approach using a network of Twitter 
users. Results of this research provide valuable insights for marketing professionals seeking to 
target personalized content and advertising to individual users, as well as social network 
administrators seeking to improve their platform through recommender systems as well as 
detection of outliers and anomalies. 
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Introduction 

Online social network as an IT-based artifact has led to drastic changes in our way of living and 

has played a significant role in disseminating information during global events such as the 2016 

US presidential election and the 2020 coronavirus pandemic. These platforms have also greatly 

revolutionized online marketing. Targeted advertising, also known as “behavioral targeting,” is 

one area that has benefited the most from this new paradigm. Targeted advertising, which was 

pioneered by search engines such as Google, uses cookies and other tracking tools to derive 

individual interest from their browsing behavior and uses the derived information to choose 

appropriate ads to be displayed to users. Research has shown that targeted advertising can 

significantly increase both the click-through rate and the purchase intention of individuals (Yan et 

al. 2009, Goldfarb and Tucker 2011). It also provides a more relaxed environment for competition 

among advertisers by enabling them to target different segments of users. This ultimately leads 

to lower advertising costs for businesses compared to the traditional form of advertising (Chen 

and Stallaert 2014). The high granularity of information collected/shared on social media platforms 

makes this type of media even more attractive to marketers for targeted advertising. In many 

cases, what users share on social media platforms can reveal much more about them than they 

might realize. Consider a simple 140-character tweet posted on Twitter, the information that can 

be captured is well beyond those few characters. The new analytical tools make it possible to 

extract complicated patterns from the large volume of data that can reveal individual demographic 

information, living location, personality (Arnoux et. al 2017) and even their brand perception 

(Culotta et al. 2016). Such information can be utilized by marketers to pitch their products and 

services directly to users on social platforms. 

However, behavioral targeting is not without its challenges. Advertisers should allocate 

resources to control and improve the quality of targeting. The quality of targeting can be measured 
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using two metrics: accuracy and recognition (Gal-Or et al. 2006).1 Accuracy shows the percentage 

of individuals in the predicted target group that are actually in the target group, and recognition 

measures how well the predicted target group represents all individuals in the actual target group. 

It is not easy to find a balance between the two metrics. In order to achieve high accuracy, 

marketers need to limit their predicted target group to smaller samples in which they have more 

user information and are more confident about their behavior. However, with this approach, 

companies may lose a lot of potential customers as the available user level information are 

generally limited. On the other hand, achieving high recognition rate requires broadening the 

predicted target group and reach out to higher number of users. This approach may lead to 

targeting of the wrong audience, which wastes resources on the company as well as time 

for individuals. Targeting the wrong audience is generally expected to have an adverse effect on 

the company in the long run by challenging customer retention and customer relationship 

management (Rollins et al. 2014). In addition, it fosters the spread of negative word of mouth in 

social networks. Thus, the role of profiling methods in identification of user attributes can be crucial 

as it can improve the quality of predicted target groups. A good profiling method can improve both 

the accuracy and recognition metrics. 

By definition, a user’s online profile is “a summary of a user’s interests and preferences 

revealed through the user’s online activity” (Trusov et al. 2016). However, compiling and analyzing 

online activities, especially for platforms other than online social networks, are not simple tasks. 

For example, search engines need to continuously track user search and browsing behaviors and 

e-commerce websites need to use cookies and keep track of transactions, product views and 

individual shopping carts. These data collection approaches raise privacy concerns, as many 

people do not like to be continuously tracked (Aguirre et al. 2015) even though they perceive 

personalized ads useful (Bleier and Eisenbeiss 2015). Analysis of such large datasets is also 

 
1 Accuracy and recognition metrics in data analytics and computer science literature are equivalent to precision and 
recall respectively. 
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challenging. While a number of techniques have been proposed for efficient user profiling (Trusov 

et al. 2016), they still require considerable computational power for real-time data analysis. Other 

possible challenges include the lack of data accessibility for marketers, reliance on third party 

publishers for user analysis and targeting, and the provision of partial views to user attributes. In 

this study, we argue that many of the above-mentioned difficulties can be mitigated in the context 

of online social networks. In fact, we focus on the structure of social networks and argue that it 

contains information about individuals and groups that is not overtly apparent when examining 

the network. This information is useful for inferring user characteristics, making recommendations, 

and predicting new relationships within the social network.  

 The structure of social network is typically represented as a graph and may lack rich 

descriptions of individual users. Given the large number of users in a social network, matrix 

representations of the network result in extremely large and very sparse matrices, rendering most 

machine learning techniques ineffective. Reducing the size of the data set and eliminating some 

of the sparsity is necessary for effective application of machine learning techniques. Graph 

embedding, where a portion of the social network graph is transformed into a vector, offers 

promise in this context (Goyal and Ferrara 2018). Different forms of embedding are available, 

including node embedding, edge embedding, and whole graph embedding. The selection of the 

embedding option depends on the objectives of machine learning techniques. In this research, 

we are interested in inferring characteristics of users and making link prediction based on those 

inferences. Accordingly, we employ node embedding, wherein a node in the graph (a specific 

user) is converted to a vector representation that can be processed by machine learning 

algorithms. There are several techniques for node embedding. However, they tend to be static in 

nature, and need to be recomputed whenever the social network structure changes, i.e. users 

joining, leaving or altering their relationships in the social network and are ineffective in generating 

interpretable embedding factors.  

The goal of this study is to address this gap by introducing a new algorithmic approach to 
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extract user interests and preferences from the social network structure that is robust and can 

tolerate incremental changes in the network. Using the concept of homophily from social science, 

and a graph-based representation of the social network, we are able to extract actionable user 

preferences that can be used for targeted advertising. Our proposed algorithm is consistent with 

recent node-embedding research works (Perozzi et al. 2014, Grover and Leskovec 2016) and is 

aimed at transforming nodes, edges and graph features into a low-dimensional vector space that 

allows the application of traditional machine learning approaches to graph data. The main 

advantage of our work is that it is capable of extracting meaningful dimensions from the structure 

of online social networks in a manner that facilitates the application to preference-based 

recommendation systems. To demonstrate the effectiveness of our method, we empirically 

analyze a social network of more than 32,000 Twitter users. We then show that our proposed 

algorithm outperforms other node embedding approaches in providing friendship 

recommendations. We characterize this approach as Homophily-based User Embedding (HUE).   

The rest of the paper is organized as follows: The next section provides an overview of 

literature on node embedding approaches and highlights the limitation of existing methods. Next, 

we introduce our homophily-based user embedding approach, outlining different ways in which it 

can be applied to recommendation systems. Empirical application of the HUE approach is 

presented the following section. We then demonstrate the application of our user embedding 

method in link prediction task for a real dataset of users. A discussion of the findings, and an 

assessment of managerial and research implications round out the paper.   

 

Literature Review 

Extracting underlying meaning from a graph typically rely on dimensional reduction techniques.  

The main goal of dimensional reduction is to reduce the size of the data by eliminating noise and 

less concise information, thereby preserving the salient information in the network. Early forms of 
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dimensional reduction were manifest in techniques like multidimensional scaling, which typically 

sought to coalesce attributes to enable comparison among competing alternatives. A number of 

methods have been devised including IsoMap (Tenenbaum et al. 2000) Laplacian Eigenmap 

(Belkin and Niyogi 2002) and LLE (Roweis and Saul 2000). These techniques rely on features of 

the observations, e.g. geometric distance or k-nearest neighbors to produce relational graphs that 

can be mapped to lower dimensional spaces. These techniques often rely on eigenvector 

computing for dimension reduction. While these approaches are appropriate for structured data 

sets, social network are different, and need other techniques for reducing complexity. Matrix 

Factorization (Ahmed et al. 2013) and Non-Negative Matrix Factorization (Lee and Seung 2001) 

are another group of dimension reduction approach that can be applied to the adjacency matrix 

of the graphs. Non-negative matrix factorization has also been used in literature for the extraction 

of homophilic features in online social networks (Shi and Whinston 2013). However, matrix 

factorization approaches cannot preserve the global structure of the graphs as they only model 

the dyadic relation between nodes in the adjacency matrix. In addition, they are also susceptible 

to computational complexity issues, particularly for large graphs. With the emergence of deep 

learning models in recent years, new methods have arisen in the field of graph embedding, which 

are designed to retain graph features. We can classify these approaches into three areas: (1) 

node embedding, (2) edge embedding, (3) entire graph embedding. In this study our main focus 

is on the node embedding methods. See Cai et al. (2018) for comprehensive review of literature.  

The main objective of the node embedding is to embed graph nodes in a way that preserves 

the similarity of the nodes in the form of first-order and second-order proximities. First-order 

proximity captures the closeness between a pair of nodes, e.g. the existence of a direct link 

between nodes, or the strength of this relationship, if available. Second-order proximity seeks to 

capture similarity on the basis of common neighbors. Both measures rely on the structure of the 

network for their computation. Research has shown that higher order proximities have a positive 

impact in the computation of node embeddings (Cao et al. 2015). 
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Node embedding strategies can be divided into two categories based on their search 

strategies. DeepWalk (Perozzi et al. 2014) and Node2Vec (Grover and Leskovec 2016) are two 

prominent algorithms that use random walk techniques. When employing a random walk 

technique, the idea is to generate a number of node sequences that represent alternative paths 

between a pair of nodes. These sequences are generated using a random walker that traverses 

the graph from different starting points.  

DeepWalk (Perozzi et al. 2014) is one of the most popular algorithms in the field, and uses 

the hierarchical Softmax technique to estimate the embedding vectors from the random walk node 

sequences. The algorithm, however, does not provide control over the generation of random walk 

sequences. Node2Vec (Grover and Leskovec 2016) covers this deficiency and uses a 

generalized version of random walk that gives control over the generation of node sequences.2 

Additionally, it uses a more efficient approach called negative sampling to estimate the embedding 

vectors. 

