
Journal of Pure and Applied Algebra 220 (2016) 1489–1516
Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Lie–Poisson theory for direct limit Lie algebras ✩

Mark Colarusso a, Michael Lau b,∗

a Department of Mathematics, University of Wisconsin–Milwaukee, United States
b Département de mathématiques et de statistique, Université Laval, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 March 2015
Received in revised form 24 August 
2015
Available online 21 October 2015
Communicated by D. Nakano

MSC:
14L30; 20G20; 37K30; 53D17; 17B65

In the first half of this paper, we develop the fundamentals of Lie–Poisson theory 
for direct limits G = lim−−→Gn of complex algebraic groups and their Lie algebras g =
lim−−→ gn. We describe the Poisson pro- and ind-variety structures on g∗ = lim←−− g∗n and 
the coadjoint orbits of G, respectively. While the existence of symplectic foliations 
remains an open question for most infinite-dimensional Poisson manifolds, we show 
that for direct limit algebras, the coadjoint orbits give a weak symplectic foliation 
of the Poisson provariety g∗.
The second half of the paper applies our general results to the concrete setting of 
G = GL(∞) and g∗ = M(∞), the space of infinite-by-infinite complex matrices 
with arbitrary entries. We use the Poisson structure of g∗ to construct an integrable 
system on M(∞) that generalizes the Gelfand–Zeitlin system on gl(n, C) to the 
infinite-dimensional setting. We further show that this integrable system integrates 
to a global action of a direct limit group on M(∞), whose generic orbits are 
Lagrangian ind-subvarieties of the coadjoint orbits of GL(∞) on M(∞).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The interaction between Lie theory and Poisson geometry plays an important role in much of modern 
mathematics and mathematical physics; it is of central importance in geometric representation theory, 
integrable systems, and classical mechanics. Given a finite-dimensional real or complex Lie group G, there is 
a canonical Lie–Poisson structure on the dual space g∗ of its Lie algebra g. The starting point of Lie–Poisson 
theory is the observation that the symplectic leaves of g∗ are the coadjoint orbits of the identity component 
G0 of G equipped with the Kostant–Kirillov symplectic form. This symplectic structure is the cornerstone 
of the orbit method in representation theory and plays an important role in deformation quantization.

The main goal of this paper is to extend this theory to direct limit Lie algebras. Given a direct limit group 
G with Lie algebra g, we define an analogous Lie–Poisson structure on the dual space g∗ and construct a 
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symplectic foliation using the coadjoint action of G on g∗. There is an extensive literature concerning 
direct limit groups and their Lie algebras, root systems, and representations, though there has been lit-
tle study of Poisson geometry in this context. See for example, [1,3,8,7,9,12,21,23,25] and the references 
therein. Categorification of direct limit Lie algebras has recently been used to study finite-dimensional 
representations of Lie superalgebras [2]. Applications of direct limit groups notably include early work on 
infinite-dimensional integrable systems, including the KP hierarchy. See [17], for instance. In particular, 
when g = gl(∞) := lim−−→ gl(n, C), we use our new Lie–Poisson structure to define an infinite-dimensional 
analogue of the Gelfand–Zeitlin integrable system on gl(∞)∗.

In more detail, let {(Gn, ιnm)}n∈N be a directed system of complex affine algebraic groups Gn for which 
the transition maps ιnm : Gn ↪→ Gm are homomorphic embeddings of algebraic groups. The direct limit 
group G := lim−−→Gn has the structure of an ind-variety and its Lie algebra g = lim−−→ gn is a direct limit Lie 
algebra. The algebraic dual g∗ = lim←−− g∗n is a provariety, an inverse limit in the category of varieties. We show 
that g∗ has a natural Poisson structure inherited from the Lie–Poisson structure of each g∗n and compute 
its characteristic distribution. This construction requires understanding subtle aspects about the geometry 
of provarieties including their structure sheaves, tangent spaces, and morphisms (Propositions 2.3, 2.7, and 
Theorem 2.10).