Models without random walk apply deep learning techniques to the matrix representing the 

graph in order to maintain proximity among nodes (Niepert et al. 2016, Wang et al. 2016). There 

are several options available for deep learning application. LINE (Tang et al 2015) is one of most 

prominent algorithms in this collection. It specifies two conditional and empirical distribution 

functions for the context nodes and applies the KL-divergence difference between the two 

distributions to compute the loss function in the deep learning strategy. Separate loss functions 

are defined for first-order and second-order proximities.  

Despite the strengths of previous models, we argue that there are weaknesses that limit their 

application to online social networks. First, embedded features are latent and non-interpretable 

variables, meaning that while they can be used to determine a user’s structural similarity to other 

 
2 Node2Vec uses two hyperparameters p and q that controls how the graph is traversed by a random walker. A value 
of q>1 leads to Breadth-First Sampling (BFS) and a value of q<1 leads to Depth-First Sampling (DFS). Parameter p 
controls whether sampling occurs locally around the target node.   
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users or to community membership, they do not provide us with interpretable values such as 

preferences to analyze user behavior. Second, they suffer from a practical issue when it comes 

to accommodating new users joining the network. This requires re-computing the embeddings for 

the entire network and making the recommendation of new links unfeasible. In this study, we plan 

to address both these shortcomings using the concept of homophily in social science. 

The homophily concept suggests that individuals have a strong tendency to interact with 

people who have similar attributes instead of people with different attributes (McPherson et. al 

2001). Homophily has roots in variety of demographic and psychographic attributes (Gu et al. 

2014). Some of these attributes are fixed and immutable, e.g. race, while others may change over 

time, e.g. attitudes, and preferences (Li et al. 2013). There are several factors that shape the 

formation of homophilous relationships: (i) it increases the chance of being liked by others, (ii) it 

makes it easier for individuals to get confirmation from other similar individuals, (iii) the ongoing 

cost of maintaining relationships with similar others is lower than with dissimilar ones due to ease 

of developing trust and solidarity with them, and (iv) individual choices of relationship are 

frequently constrained by factors such as geographical locations, neighborhoods, working places, 

and schools. These constraints lead to homogenous choices of relationships by individuals in a 

social network (Kossinets and Watts 2009, Gu et al. 2014). As a result, the structure of a social 

network potentially contains a large number of latently embedded attributes of members of that 

network. Extracting these attributes can provide significant insight into the pattern of relationships 

in online social networks. However, correctly extracting these patterns can be challenging. 

 

Homophily-based User Embedding (HUE) 
 
We develop our node embedding approach using the concept of homophily in social science.  The 

guiding principle behind the HUE algorithm is to take advantage of the second-order proximity at 

the community level and to represent the members of the social network using their connectivity 
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pattern to smaller samples of selected members. To accomplish this, we introduce a new 

proximity measure called ego’s alter-network structural similarity, that is used to capture second-

order proximity.    

In the following section, we first explain the ego's alter-network structural similarity calculation 

and the reasoning behind it, and then present our algorithm.   

 

Ego’s alter-network structural similarity 
 
To understand the principle of structural similarity between ego’s alter-networks, we need to 

review the concepts of ego-network and ego’s alter-network in graph theory. For each vertex �� 
in graph �(�, �), where � is the list of vertices (nodes) and � is the list of edges (links), there is a 

subgraph �	
(��, ��) where �� = ��� ���� , ��� ≤ 1 , �� ∈ �}3 and �� = �(�� , ��)| ��, �� ∈
 �� , (�� , ��)  ∈ �}. This subgraph in graph theory is referred to as the ego-network of vertex ��. In 

essence, an ego network of a specific vertex is a subgraph that includes all nodes connected to 

this vertex, and any edges among them. Removal of an ego from its own ego-network forms 

another subgraph �	�� (���, ���) where ��� = ��� ����, ��� = 1 , �� ∈ �} and ��� = �(��, ��)|��, �� ∈
���, (�� , ��) ∈ � }. We call this new sub-graph ego’s alter-network. Figure 1 shows examples of 

ego-network and ego’s alter network in a randomly generated graph. 

  

 
3 d is a distance function between vertices in the graph 
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(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 1. Ego-networks and Ego’s Alter Networks 

 

Figure 1(b) shows an ego-network (��) where A is the ego and other vertices are alters. Removal 

of A from its ego-network keeps only the alters in the network and forms the ego’s alter-network 

(���) as illustrated in Figure 1(c). Figure 1(d) depicts the ego-network for B, and Figure 1(e) 

represents its ego alter-network. The similarity of two ego’s alter-networks ���, � �  show how 

structure of neighbors for two vertex A and B are similar. The following function allows the 

computation of such similarity (Johnson 1985): 

!"#����, � �� = �������, � ��� $ ������, � ����%
��������� $ ��������� .  ����� ��� $  ���� ���� 

 
where |�(� )| returns the number of vertices and |�(� )| returns the number of edges in graph � . 
������, � ��� and ������, � ��� are the number of common vertices and edges between ���  and � �  
respectively. This function considers both the numbers of common neighbors and their 

relationship in the computation of similarities. It has a range of 0 to 1. One of the main advantages 

of this similarity function over other second-order proximity functions is that it not only captures 
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similarity by using the number of common neighbors but also incorporates the connection pattern 

between neighbors. It is this property of the function that is crucial to preserving the community 

structure of vertices. For example, consider the following structural situations in Figure 2. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Ego’s Alter Network Structural Similarity 

 

In all the scenarios depicted in Figure 2, using the number of common neighbors as a second-

order proximity leads to the same value of similarity for vertices A and B. However, the above 

structural situations clearly show different community structures around A and B. In Figure 2(b), 

there is a central community that both A and B are well connected to. Therefore, it is expected 

that the similarity of vertices A and B will be higher for the scenario illustrated in Figure 2(b) in 

comparison with the one in Figure 2(a), as they share a common community. This feature can be 

captured using the ego’s alter-network structural similarity. In Figure 2(c), we see a shift in the 

community structure, where the vertex A forms the core of a large community, and B is peripheral 

to it. In this scenario, the ego’s alter-network structural similarity reduces the similarity of two 

vertices (compared to the graph in Figure 2(b)) as the vertex A is more representative of the 

community than the vertex B. 
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User Embedding Algorithm 
 
The proposed embedding algorithm in this study comprises five steps: (1) selection of core 

vertices, (2) formation of the extended bipartite graph, (3) network simplification, (4) core 

clustering, and (5) measurement of the embedding features. We describe each step in detail. 

Step1. Selection of Core Vertices. As part of the development of our homophily-based 

embedding algorithm, we assume that the entire graph can be represented by ' vertices. ' is a 

hyperparameter that needs to be set, but generally speaking, increasing the value of ' to a certain 

threshold tends to improve the overall performance of the algorithm. The threshold is a function 

of the size of the graph. It should be borne in mind that increasing ' entails higher computational 

costs for the algorithm. From now on, we refer to these ' representative vertices as the core 

vertices. The selection of the core vertices can be performed randomly or based on a specific 

criterion such as degree centrality of the vertices. Having a specific criterion in the selection of 

core nodes helps the creation of meaningful embedding features. Figure 3 shows a number of 

randomly selected core vertices in a graph. 

 

Figure 3. Randomly Selected Core Vertices 

 
 
Step2. Formation of the Extended Bipartite Graph. The next step is to extract the core vertices 

from the graph and form an extended bipartite graph. An extended bipartite graph is a type of 

network that consists of two separate graphs: (i) the original graph without the core vertices, and 
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(ii) a bipartite network of the core vertices and the other set of vertices in the graph. Figure 4 

shows a schematic view of an extended bipartite graph generated from a graph. 

 

Figure 4. Extended Bipartite Graph 

 

In this step, the creation of the extended bipartite graph facilitates the extraction of the ego’s alter 

networks and the computation of the similarity between those networks through matrix operations. 

Step 3. Network Simplification. Our main purpose in selecting the core nodes was to select a 

set of vertices that represent different parts of a graph. In doing so, we convert the extended 

bipartite graph to a weighted graph of the core nodes, where the weights represent the similarity 

of the alter network of the cores. Figure 5 depicts the process of converting an extended bipartite 

graph to a simplified weighted graph. 

 

Figure 5. Network Simplification 
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Step 4. Core Clustering. The next step is to agglomerate core vertices through the use of 

clustering methods. The idea behind this clustering step is to cluster the core vertices that 

represent the same part of the graph. In this study, we use a modified version of the Louvain 

algorithm (Blondel et al. 2008) for network clustering. Louvain originally developed the algorithm 

to detect clusters within graphs by seeking to optimize the modularity in a graph. It uses a greedy 

approach that iteratively optimizes the value of modularity by assigning nodes to different clusters. 

Modularity (Newman and Girvan 2004) is a measure of how the structure of multiple clusters in a 

network is different from a random graph. While this property is statistically appealing, empirical 

studies show that modularity-based algorithms suffer from resolution convergence and cannot 

easily identify small clusters within large graphs (Fortunato and Barthelemy 2007, Aldecoa and 

Marín 2013, Traag et al. 2013). An alternative measure of cluster quality termed “surprise” has 

been proposed to counter the limitations of modularity in graph clustering (Aldecoa and Marín 

2011). Surprise assumes a null model in which edges emerge between nodes randomly. It then 

measures the deviance of the observed partition from the expected distribution of nodes and links 

into clusters given that null model (Aldecoa and Marín 2011). Using this approach, an optimal set 

of clusters can be detected in a binary (non-weighted) network by maximization of the following 

objective function: 

! =  −)*+ , - �.� ��/0.10� ��/1�
234 (.,1)

�56 7 

 

where 8 is the maximum possible number of edges between nodes, ' is the observed number of 

edges, 9 is the maximum possible number of intra-cluster edges in a given cluster, and p is the 

total number of observed intra-cluster edges in that cluster. However, optimization of this objective 

function is challenging in large networks. Using an asymptotic approximation of ! can facilitate 

the optimization procedure by assuming that as the graph grows, the relative number of intra-
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cluster edges (: = 61) and relative number of expected intra-cluster edges (; = ./ ) remains fixed 

(Traag et al. 2015). This approximation can be presented in the following manner: 

!^ ≈ '>(:||;) 

where D is the Kullback-Leibler divergence loss function (Kullback and Leibler 1951) that 

measures the distance between two probability distribution. It can be computed as follows: 

>(:||;) = : × )' @:;A $ (1 − :) × )' B1 − :1 − ;C 

For weighted graphs we can simply change q to 
6D1D, where pw represents the total weights of intra-

cluster edges and nw is total weights of edges in the graph. There is no change to r in weighted 

graphs. It was shown that this asymptotic approximation of surprise can successfully capture 

clusters within large graphs (Traag et al. 2015).  

In our method, we use the Louvain greedy approach (Blondel et al. 2008) to optimize the 

weighted version of asymptotical surprise function for the purpose of network clustering. Applying 

the algorithm to the graph in Figure5 forms two clusters (C1 = {A, B}, C2 = {C, D}).  

Step 5. Measurement of the Embedding Features. The dimension of the embedding matrix is 

determined by the number of clusters identified in the previous step. In fact, vertices in the graph 

can be represented by their normalized weighted value of their level of connectivity to core 

vertices in each of the above clusters. The weights are assigned at the core level and for a given 

core vertex E ∈ F� the weight is computed as follows:  

GH"+ℎJ� = ∑ L�M(NO� ,NP� )∀P∈R
∑ L�M(NO� ,NS� )∀S    

 

The weights are then normalized at the cluster level such that ∑ ||GH"+ℎJ�||�∈T
 = 1. The 

weighting procedure assigns a greater weight to core vertices that are positioned in the center of 

their cluster and are more representative of the group of vertices in the cluster. Figure 6 shows 

an example of this computation for the graph that was initially presented in Figure 5. While the 
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example in Figure 6 shows the computation only for non-core members, this computation can 

also be used to capture the level of connectivity of cores to different clusters.   

also be used to capture the level of connectivity of cores to different clusters.   

  

Figure 6. Node Embedding 

 

The pseudocode for the HUE algorithm appears in Appendix A.  

Analysis of HUE Properties Using a Random Generated Graph  
 
Before we illustrate the application of the proposed algorithm in online social networks, we first 

demonstrate the properties of the proposed algorithm in a randomly generated graph. The 

generated graph contains 1,500 vertices in 7 clusters, where the probability of the formation of 

inter-cluster links is 0.4 and the intra-cluster is 0.1. Figure 7(a) shows this randomly generated 

graph. 

 
(a) 

 
(b) 

Figure 7. Random Generated Graph Clustering 
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To capture the node embedding features of the graph, we randomly selected 225 core vertices 

(15% of whole data) and applied the HUE algorithm. Figure 5(b) shows the result of core clustering 

step for our experiment. It is clear that core vertices well represent the different parts of the graph. 

Next, we used the identified core vertices to measure the node embedding metrics for all the 

vertices in the graph. In order to see how embedding features are representative, we applied 

TSNE dimension reduction approach and projected the embedding features to two dimensions. 

Figure 8 visualizes the projection result. 

 

Figure 8. TSNE Dimension Reduction for Randomly Generated Graph 

 

Figure 8 shows that the embedding features preserve the seven-cluster structure of the original 

graph. Then we applied K-means to the embedding features, and this resulted in seven clusters. 

Figure 9 shows the outcome of the clustering task with K-means.   

  

Figure 9. K-means Clustering in Randomly Generated Graph 
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This clearly shows that a small number of core vertices allows quantification of the entire graph, 

in a rather effective manner. What makes our algorithm appealing for the analysis of larger social 

networks is that we can use a small fraction of the vertices in the graph to compute the similarity 

between core vertices. The calculation of the embeddings can then be performed for all nodes on 

the basis of their pattern of connectivity to the core vertices. Our analysis shows that using as few 

as 30% of the vertices in the graph we can achieve reasonably good core clustering. The same 

idea applies to the addition of new nodes to the graph. As long as the addition of new nodes does 

not change the overall structure of the graph, it is possible to use the identified core vertices for 

the calculation of the embedding features of new nodes without any additional requirement for 

the re-estimation of core clusters. 

 

User-Embedding in Online Social Networks 
 
The proposed node-embedding approach provides an effective mechanism to analyze graphs 

representing users in online social networks. In this study, we show that the node-embedding 

algorithm can be used not only to embed user preferences, but also for link prediction. The key 

factor is to select the core vertices based on specific criterion, rather than relying on random 

selection. According to selective exposure theory (Sears and Freedman 1967, Zillmann and 

Bryant 1985, Zillmann 1988, Huang et al. 2013), people have a tendency to expose themselves 

to those mass communication channels which reinforce their own views and are in agreement 

with their own preferences and thinking. Therefore, it is expected that in interaction in an online 

social network, individuals will follow the social pages4 that promote their own views and are 

consistent with their preferences. Additionally, social pages in online social networks have high 

 
4 A social page refers to an online social network account related to an organization, brand, celebrity, program, news 

agency or other popular entity that attracts an individual interest. 
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level of in-degree centrality making them good choices for core vertices. Prior research in IS field 

has considered users with high level of in-degree centrality as thought leaders in social networks 

(Faraj et al. 2015). Relying on these assumptions, social pages in online social networks can 

effectively represent groups of users in the social graph who share similar preferences.  

 

Empirical Application 

In order to demonstrate the utility of HUE method, we apply it to a real-world dataset of users in 

Twitter. Twitter is a popular social media platform for targeted advertising. The unique structure 

of Twitter allows for identification of new trends and allows targeting of individuals in real-time. 

However, the real power of this analysis comes from linking and embedding other social network 

data, e.g. Foursquare or Instagram data, into Twitter content. This provides a set of linked data 

on different dimensions that affords greater insight into the character of the users.  We show that 

the extracted embedding factors from the network structure of Twitter users can represent 

individual preferences toward a specific topic of interest that can also represent their check-in 

behavior. Inferences of this information about users can facilitate the creation of customized 

messaging and advertising to these individuals, allowing marketers to generate more precise 

targeted campaigns, thereby reducing costs associated with wasted promotion effort.  It can also 

be incorporated into recommender systems directly for a friend recommendation (as shown later 

in the HUE Link Prediction application) or indirectly by computing the similarity between users 

over their embedding features and using them in user-to-user collaborative filtering. 

 

User Population and Data Set 

To conduct the empirical application, we use a dataset of more than 32,000 individuals across 

the U.S. who shared their location-based Foursquare check-ins within the Twitter platform. The 

dataset spans a six-month period in early 2014 and contains a social network of users, along with 

the pattern of social pages they followed in Twitter (for this study we only considered the top 
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10,000 social pages and used them as core vertices).  Details of the attributes included in the 

dataset appear in Table 1. The sparsity measures the extent of interconnectedness among users 

relative to a fully connected network. At 0.038%, it indicates that users are reciprocally connected 

to relatively few other users, with an average of 6 connections apiece.  A similar measure of 

sparsity between users and social pages is derived, and this is more densely connected at 3.18% 

(an average of 159 social pages followed). While metrics based on the average number of links 

are easy to grasp, sparsity metrics are size independent and provide a more meaningful basis for 

comparison.  

 

Table 1. Data Set Characteristics 

Number of users 32,722 

Number of directed links 283,893 

Number of reciprocated links 201,796 

Sparsity among users 0.038% 

Average number of links to other users 6.17 

Number of social pages 10,000 

Number of links to social pages 5,208,414 

Sparsity with social pages 3.18% 

Average number of links to social pages 159.17 

 

Identification of Core Clusters 
 
As discussed earlier, we considered the social pages to be the core vertices of the social graph 

that represent different parts of the graph and show individual preferences toward certain topics. 

As a result, the extended bipartite graph in HUE consists of two parts: (1) a social network of 

users with established links between users5, and (2) a bipartite network with one-way links from 

the social network users to social pages. HUE clusters social pages based on the similarity of 

their alter networks.6 In this context, a cluster of similar social pages (core vertices) forms a 

community of interest. HUE assigns weight to each social page to show how well a specific 

 
5 In this research we used reciprocated relationships between users to form the social network portion of the graph. Reciprocated 

relationship is formed between two users when both users follow each other in the network. That is an indication of strong 

relationship between the two users. 
6 The clustering method used in HUE is a greedy agglomerative approach that can produce a slightly different result in each run. 

Accordingly, we ran the algorithm for 500 times to select the one with best quality.  
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community of interest can be represented by that social page. 

To assign meaningful labels to identified communities of interest, we used all tweets from 

social pages gathered over the six-month period and extracted representative words that are 

commonly used by social pages within the same community of interest.7 We also manually 

checked the description of social pages to obtain additional insights about the communities of 

interest. Coupling the above set of information, we come up with a label for each of the 

communities. Figure 10 shows word-clouds of representative words for a sample of communities. 

   
(a) Beer Community of Interest  (b) Fashion Community of Interest 

  
(c) Food Community of Interest (d) Electronic Games Community of Interest 

Figure 10. Word-Cloud of Representative Words for Sample Communities 

 

A detailed analysis of communities shows that while some communities represent general 

preferences of individuals like music or fashion, others have a much narrower focus like a TV 

show or a brand. Appendix C shows the list of prominent communities of interest that were 

identified along with some sample of social pages within those communities.  