In infinite dimensions, there is no guarantee that the characteristic distribution of a Poisson manifold is 
integrable nor that its leaves possess a symplectic structure. Even in the comparatively well-behaved setting 
of Banach Lie groups G, it is not known whether the coadjoint orbits of G on a predual g∗ of its Lie algebra 
g are weakly symplectic [24]. One of the main results of this paper is to show that the coadjoint orbits of a 
direct limit group G on the dual of its Lie algebra g∗ form a symplectic foliation of g∗ which is tangent to 
the characteristic distribution of g∗.

Theorem 1.1. (See Proposition 4.7 and Theorem 4.12.) Let G = lim−−→Gn be a direct limit group, and let 
g∗ = lim←−− g∗n be the dual space of its Lie algebra. Let λ ∈ g∗, and let G · λ be the coadjoint orbit of λ. Then

(1) G · λ has the structure of a weak symplectic ind-subvariety of g∗.
(2) G ·λ is tangent to the characteristic distribution of g∗, and the symplectic structure on G ·λ is compatible 

with the Poisson structure on g∗.

To prove Part (1), we observe that the coadjoint orbit G ·λ inherits an ind-variety structure from G via:

G · λ = lim−−→Gn · λ.

Since λ ∈ g∗ = lim←−− g∗n, we can represent λ as an infinite sequence, λ = (λ1, . . . , λn, . . . ) with λn ∈ g∗n. Each 
variety Gn · λ inherits a 2-form from the Kostant–Kirillov form on the Gn-coadjoint orbit of λn, and we 
show that these 2-forms glue to give a non-degenerate, closed two form on G · λ (Proposition 4.7).

Part (2) of the theorem is much more difficult to prove than the analogous result in finite dimensions 
and requires relating the ind-variety structure of G · λ to the provariety structure of g∗. We use our basic 
results about morphisms of provarieties and ind-varieties (Propositions 2.19 and 3.1) to show that G ·λ is an 
ind-subvariety of g∗ whose tangent space agrees with the characteristic distribution of g∗. The compatibility 
of the Poisson structure on g∗ with the symplectic structure of G · λ requires an explicit understanding of 
the anchor map of g∗ and its kernel (Propositions 2.37 and 2.42).

In the second half of the paper, we apply our results to the case where G is the group GL(∞) :=
lim−−→GL(n, C) with the Lie algebra g = gl(∞) = lim−−→ gl(n, C) of infinite-by-infinite complex matrices with only 
finitely many nonzero entries. The dual space g∗ is the Poisson provariety M(∞) of all infinite-by-infinite 
complex matrices. We construct an infinite-dimensional analogue of the Gelfand–Zeitlin integrable system 
on M(∞) which generalizes the one constructed by Kostant and Wallach on gl(n, C) in [19,20].
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In more detail, we identify M(∞) with the set of infinite sequences:

M(∞) := {X = (X(1), X(2), X(3), . . . ) : X(n) ∈ gl(n,C) and X(n + 1)n = X(n)},

where X(n + 1)n denotes the n × n upper left corner of X(n + 1) ∈ gl(n + 1, C). For any n ∈ N and 
j = 1, . . . , n, let fnj be the function on M(∞) given by fnj(X) = tr(X(n)j), where tr(·) denotes the trace 
function. The algebra generated by the collection of functions