We then visualize the position of social pages (core vertices) in the social graph by structurally 

 
7 Appendix B describes the process of selecting representative words. 
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positioned them where they have a larger number of followers. We used the ForceAtlas2 layout 

(Jacomy et al. 2014) in Python to accomplish this task. ForceAtlas2 is a force directed layout 

where nodes repulse each other, and edges attract the nodes they are connected to toward each 

other (Jacomy et al. 2014). Figure 11 visualizes the distribution of social pages as a result of this 

process. Gray nodes depict individuals in this figure, and colored nodes indicate social pages in 

different communities of interest. Given the large number of social pages in this study, 

visualization of all data simultaneously proves challenging, and we have selectively depicted 

some communities. Visualization of a single community provides little information other than the 

followers of a particular set of pages in that community. On the other hand, visualization of related 

and complementary communities of interest provides far greater insight. Individuals who are 

structurally positioned close to social pages belonging to a community of interest have a greater 

affinity toward that community of interest. In addition, social pages that appear on the periphery 

of the graph reflect a niche preference among a group of individuals on the social network. 

Reading across the figures affords a clearer interpretation of individual preferences amid 

communities of interest. For example, it can be seen that individuals with a strong interest in 

fashion are less likely to have strong beer preferences and vice versa.   

 
 

  

Figure 11. Distribution of Social Pages (Core Vertices) 
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Next, we measured the embedding features associated with each of the communities of interest.  

To accomplish this, we computed the weighted attribute of each social page and then computed 

the embedding matrix. The embedding features provide meaningful values reflecting the relative 

interest of individuals towards different subjects of interest. Figure 12 shows the distribution of 

individual preferences to fashion, beer, and the two dominant political parties in the United States. 

The intensity of the colors shows the magnitude of individuals with a clear preference for that 

community. Two levels of insight can be gleaned from these figures. The obvious implication is 

that specific individuals have an affinity for a particular community. Marketers can utilize this to 

directly target individuals. A second level of inference relates to affinity among communities.  

Thus, for example, it can be deduced that there is little overlap of individuals between the beer 

community and the fashion community.  But there is considerably more overlap between the beer 

community and a political party. This overlap or complementary nature can be exploited by 

marketers who can either cross-sell or target individuals based on their participation in a different 

but related community. Keep in mind that the individuals in these graphs were from the sample 

data set. New individuals need to be embedded in the graph, based on their interactions and 

following of social pages. 

  

(a) Distribution of Fashion Preference (b) Distribution of Beer Preference 
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(c) Distribution of Democratic Party Preference (d) Distribution of Republican Party Preference 

Figure 12. Examples of User-EmeddingFeature Disttribution in Online Social Network 

 

Explanatory Power of Identified Preferences 

To check the validity of the preferences identified through HUE, we used the preferences as 

explanatory variables for the individual's check-in behavior. Accordingly, we considered the top 

ten venue categories where users had the highest number of check-ins and then computed the 

total number of check-ins per venue category per user over the six-month data collection period. 

Next, to estimate our models, we used negative binomial regressions. Results are shown in Table 

2. Since the number of preferences is a large number, we simply report the coefficients of the top 

5 preferences with the highest absolute values for each check-in category. Since all preferences 

are normalized using the same scale, the absolute value of each coefficient can be interpreted as 

the importance of a specific preference in the explanation of the behavior. 
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Table 2. Preferences and Location Check0in Behavior 

Preference 
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Alternative Rock - - - - - - - 2.018 - 

Apple Tech -1.154 - - - - -1.424 - - - 

Art & Design - - - - - -1.252 - - - 

Beer 1.209 - - - - - - - - 

Business & Tech - 2.980 - - -3.341 1.768 -1.478 - - 

Crossfit - - - 1.961 - - - - - 

Coffee - - 2.423 - - - - - - 

Comedy - - - - - - - - -4.201 

Computer 
Programming 

- - - - -1.780 - - - - 

Exercise & 
Health 

- - - 4.960 - - -.928 - - 

Fashion - - - - - - -0.809 - - 

Fast-Food -1.821 -2.550 - -2.005 4.445 - 3.808 - 3.510 

Hockey - - - - - - - 2.217 - 

Humor - - - - -2.144 - - - - 

Las Vegas - - - - - 2.223 - - - 

Liquor 1.208 - - - - - - - - 

LGBT - - - - 2.036 - - - - 

Los Angeles - - 1.052 - - - - - - 

Music Media - - - - - - - 1.924 - 

New York - - - - - - - 2.367 - 

Radio Music - - - - - - .872 - - 

Religion -1.764 - .987 - - - - - 7.874 

Rock Bands - - - -2.660 - - - 2.457 - 

Running - - - 1.990 - - - - - 

San Antonio - - -.916 - - - - - - 

San Francisco - - .994 - - - - - - 

Social Media & 
E-commerce 

- 1.767 - - - - - - - 

Spiritual Content - - - - - - - - 3.505 

Travel - 5.064 - - - 3.169 - - - 

Video Games - - - - - - - - -3.713 

WWE - -1.484 - - - - - - - 

Intercept  .737 1.582 1.530 .723 .607 1.546 .273 .051 

Notes: 
1. All the reported coefficients are significant at .001 level 
2. We use all the preferences as independent variables, but only report top 5 with highest absolute 
coefficient values 

The results reveal some expected relationships, e.g. a negative relationship between preference 

for fast-food and the frequency of visiting gyms. However, some other relationships are 

fascinating, and clearly novel, e.g. a positive relationship between preference for fast-food and 

the frequency of visiting churches. Appealing though these relationships are, their exploration 
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remains outside the scope of this paper, as we focus on the ability to link user preferences and 

user behavior. 

 

Application of HUE in Link Prediction 

One of the main applications of node embedding is link prediction (Grover and Leskovec 2016). 

Link prediction can have utility in a number of different purposes. It can be applied to determine 

new links that will emerge over time – typically as a result of maturation within the social network. 

It can also be used to predict how new additions to the network will interact with the existing 

members of social network. A third area of utility is the completion of missing parts of the network. 

Research has shown that predicting potential social relationships provides opportunities and 

benefits for decision makers in different fields including marketing (Cheng et al. 2015), healthcare 

(Almansoori et al. 2012, Dhouioui et al. 2016), and friendship recommender systems (Xie 2010, 

Aiello et al. 2012). Link prediction approaches generally fall into two categories: (i) similarity-

based, and (ii) learning-based approaches (Wang et al. 2015). In the former, a similarity measure 

is used to assign scores to every potential pair of nodes in the network. Then a ranking system is 

applied to rank assigned scores in a decreasing order. A higher similarity score for a pair of nodes 

indicates a higher likelihood of that pair being linked. There are several measures of similarity that 

have been used for node pairs in social networks (see Wang et al. (2015) for a list of similarity-

based measures). A learning-based approach, on the other hand, treats link prediction as a binary 

classification problem, and various supervised learning algorithms can be trained using node 

features in established social networks. These algorithms can then be used to predict new links 

in social networks. In this study, we conduct a learning-based link prediction and use a deep 

learning model to illustrate the predictive power of embedding features. 

Deep Learning Model for Link Prediction 

In order to perform link prediction, we considered two-way relationships among users to form 
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undirected social graph of users and randomly removed 30% of links from the social graph while 

ensuring that the residual network obtained after the edge removals is connected.8 We used the 

remaining links as positive samples to train the deep learning models. We divided the removed 

links into two equal sets (each comprising 15% of edges), to be used as holdouts and test sets. 

In nearly all social networks, the number of links is a small fraction of all possible links, since users 

interact with a small number of other users. Our dataset was no exception. Accordingly, for each 

established link in train, holdouts, and test sets, we randomly selected ten unestablished links 

and use them as negative samples in our work. This approach limits the ratio of established links 

to unestablished links to be no worse than 1:10. 

In order to generate node embedding features, we applied our algorithm and three other 

prominent node-embedding models, namely DeepWalk (Perozzi et al. 2014), Node2Vec (Grover 

and Leskovec 2016), and LINE (Tang et al. 2015) to the training social graph.9 We considered 

the 256 features extracted from communities of interest with the highest number of core vertices. 

We also set the number of dimensions in other algorithms to be equal to 256. Since the 

performance of algorithms will vary based on the hyperparameters selected, we used different 

sets of hyperparameters and compared their performance. Table 3 lists the used 

hyperparameters for each of the algorithms.  

  

 
8 While our algorithm can still perform the node embedding task on disconnected networks, the reason for keeping the 
residual network connected is to be able to calculate the node embedding features of the nodes using other algorithms 
and compare the predictivity power of them.  
9 We also used other algorithms such as SDNE (Wang et al. 2016) and Struct2Vec (Ribeiro et al. 2017), however the 
performance of those algorithms was not on the same level as other algorithms.   
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Table 3. Algorithm Specifications 

Label Algorithm Settings Description 

DeepWalk DeepWalk Dimensions:256, 
Window_size:8, 
Num_walks:20, 
Walk_length:40 

Use hierarchical softmax for 
estimation. 

Node2Vec_V1 Node2Vec Dimensions:256, 
Walk_length:40, 
Num_walks:20, 
Window_size:8, 
p: 1, q: 1  

Performs random walk similar to 
DeepWalk. Use negative 
sampling for estimation.  

Node2Vec_V2 Node2Vec Dimensions:256, 
Walk_length:40, 
Num_walks:20, 
Window_size:8, 
p: 2, q: .5 

Random walk approximate BFS 
walk. It encourages moderate 
exploration and avoids 2-hop 
redundancy in sampling. 

Node2Vec_V3 Node2Vec Dimensions:256, 
Walk_length:40, 
Num_walks:20, 
Window_size:8, 
p: 4, q: 2 

Random walk approximate DFS 
walk. It encourages moderate 
exploration and avoids 2-hop 
redundancy in sampling. 

Node2Vec_V4 Node2Vec Dimensions:256, 
Walk_length:40, 
Num_walks:20, 
Window_size:8, 
p: .25, q: .5 

Random walk approximate BFS 
walk. It encourages local 
exploration around starting node. 

Node2Vec_V5 Node2Vec Dimensions:256, 
Walk_length:40, 
Num_walks:20, 
Window_size:8, 
p: .25, q: 2 

Random walk approximate DFS 
walk. It encourages local 
exploration around starting node. 

LINE_v1 LINE Dimensions:256,  
Proximity-order: second-order 
proximity 

Use only second order proximity 
to estimate embedding factors 

LINE_v2 LINE Dimensions:256,  
Proximity-order: first- and 
second-order proximities 

Generate 128 embedding factors 
using first-order proximity and 
128 embedding factors using 
second-order proximity  

HUE HUE Dimensions: 256, 
Num_core_vertices: 10000   

Use top 256 communities of 
interest with highest number of 
cores to compute embedding 
factors  

 
For link prediction, we need to work at the edge level rather than at the node level. We follow 

Grover and Leskovec (Grover and Leskovec 2016) and use multiple binary operators to combine 

feature vectors U(V) and U(�) of two given nodes V and � to generate a feature vector +(V, �) that 

represents a potential link HW	 between a pair of nodes. Table 4 represents the list of binary 

operators that we employed. 
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Table 4. List of Binary Operators 

Operator Symbol Definition 

Average ⊞ [U(V) ⊞  U(�)]� =  U�(V) $ U�(�) 2  

Hadamard ⊡ [U(V) ⊡  U(�)]� = U�(V) ∗ U�(�) 

Weighted-L1 || . || _̂ || U(V) . U(�) || _̂� = | U�(V) − U�(�) | 
Weighted-L2 || . || %_ || U(V) . U(�) || %� = | U�(V) − U�(�) |% 

The binary operators generated the same 256 features at the edge level. We used the generated 

features of each operator as one set of predictors and ran a separate set of learning models for 

that set of predictors. In addition, to exploit the capability of multiple operators, we employed a 

combination of a pair of operators simultaneously.  Since there is no a-priori basis for the selection 

of this pair, we used all combinations of the four operators, for an additional six model 

comparisons. To develop our learning models, we rely on a five-layer, fully connected neural 

network (1 input, 3 hidden, and 1 output layer), with 128, 64, and 32 neurons, respectively, in the 

first, second, and third hidden layers. We used the Swish activation function (Ramachandran et 

al. 2017) for all hidden layers and the Sigmoid activation function for the output layer.10 To avoid 

over-fitting, we used drop-out in all hidden layers. Additionally, we applied batch normalization to 

increase the learning speed and reduce the impact of internal covariate shift. We used the Xavier 

method (Glorot and Bengio 2010) for initialization of the weights and then the Adam optimizer 

with exponential decay learning rate for the estimation of weights in all models.  

The base loss function for binary outcome variables is binary cross-entropy, specified as  

)� =  `� . log (`�̂ ) $ (1 − `�). log (1 − `�̂ ) 

where `� ∈ {0, 1} shows the ground truth value, and `�̂  is the output of the sigmoid function. In 

link prediction, we are mainly interested in users who are inclined to be connected with other 

users. In our dataset, even after controlling for the ratio of linked users to unlinked ones, the 

 
10 We also tried Relu and Leaky Relu as an activation function for a few samples of models in their hidden layers. In all cases, 

the models with the Swish activation function outperformed the other models. 
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dataset still remained imbalanced (1:10). Prior studies suggested two approaches to tackle 

imbalanced datasets: (i) assign weights to classes (Ling and Sheng 2011, Mirza et al. 2013), and 

(ii) use a focal loss function (Lin et al. 2017).  

In the first approach, the weighted binary cross-entropy loss function is given by:   

)� = Ĝ . `� . log (`�̂ ) $  G%. (1 − `�). log (1 − `�̂ ) 

where Ĝ and G% refer to assigned weights to each of the classes. Adopting this strategy can be 

counterproductive.  In some cases, important minority samples may be assigned higher weights 

in the loss function and eventually increase the misclassification cost for the model. 

The second approach was offered recently by Lin et al. (Lin et al. 2017) as an alternative to 

offset this concern. The focal loss function is a reshaped version of binary cross-entropy loss. It 

assigns less importance to the loss of easy examples11 in the training set thereby mitigating the 

effect of imbalanced classes. In this case, the loss function is given by:   

)� = d. `� . (1 − `�̂ )e. log (`�̂ ) $ (1 − d). (1 − `�). (`�̂ )f. log (1 − `�̂ ) 

where d ∈ [0,1] , and can be specified using multiple strategies. One option is to use the inverse 

class frequency. One can also treat d as a hyperparameter and set it using cross validation. h 

represents a tunable hyperparameter that helps decrease the impact of easy examples. Research 

shows h = 2 is a good choice for this hyperparameter (Lin et al. 2017). In this study, we used both 

weighted cross entropy and focal loss functions to train our learning models and compared the 

results.  

We trained our models using the training set, reserving the holdout set for model selection. In 

doing so, we trained each of our models continuously. After each epoch12, we evaluated the 

performance of the model using the holdout samples to select the model with the lowest 

associated cost. We used an early stopping strategy in the model selection process and stopped 

 
11 Easy examples are those training samples that can be easily classified by the classifier. 
12 One epoch refers to one forward pass and one backward pass of all the training examples through the neural network. 
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the training process when the cost associated with the holdout set did not improve over 20 

continuous epochs. Figure 13 shows an example of the model selection process.  

 

Figure 13. Example of Model Selection Process 

 

We trained the neural network for different features by applying operators to each node 

embedding algorithm with two different cost functions (weighted and focal cross-entropy) for five 

times. This approach generated a total of 900 different models. Figure 14 shows the cost 

associated with the holdout set in different models. In the graph, the solid line indicates the 

average cost across the 5 runs, and the shaded areas around this provide a sense of the range 

of costs experienced for each configuration of the neural network. Though not immediately 

apparent on the graphs, the weighted cost was significantly higher, as noted by the values on the 

respective y-axes. This difference is due to the presence of additional polynomial factors in the 

focal loss function. Progression on the x-axes does not provide any semantic content as these 

are simply different operators. 
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Figure 14. Model Costs 

 

The result shows that the embedding features identified by our proposed algorithm result in lowest 

costs across all operators and have performed best when using both the WeightedL1 and 

Hadamard feature sets.  

After the selection of models, we checked their performance using the test data sets. We 

evaluated the performance of models using Precision, Recall, F1 and AUC measures. Precision 

is a ratio of the number of actual connected links from the set of those predicted to be connected 

and is a measure of the positive predictive value of the predictor (or rule). Recall, on the other 

hand, examined all connected individuals, and determines the fraction of those that were correctly 

predicted as being connected by the model, and is an indicator of the true positive rate associated 

with the predictor or rule. The f-measure F1 is a harmonic mean of precision and recall.13 Finally, 

AUC shows how well the model can distinguish between linked and unlinked group of users. AUC 

is a more involved measure that represents the area under the curve of the Receiver Operating 

 
13 Precision, Recall, and F1 measures are all computed at the threshold value of .5.  
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Characteristics curve that relates the true positive rate and the false positive rate. It ranges 

between zero and one, with a score of 0 representing complete misclassification, 0.5 represents 

no ability to classify correctly, and 1 indicating perfect classification. The AUC metric is shown in 

Figure 15 for both the weighted binary cross-entropy and the focal cross-entropy cost functions. 

Results for the remaining metrics are available in Appendix D.14 Once again the solid lines 

represent the means scores, and the bands represent the ranges for the 5 runs for each of the 

algorithms. 

Weighted Binary Cross-Entropy Cost 

 
Focal Cross-Entropy Cost 

 
14 We did not report accuracy, as accuracy provides biased measure of performance for imbalanced datasets. 
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Figure 15. AUC Metric for Weighted and Focal Cross Entropy 

 

The results show similar patterns for both weighted and focal cross-entropy. Since algorithm 

performance varies in different metrics, the AUC metric could be the best comparison metric for 

comparing the overall performance of algorithms in link prediction. The AUC is perceived to be a 

more robust measure of prediction in the presence of imbalance (Hanley and McNeil 1982). Its 

value can be interpreted as the probability that a randomly selected missing link between users 

has a higher score than a randomly selected non-existent link. The results for the AUC metric 

show that our proposed algorithm outperformed other algorithms when we used variables from 

Hadamard operator, and combination of two operators (except from WeightedL1 & WeightedL2). 

The AUC value for the case that we use both the Hadamard and WeightedL1 variables is the 

highest AUC of all possible cases with a value close to .95 indicating strong predictive power of 

our algorithm for link prediction. For the Average Operator, our algorithm is in second position 

with a slight difference from the Node2Vec embeddings. Deep Walk has outperformed our 

algorithm for Weighted-L1 and Weighted-L2 and combination of these operators. LINE_V2 has 

also outperformed our algorithm for Weighted-L2 operator.  

The precision score is one of the metrics that our algorithm has relatively lower performance 

on it. However, considering the precision score on its own does not provide a good picture of the 
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predictive power of algorithms. Since the main objective of link prediction is to identify connected 

users, it is important to increase the recall value while maintaining a reasonable precision score. 

In our predictions, the precision value fluctuates between 0.3 and 0.8, reaching its highest point 

at around 0.8 when we use both Average and WeightedL1 operators together in weighted binary 

cross-entropy cost models. 

 

Discussion  

Online social networks differ from traditional consumer networks in a variety of ways. At the outset, 

most of them have zero cost to join. As a result, they tend to be much larger, often spanning 

millions of members, to billions in some cases. Zero cost also encourages increased participation 

within the network and greater content creation. The sheer volume of data generated and 

managed within an online social network is truly staggering, indicating a large active user 

population. Another key difference in online social networks is the speed at which information 

flows through the network. Many users constantly check their pages, and are often configured to 

receive push notifications, and tend to respond and forward messages quickly. This velocity can 

be exploited by marketers to reach targeted users in a cascading manner rather than issuing a 

blast to a motley set of customers. Reaching these users is a different proposition altogether. 