J∞ := {fnj(X) : n ∈ N, j = 1, . . . , n}

is then a maximal Poisson-commutative subalgebra of the space of global regular functions on M(∞)
(Proposition 5.5 and Remark 5.6). Moreover, the corresponding Lie algebra of Hamiltonian vector fields 
a(∞) is infinite dimensional and integrates to a global action of a direct limit group A(∞) which preserves 
the coadjoint orbits of GL(∞) on M(∞), but does not act algebraically on M(∞). Following [19], we say 
that an element X ∈ M(∞) is strongly regular if the differentials of the functions in J∞ are independent 
at X. It follows easily from work of the first author that the set of strongly regular elements of M(∞)
is non-empty (Example 5.15). Despite the A(∞)-action on M(∞) not being algebraic, we show that any 
strongly regular A(∞)-orbit on M(∞) is an algebraic ind-subvariety of the corresponding GL(∞)-coadjoint 
orbit which is Lagrangian with respect to the weak symplectic form constructed in Part (1) of Theorem 1.1. 
The following theorem generalizes one of the main results of Kostant and Wallach (cf. [19, Theorem 3.36]) 
to the direct limit setting.

Theorem 1.2. (See Theorem 5.18.) Let X ∈ M(∞) be strongly regular. Then A(∞) ·X ⊂ GL(∞) ·X is an 
irreducible, Lagrangian ind-subvariety of GL(∞) ·X.

As was the case with Theorem 1.1, the infinite-dimensional setting contains difficulties that are not 
present in finite dimensions. The foremost being that it is not automatic that the generic leaves of an 
integrable system are Lagrangian. To circumvent this difficulty, we have to develop a Lagrangian calculus 
for the weakly symplectic ind-varieties G · λ (Proposition 4.19).

In the philosophy of quantization, Lagrangian submanifolds of g∗ correspond to irreducible representations 
of G. For the group of n ×n unitary matrices, Guillemin and Sternberg have used the Gelfand–Zeitlin system 
to obtain a new quantization consistent with the Bott–Borel–Weil construction [13]. It would be interesting 
to apply the geometric methods and results concerning the infinite dimensional Gelfand–Zeitlin system 
developed in this paper to study the representations of direct limit groups geometrically. Dimitrov, Penkov, 
and Wolf have given the beautiful and nontrivial analogue of the Bott–Borel–Weil theorem for direct limit 
groups [9]. In the future, we plan to reinterpret the results of [9] using the Lie–Poisson theory developed 
in the first half of this paper. The quantum analogue of the finite dimensional Gelfand–Zeitlin system on 
gl(n, C) are the Gelfand–Zeitlin modules introduced by Drozd, Futorny, and Ovsienko [10]. These modules 
have natural direct limit analogues, and we plan to use Theorem 1.2 and the geometry of the Gelfand–Zeitlin 
system on M(∞) to study them geometrically.

The paper is organized as follows. In Section 2, we study general provarieties X = lim←−−Xn, where Xn

is a finite-dimensional variety defined over an arbitrary algebraically closed field F of characteristic zero. 
We define a structure sheaf OX which makes the pair (X, OX) into a locally ringed space and describe 
the tangent space of X (Propositions 2.3 and 2.7, Theorem 2.10). In Section 2.3, we study morphisms of 
provarieties and prove Proposition 2.19. In Section 2.4, we specialize to the case where each Xn is a Poisson 
variety and show that OX is a sheaf of Poisson algebras (Proposition–Definition 2.34). The provariety 
structure on g∗ is described in Example 2.27, and its Lie–Poisson structure is obtained in Example 2.38. In 
Section 3, we review basic facts about ind-varieties and describe the ind-variety structure of the coadjoint 
orbits G · λ (Proposition 3.9 and Corollary 3.10). In Section 4, we develop the weak symplectic form on 
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G · λ and prove Theorem 1.1. In Section 5, we construct the Gelfand–Zeitlin integrable system on M(∞)
and prove Theorem 1.2.

Notation. Throughout this paper, N and C will denote the positive integers and complex numbers, respec-
tively.

2. Provarieties

2.1. The structure sheaf of a provariety

Let {(Xn, pnm)}n∈N be an inverse system of irreducible varieties over an algebraically closed field F of 
characteristic zero with surjective transition morphisms: pnm : Xn → Xm for n ≥ m. We call the inverse 
limit X = lim←−−Xn of such a system (Xn, pnm) a provariety. Another introduction to provarieties may be 
found in [22]. They do not assume that their inverse system of varieties is countable. We will only consider 
countable inverse systems of varieties, and the exposition here is self-contained.