While some information about users can be gleaned from the user’s public profile, the true 

essence of the user is buried in the user content and activity, which is typically not available 

outside the platform. Marketers must rely on platform administrators to select the users that a 

marketer is trying to reach, with no guarantee about the appropriateness of the selection, or the 

effectiveness of the message. Mechanisms that allow marketers to identify appropriate users from 

publicly available profiles provide the marketer with an alternative approach to reaching 

customers. However, the profile information may be scant, leading to simplistic identification 

techniques. There is considerably more information that can be gleaned from the social network 
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structure when coupled with the user profile information. However, the sheer size of most social 

networks precludes effective analysis, and a judicious portion of the relevant network needs to be 

extracted for meaningful analysis. In this study, we argued that the right embedding of the 

structure of online social networks could provide this opportunity and benefit different 

stakeholders. 

Platform managers can use this knowledge to make the platform more efficient, effective, and 

responsive for individual users by integrating the embedded features in their recommender 

systems.  In addition, the techniques can be used to identify anomalies and outliers among users, 

especially spurious users created to infiltrate or influence a social network. Content providers can 

rely on embedded variables to recognize specific communities of interests and use it to refine the 

experience of users in terms of delivering appropriate content with lowered odds of serving up 

irrelevant content and omitting pertinent content. For advertisers, this knowledge allows them to 

develop and serve up targeted ads to small cohesive groups, thereby reducing the effort in ad 

creation, while diminishing the risk that the ads are viewed as irrelevant. In addition, social network 

users also benefit in that their most precious commodity, viz. time, can be spent more effectively, 

while also being subjected to a smaller barrage of information. 

This paper introduced a novel homophily-based approach to embedding the structure of social 

graphs in a low-dimensional space while retaining the community information contained in the 

graph. In doing so, we have taken advantage of a new second-order proximity metric in our 

research, which not only measures the similarity of the core vertices based on their common 

number of neighbors but also on basis of the pattern of connectivity between them. Prior studies 

have provided power algorithms for node embedding that can be applied to social graphs. 

However, the lack of ability to derive meaningful dimensions from social networks significantly 

limits their application. Our study addressed this gap by using the semantic information present 

on certain nodes in online social networks. Our research is in line with the selective exposure 

theory (Sears and Freedman 1967, Zillmann and Bryant 1985, Zillmann 1988, Huang et al. 2013) 
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in which users follow specific mass media networks that reinforce their own views and 

preferences. In addition, the flexibility in the selection of core vertices in our method enables the 

identification of preferences in other domains, such as movie/music streaming platforms. 

Empirical analysis of a large network of Twitter users shows that the proposed homophily-

based user embedding method can effectively embed the structure of the social network and 

reflect it in a reduced space. Our further exploration of social pages within communities of 

interests confirms the functional property of embedding metrics. We also used the embedded 

features identified by our proposed algorithm for link prediction. Results show that our algorithm 

is superior to other node embedding methods in the literature, suggesting potential for the 

application of this approach in friendship recommender systems. 

 

Implications 

This study makes several novel contributions to theory and practice. First, it offers a novel node 

embedding approach for graph embedding which has tangible implications for social network 

analysis. To the best of our knowledge, HUE is the only node embedding approach that allows 

extraction of meaningful variables from the structure of online social networks. The extracted 

variables include demographic as well as user preference information. It demonstrates the 

potential of homophily based approaches for social networks.  

Second, this study contributes to practice by offering a tool that can be easily adopted by 

marketing programs to provide personalized services to users of online social networks based on 

their preferences. This allows platform managers, content providers, and advertisers to target 

individuals effectively and reduce the cost of customer retention. While the obvious implication is 

to use this information to reinforce behavior, it also affords the opportunity to bring about change 

through targeted prosocial intervention.  Thus, for example, social marketing programs can benefit 

from result of this study by identifying users who have preferences for undesirable behaviors and 
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provide alternative motivational activities that match their other preferences.  

Third, the proposed HUE method can be adopted in recommender systems in online social 

networks to identify relevant social pages and potential friends to individuals based on their 

preferences. It is also useful in setting up recommendations for new entrants to the social network.  

In addition, it can be used to control blind recommendations in online social networks where users 

are pushed toward extreme content.15 Through this approach, administrators of online social 

network platforms are able to identify various communities of interests on their platform and 

evaluate the risks and benefits associated with each community through assessment of posted 

content within that community. 

Cyber security and safety experts can also benefit from this approach. There is no dearth of 

social pages that propagate inappropriate content in online social networks. Likewise, there are 

a number of pages that are designed to induce users to introduce malware and other harmful 

software into individual or corporate devices and platforms. Identification of communities of 

interest facilitates the process of detecting these pages within online social networks. Our 

exploration of data shows that some communities of interest contain social pages which were 

recently suspended by Twitter. Paying additional attention to other members of such communities 

allows platforms such as Twitter to identify potentially troubling social pages more quickly and 

accurately.  

Fifth, the extracted user preferences can also be used to study political partisanship in online 

social networks. One of the takeaways from this study is that supporters of major political parties 

in the U.S. receive news from partisan communities of interest that tend to reinforce their own 

political ideology. This finding affords policy makers the opportunity to monitor and track political 

communities of interest. However, this can be viewed as a double-edged sword, where some 

entities seek to increase the level of bipartisanship in the network, while others seek to drive a 

 
15 https://www.cnn.com/2019/03/17/tech/youtube-facebook-twitter-radicalization-new-zealand/index.html 
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wedge between the groups for partisan reasons. 

The ability to go beyond surface-level information embedded in user profiles, and incorporate 

network structures as well as linkages to additional networks, makes the HUE method particularly 

effective for marketers.  The application of the HUE method is not limited to online social networks. 

Other research studies can benefit from HUE by applying it to their context. For example, movie-

recommender systems can take advantage of this research by creating an extended bipartite 

graph of users and movies, where movies form the core vertices. Through this approach, 

companies such as Netflix can quantify individual preferences for different types of movies. In 

summary, HUE is a novel approach that allows extraction of information based on the interactions 

of two different entities. 

 

Limitations and Future Research  

As with all methods, HUE has its limitations. While the method offers a comprehensive approach 

for embedding user preferences from the structure of social graphs, it is highly dependent on the 

selection of core vertices. Different sampling strategies for selection of core vertices may result in 

alternative embedding dimensions. In addition, the cohesiveness of the sampled vertices may 

yield overconfidence or lack of focus in the findings.  For example, a particularly cohesive sample 

will indicate stronger relations than are present in the general population. Conversely, a very 

diffuse sample will mask some clear relationships. Future studies will expand our work by 

addressing the implications of different strategies for selection of core vertices. In addition, the 

proposed method is developed for undirected graphs. This ignores weak relationship of 

individuals in online social networks, which is quite common in some networks, especially Twitter. 

Another area where homophily-based user embedding approach might be less effective is in 

networks with a formal group structure, like organizational networks. In this case, the number of 

interactions is probably less significant than who the interactions are with. Finally, the case where 
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multiple social network users share an account will likely trip up the homophily-based approach, 

as it would most other interaction-based approaches. 

Future extensions of our work involve the use of HUE in content recommender systems. This 

would allow recommender systems to suggest the right content and topics to new users thereby 

improving the quality of interactions with the platform. 
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Appendix A – HUE pseudocode 
 

The following section shows the pseudocode implementation of HUE. The actual implementation 
of the HUE algorithm utilizes matrix operations instead of nested looping structures. 
 

initialization 
CoreVertices = selectCoreVertices (Graph, SizeOfCores=N, method=[‘random’,’predefined’]) 
BipartiteGraph = formBipartiteGraph(Graph, CoreVertices)  
 
SimilarityMatrix = initializeSimilarityMatrix(N,N) 
for i = 1 to N do 

MappedGraph[i] = findEgosAlterNetwork(BipartiteGraph, CoreVertices[i]) 
for j = i+1 to N do 

          MappedGraph[j] = findEgosAlterNetwork (BipartiteGraph, CoreVertices[i])) 
          SimilarityMatrix[i,j] = findGraphSimilarity(MappedGraph[i], MappedGraph[j]) 
          SimilarityMatrix[j,i] = findGraphSimilarity(MappedGraph[i], MappedGraph[j]) 
       end for 
end for 
SimplifiedCoreGraph = createWeightedGraph (SimilarityMatrix) 
ClusteringQuality = 0 
BestClusters = {} 
for iteration = 1 to maxIterations do 

Clusters, Quality = findClusters(SimplifiedCoreGraph, LouvainAlgorithm, 
SurpriseObjectiveFunction) 

if Quality > ClusteringQuality then 
ClusteringQuality = Quality 
BestClusters = Clusters  

end if 
end for  
 
for i=1 to N do: 
      CoreWeights[i] = computeWeightsOfCores(BestClusters, SimilarityMatrix) 
end for 
EmbeddingMatrix = initializeEmbeddingMatrix(size(Vertices),size(BestClusters)) 
for i = 1 to size(Vertices) do 

for j = 1 to size(BestClusters) do 
EmbeddingMatrix [i,j] = computeEmbeddingValues(Vertices[i], BestClusters[j], 

BipartiteGraph, CoreWeights) 
       end for 
end for 

Figure A1. Homophily-based User Embedding Algorithm 
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Appendix B – Selection of Representative Terms from Tweets 
 

To gain insight into the communities of interest, we analyzed the tweets posted on social pages 
that are followed by Twitter users. One of the main challenges in extracting representative 
words from the community of interest is the high frequency of words used by all social pages for 
communication on Twitter. These are  words that do not characterize the community of interest 
but are prominent because of their frequency. In order to remove these words from our analysis, 
we adopted the following six-step procedure.  
 
Step 1. We selected all social pages belonging to a particular community and then aggregated 
the tweets posted at the social page level over a six-month period. In our approach, tweets from 
a social page form a document, and all the documents in one community form a corpus. 
 
Step 2. We randomly selected an identical number of social pages in Step 1, but this time from 
outside the community. This new collection serves as a control group which allows non-
representative terms to be removed. As with Step 1, we aggregated the tweets of the randomly 
selected social pages into the second corpus. 
 
Step 3. Our pre-processing activities comprised tokenization, lemmatization, and the elimination 
of stop words.  We then picked the top 5000 high-frequency terms from the first corpus to 
develop the vocabulary set. This vocabulary set includes both representative terms of the 
community of interest and those common terms shared with other communities of interest. 
 
Step 4. We used the vocabulary set identified in Step 3 to form normalized document-term-
frequency matrices, where the values are normalized at the document level. We formed the 
matrix for each corpus separately. 
 
Step 5. For each term, we computed the sum of the normalized values across the documents in 
each corpus. This procedure gave us two scores for each term, one for the usage of terms 
within the community and another for usage outside the community. 
 
Step 6. Finally, for each term, we divided the inside community score by the outside community 
score to measure the weight of each term in the vocabulary. As a result, community-specific 
terms have high weights, and common terms across communities are weighted low.  In addition, 
non-community terms are weighted extremely low. 
 
Figure B1 illustrates some additional word clouds of the communities of interest that are not 
presented in the main manuscript. 
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(a) World Wrestling Entertainment  (b) Republicans 

  
(c) LGBT (d) Democrats 

  
(e) Running (f) Travel 

Figure B1. Word-cloud of Representative Words for Sample Communities 
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Appendix C – List of Top Identified Communities of Interest 
 

Table C1 shows the list of top communities of interest.  
 

Table C1. Communities of Interests by Categories 

Art and Design Geographical 
TV Shows and 
Movie Series Movie 

- Art & Design  
- Photography  
- Web Design 

- Atlanta 
- Austin 
- Baltimore 
- Boston 
- Cleveland 
- Chicago 
- Dallas 
- Detroit 
- Denver  
- Houston 
- Las Vegas 
- Los Angeles 
- Miami 
- Milwaukee 
- Minnesota 
- New Orleans 
- New York 
- Philadelphia 
- Pittsburgh  
- San Francisco 
- Seattle 
- Washington DC 

- Bachelor & Bachelorette  
- Chelsea Lately Show 
- Elvis Duran & the Morning 
Shows  
- Girl Code 
- Harry Potter 
- Howard Stern Show 
- Real Housewives Show 
- Teen and Pregnancy 
- Walking Dead Series 
- Workaholics 

- Comedy  
- Criminal 
- Drama 
- Paranormal  
- Sitcoms 
- Science Fiction 
- Film Academy 

Artists 

- African American Artists 
- Celebrity Personalities 
- Latino Artists  
- MTV Stars 

Business and 
Entrepreneurship Sport Media 

- Digital Advertising 
- Job and Technology  
- Leadership & 
Entrepreneurship 
- Marketing  
- Public Relations 
- Real Estate  
- Business and Technology 

- Auto Racing  
- Basketball & Football 
- Golf  
- Hockey  
- Los Angeles Sport 
- New York Sport    
- Olympic Sports  
- Soccer  
- Washington DC Sport 
- Wrestling (WWE) 

- ABC, CW, and FXM 
channels  
- CBS Channel  
- Marvel Channel 
- NBC Channel  
- NPR  
- Reality TV (History & 
Discovery) 
- SYFY Channel 
- USA Network 

Entertainment Health and Activity News Other 

- Broadway 
- Disney  
- Console Games 
- Travel  
- Entertainment Influencers  

- Dance  
- Men’s Health  
- Health (Preventive Care) 
- Health & Fitness 

- ABC News 
- Business News 
- Journalism 
- Technology News 
- Weather News 

- Humor 
- Life Facts  
- Porn  

Environmental and Social 
Concerns 

Music Technology Brands 

 

- African American Social 
Activist 
- Charity 
- Education 
- LGBTQ 
- Wildlife 

- Boy Bands 
- Christian Music 
- Country Music 
- Electronic Dance Music 
- Hard Rock Music 
- Hip Hop Music 
- Indie Rock Music 
- Music Record 
- Pop Rock Music 
- Pop Music 
- Punk Music 
- Soul Music 

 - Amazon  
- Twitter  
- Microsoft  
- Apple  
- Google 

Politics and Government Shopping 

- Conservative Party 
- Defense & Homeland 
Security 
- Liberal Party 

- Automobile  
- Fashion 
- Sport Wear 
- Retail 

Food and Beverages Religion and Spirituality Reading and Learning 

- Beer 
- Chefs 
- Cocktail and Whisky 
- Food and Wine 

- Biblical Quotes  
- Motivational Quotes 
- Wisdom Quotes 

- Book Publishers  
- Science 
- Screen Writers 
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Table C2 depicts a sample set of social pages for selected community of interests. 
 

Table C2. Sample of Social Pages in Communities of Interest 

Country Music 
Community of Interest 

Charity 
Community of Interest 

Health  
Community of Interest 

Conservative 
Community of Interest 

- Miranda Lambert 
- Luke Bryan 
- Brad Paisley 
- Keith Urban 
- Tim McGraw 
- Reba McEntire 
- Lady Antebellum 
- Jason Aldean 
- Martina McBride 
- Eric Church 

- RED 
- Gates Foundation 
- Charity water 
- UNICEF 
- DoSomething 
- ONE Campaign 
- Amnesty USA 
- DonorsChoose 
- Kiva 
- Peace Corps 

- American Red Cross 
- CDC Emergency 
- Health 
- WebMD  
- NYT Health 
- The Scope  
- American Cancer Society 
- Mayo Clinic 
- WHO 
- NPR Health News 

- Fox News 
- Mitt Romney 
- Sarah Palin 
- John McCain  
- John Boehner 
- Governor Christie  
- Paul Ryan 
- Michelle Malkin 
- Newt Gingrich 
- Sean Hannity 

Automobile 
Community of Interest 

Video Games 
Community of Interest 

Travel 
Community of Interest 

Google 
Community of Interest 

- Tesla 
- Ford Motor Company 
- Audi 
- Chevrolet 
- Jeep 
- Volkswagen 
- Toyota 
- Lexus 
- General Motors 
- Mercedes-Benz 

- PlayStation 
- Xbox 
- IGN 
- Larry Hryb 
- Electronic Arts 
- Rockstar Games 
- Nintendo of America 
- GameStop 
- Kevin Pereira 
- SEGA 

- Southwest Airlines 
- JetBlue Airways 
- American Airlines 
- Virgin America 
- Delta 
- United Airlines 
- Travel Channel 
- Travel + Leisure 
- Orbitz 
- Airfarewatchdog 

- Gmail 
- Tumblr 
- Google Chrome 
- Android 
- Google Maps 
- Nexus 
- Google Play 
- Google Mobile 
- Google Analytics 
- SwiftKey 

 

  



  48 

Appendix D – Performance Metrics for Link Prediction Task 
 

Weighted Binary Cross-Entropy Cost Focal Cross-Entropy Cost 
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Figure D1. Performance Metrics for Weighted and Focal Cross Entropy 
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Table D1. Performance Metrics for Weighted Binary Cross Entropy Cost 

Operator Algorithm Average 
Precision 

Average 
Recall 

Average 
F1 

Average 
AUC 

A
v
e
ra

g
e
 

HUE 0.340 0.789 0.475 0.895 

Deep Walk 0.320 0.759 0.450 0.869 

LINE_V1 0.342 0.727 0.465 0.864 

LINE_V2 0.462 0.668 0.546 0.884 

Node2Vec_V1 0.452 0.761 0.565 0.906 

Node2Vec_V2 0.443 0.767 0.560 0.904 

Node2Vec_V3 0.460 0.753 0.569 0.904 

Node2Vec_V4 0.405 0.770 0.529 0.901 

Node2Vec_V5 0.357 0.796 0.490 0.900 

H
a
d

a
m

a
rd

 

HUE 0.458 0.791 0.580 0.919 

Deep Walk 0.352 0.697 0.463 0.850 

LINE_V1 0.302 0.754 0.430 0.861 

LINE_V2 0.272 0.754 0.397 0.858 

Node2Vec_V1 0.532 0.676 0.592 0.895 

Node2Vec_V2 0.499 0.695 0.580 0.895 

Node2Vec_V3 0.474 0.721 0.569 0.896 

Node2Vec_V4 0.553 0.666 0.603 0.894 

Node2Vec_V5 0.452 0.710 0.547 0.888 

W
e
ig

h
te

d
-L

1
 

HUE 0.300 0.741 0.427 0.863 

Deep Walk 0.727 0.643 0.682 0.897 

LINE_V1 0.262 0.706 0.382 0.829 

LINE_V2 0.360 0.650 0.460 0.848 

Node2Vec_V1 0.267 0.661 0.380 0.801 

Node2Vec_V2 0.266 0.654 0.378 0.799 

Node2Vec_V3 0.253 0.672 0.368 0.801 

Node2Vec_V4 0.266 0.661 0.379 0.799 

Node2Vec_V5 0.285 0.647 0.395 0.797 

W
e
ig

h
te

d
-L

2
 

HUE 0.290 0.689 0.408 0.836 

Deep Walk 0.762 0.624 0.685 0.899 

LINE_V1 0.279 0.708 0.399 0.837 

LINE_V2 0.404 0.620 0.485 0.849 

Node2Vec_V1 0.282 0.628 0.389 0.797 

Node2Vec_V2 0.284 0.619 0.390 0.793 

Node2Vec_V3 0.283 0.619 0.388 0.791 

Node2Vec_V4 0.294 0.616 0.397 0.798 

Node2Vec_V5 0.330 0.606 0.426 0.795 

W
e
ig

h
te

d
-L

1
 &

 

H
a
d

a
m

a
rd

 

HUE 0.498 0.831 0.623 0.945 

Deep Walk 0.839 0.655 0.734 0.907 

LINE_V1 0.357 0.713 0.474 0.863 

LINE_V2 0.699 0.585 0.633 0.868 

Node2Vec_V1 0.697 0.611 0.647 0.891 

Node2Vec_V2 0.723 0.647 0.682 0.896 

Node2Vec_V3 0.650 0.647 0.644 0.884 

Node2Vec_V4 0.646 0.617 0.628 0.884 

Node2Vec_V5 0.602 0.660 0.628 0.892 

W
e
ig

h
te

d
-

L
2
 &

 

H
a
d

a
m

a
rd

 HUE 0.588 0.723 0.644 0.911 

Deep Walk 0.825 0.523 0.639 0.885 

LINE_V1 0.785 0.449 0.571 0.865 

LINE_V2 0.771 0.525 0.623 0.885 

Node2Vec_V1 0.853 0.571 0.684 0.906 

Node2Vec_V2 0.841 0.557 0.668 0.895 
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Node2Vec_V3 0.832 0.554 0.664 0.902 

Node2Vec_V4 0.849 0.554 0.669 0.903 

Node2Vec_V5 0.851 0.537 0.657 0.908 
A

v
e
ra

g
e
 &

 

H
a
d

a
m

a
rd

 
HUE 0.651 0.692 0.656 0.912 

Deep Walk 0.949 0.505 0.657 0.899 

LINE_V1 0.846 0.425 0.565 0.866 

LINE_V2 0.910 0.479 0.627 0.870 

Node2Vec_V1 0.940 0.469 0.625 0.890 

Node2Vec_V2 0.930 0.504 0.654 0.886 

Node2Vec_V3 0.943 0.459 0.617 0.896 

Node2Vec_V4 0.929 0.447 0.601 0.895 

Node2Vec_V5 0.930 0.445 0.601 0.897 

A
v
e
ra

g
e
 &

 

W
e
ig

h
te

d
-L

1
 

HUE 0.784 0.648 0.709 0.944 

Deep Walk 0.950 0.516 0.669 0.897 

LINE_V1 0.791 0.464 0.583 0.867 

LINE_V2 0.944 0.452 0.611 0.877 

Node2Vec_V1 0.940 0.558 0.698 0.932 

Node2Vec_V2 0.922 0.582 0.713 0.931 

Node2Vec_V3 0.932 0.567 0.704 0.931 

Node2Vec_V4 0.929 0.549 0.687 0.923 

Node2Vec_V5 0.948 0.517 0.669 0.917 

A
v
e
ra

g
e
 &

 

W
e
ig

h
te

d
-L

2
 

HUE 0.649 0.724 0.678 0.933 

Deep Walk 0.957 0.482 0.640 0.898 

LINE_V1 0.771 0.467 0.581 0.866 

LINE_V2 0.935 0.476 0.630 0.883 

Node2Vec_V1 0.933 0.558 0.698 0.930 

Node2Vec_V2 0.894 0.623 0.733 0.929 

Node2Vec_V3 0.910 0.601 0.723 0.931 

Node2Vec_V4 0.922 0.552 0.690 0.925 

Node2Vec_V5 0.938 0.513 0.663 0.927 

W
e
ig

h
te

d
-L

1
 &

 

W
e
ig

h
te

d
-L

2
 

HUE 0.737 0.327 0.453 0.853 

Deep Walk 0.909 0.488 0.634 0.897 

LINE_V1 0.666 0.291 0.401 0.838 

LINE_V2 0.684 0.303 0.417 0.846 

Node2Vec_V1 0.729 0.226 0.342 0.790 

Node2Vec_V2 0.706 0.214 0.323 0.769 

Node2Vec_V3 0.766 0.227 0.349 0.791 

Node2Vec_V4 0.701 0.249 0.366 0.783 

Node2Vec_V5 0.746 0.244 0.364 0.770 
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Table D2. Performance Metrics for Focal Cross Entropy Cost 

Operator Algorithm Average 
Precision 

Average 
Recall 

Average 
F1 

Average 
AUC 

A
v
e
ra

g
e
 

HUE 0.347 0.786 0.482 0.897 

Deep Walk 0.349 0.729 0.467 0.866 

LINE_V1 0.392 0.690 0.499 0.865 

LINE_V2 0.447 0.661 0.532 0.882 

Node2Vec_V1 0.411 0.754 0.531 0.898 

Node2Vec_V2 0.368 0.790 0.500 0.901 

Node2Vec_V3 0.410 0.769 0.532 0.901 

Node2Vec_V4 0.367 0.779 0.494 0.898 

Node2Vec_V5 0.339 0.800 0.476 0.898 

H
a
d

a
m

a
rd

 

HUE 0.479 0.788 0.594 0.922 

Deep Walk 0.357 0.665 0.463 0.839 

LINE_V1 0.371 0.700 0.482 0.861 

LINE_V2 0.283 0.744 0.405 0.857 

Node2Vec_V1 0.537 0.680 0.598 0.897 

Node2Vec_V2 0.513 0.699 0.591 0.899 

Node2Vec_V3 0.518 0.690 0.591 0.897 

Node2Vec_V4 0.525 0.683 0.591 0.894 

Node2Vec_V5 0.499 0.685 0.574 0.889 

W
e
ig

h
te

d
-L

1
 

HUE 0.292 0.751 0.421 0.864 

Deep Walk 0.714 0.648 0.678 0.901 

LINE_V1 0.255 0.717 0.375 0.829 

LINE_V2 0.390 0.620 0.478 0.847 

Node2Vec_V1 0.274 0.652 0.386 0.803 

Node2Vec_V2 0.272 0.648 0.383 0.801 

Node2Vec_V3 0.274 0.649 0.385 0.802 

Node2Vec_V4 0.277 0.653 0.389 0.802 

Node2Vec_V5 0.281 0.636 0.389 0.794 

W
e
ig

h
te

d
-L

2
 

HUE 0.282 0.700 0.402 0.838 

Deep Walk 0.766 0.620 0.682 0.902 

LINE_V1 0.245 0.749 0.366 0.832 

LINE_V2 0.370 0.656 0.471 0.851 

Node2Vec_V1 0.294 0.616 0.397 0.795 

Node2Vec_V2 0.313 0.594 0.410 0.792 

Node2Vec_V3 0.309 0.597 0.407 0.793 

Node2Vec_V4 0.329 0.588 0.421 0.797 

Node2Vec_V5 0.328 0.597 0.423 0.792 

W
e
ig

h
te

d
-L

1
 &

 

H
a
d

a
m

a
rd

 

HUE 0.507 0.824 0.628 0.944 

Deep Walk 0.831 0.639 0.715 0.902 

LINE_V1 0.354 0.725 0.466 0.866 

LINE_V2 0.723 0.576 0.637 0.865 

Node2Vec_V1 0.525 0.658 0.575 0.872 

Node2Vec_V2 0.651 0.644 0.645 0.879 

Node2Vec_V3 0.622 0.660 0.632 0.886 

Node2Vec_V4 0.590 0.659 0.622 0.891 

Node2Vec_V5 0.648 0.616 0.628 0.891 

W
e
ig

h
te

d
-

L
2
 &

 

H
a
d

a
m

a
rd

 HUE 0.493 0.832 0.619 0.944 

Deep Walk 0.517 0.692 0.585 0.878 

LINE_V1 0.335 0.737 0.459 0.867 

LINE_V2 0.513 0.655 0.570 0.876 

Node2Vec_V1 0.470 0.763 0.580 0.907 

Node2Vec_V2 0.506 0.744 0.596 0.901 
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Node2Vec_V3 0.488 0.755 0.587 0.907 

Node2Vec_V4 0.468 0.754 0.575 0.903 

Node2Vec_V5 0.533 0.727 0.611 0.909 
A

v
e
ra

g
e
 &

 

H
a
d

a
m

a
rd

 
HUE 0.487 0.828 0.613 0.942 

Deep Walk 0.880 0.622 0.726 0.904 

LINE_V1 0.341 0.733 0.462 0.866 

LINE_V2 0.733 0.583 0.637 0.872 

Node2Vec_V1 0.708 0.626 0.663 0.886 

Node2Vec_V2 0.716 0.662 0.685 0.896 

Node2Vec_V3 0.578 0.660 0.595 0.870 

Node2Vec_V4 0.613 0.668 0.623 0.894 

Node2Vec_V5 0.716 0.636 0.670 0.902 

A
v
e
ra

g
e
 &

 

W
e
ig

h
te

d
-L

1
 

HUE 0.476 0.853 0.611 0.947 

Deep Walk 0.876 0.634 0.734 0.903 

LINE_V1 0.329 0.736 0.452 0.865 

LINE_V2 0.831 0.570 0.668 0.890 

Node2Vec_V1 0.692 0.743 0.707 0.929 

Node2Vec_V2 0.658 0.759 0.678 0.931 

Node2Vec_V3 0.771 0.720 0.744 0.933 

Node2Vec_V4 0.766 0.688 0.715 0.927 

Node2Vec_V5 0.745 0.710 0.723 0.920 

A
v
e
ra

g
e
 &

 

W
e
ig

h
te

d
-L

2
 

HUE 0.458 0.845 0.594 0.940 

Deep Walk 0.920 0.570 0.700 0.902 

LINE_V1 0.305 0.760 0.430 0.867 

LINE_V2 0.806 0.599 0.680 0.894 

Node2Vec_V1 0.683 0.738 0.692 0.930 

Node2Vec_V2 0.642 0.748 0.671 0.929 

Node2Vec_V3 0.685 0.752 0.712 0.932 

Node2Vec_V4 0.695 0.710 0.698 0.925 

Node2Vec_V5 0.713 0.697 0.701 0.924 

W
e
ig

h
te

d
-L

1
 &

 

W
e
ig

h
te

d
-L

2
 

HUE 0.297 0.754 0.426 0.866 

Deep Walk 0.753 0.627 0.683 0.902 

LINE_V1 0.240 0.753 0.360 0.831 

LINE_V2 0.369 0.641 0.458 0.845 

Node2Vec_V1 0.266 0.652 0.378 0.798 

Node2Vec_V2 0.280 0.619 0.384 0.796 

Node2Vec_V3 0.282 0.629 0.390 0.796 

Node2Vec_V4 0.288 0.629 0.394 0.797 

Node2Vec_V5 0.289 0.628 0.394 0.792 
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