As a topological space, X has the inverse limit topology. A basis for this topology is the collection of sets

B = {p−1
n (Un) : Un ⊂ Xn is open}.

We construct a structure sheaf OX on X which makes (X, OX) into a locally ringed space. We begin by defin-
ing a B-presheaf ÕX of F -algebras on X, i.e. a presheaf whose sections ÕX(U) are defined only for U ∈ B. 
Suppose U ∈ B with U = p−1

n (Un) for some open subset Un ⊆ Xn. The inverse system {(Xk, p�k)}�≥k≥n

gives rise to a directed system of F -algebras {OXk
(p−1

kn (Un)), p∗�k}�≥k≥n. Since the transition maps p�k are 
surjective for all pairs � ≥ k, it follows that the canonical projections pk : X → Xk are surjective for all k. 
Thus, OXk

(p−1
kn (Un)) ∼= p∗kOXk

(p−1
kn (Un)) and we can define:

ÕX(U) := lim−−→
k≥n

p∗kOXk
(p−1

kn (Un)). (2.1)

We claim that (2.1) makes ÕX into a B-presheaf. Indeed, suppose we have V ⊆ U with V, U ∈ B. Let 
V = p−1

� (U�) for U� ⊆ X� open. We define the restriction maps

ρUV : ÕX(U) → ÕX(V )

as follows. Suppose f ∈ ÕX(U). Then f = p∗kfk for some fk ∈ OXk
(p−1

kn (Un)) and k ≥ n. Let m ≥ �, k. Then 
f = p∗mp∗mkfk with p∗mkfk ∈ OXm

(p−1
mn(Un)). Since pm is surjective, p−1

m�(U�) ⊆ p−1
mn(Un). We can therefore 

define

ρUV (f) := p∗m(p∗mkfk|p−1
m�(U�)) ∈ ÕX(V ),

where (p∗mkfk)|p−1
m�(U�) denotes the restriction of p∗mkfk ∈ OXm

(p−1
mn(Un)) to p−1

m�(U�). One can verify that 
ρUV is well defined and that for W ⊆ V ⊆ U with W ∈ B, we have ρUW = ρVW ◦ ρUV . Note also 
that ρUU = IdÕX(U). Thus, ÕX is a B-presheaf of F -algebras. Since inverse limits exist in the category of 
F -algebras, we can form a presheaf on all of X by setting

OX(U) := lim←−−
V⊆U, V ∈B

ÕX(V ) (2.2)

for each open set U ⊆ X. It follows from the universal property of the inverse limit that OX is a presheaf 
on X, and OX(U) = ÕX(U) for U ∈ B. Moreover, OX is in fact a sheaf on X.
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Proposition 2.3. The presheaf OX on X is a sheaf of F -algebras on X.

Proof. It follows from [11, Proposition I-12(i)] that it suffices to check the sheaf axioms on sections OX(U)
with U ∈ B. Accordingly, let U ∈ B with U = p−1

n (Un) with Un ⊆ Xn open, and let 
⋃

i∈I p
−1
i (Ui) = U be 

an open cover of U by basic open sets of X. Suppose that for each i ∈ I, we are given fi ∈ OX(p−1
i (Ui))

such that

fi|p−1
i (Ui)∩p−1

j (Uj) = fj |p−1
i (Ui)∩p−1

j (Uj) (2.4)

for every i, j ∈ I. Let F (Xn) be the function field of Xn. Consider the field:

F (X) := lim−−→ p∗nF (Xn). (2.5)

Equation (2.4) implies that the functions fi with i ∈ I define the same element g ∈ F (X). Without loss of 
generality, we may assume that g = p∗ngn for gn ∈ F (Xn). We claim that gn ∈ OXn

(Un). By construction, 
g|p−1

i (Ui) = fi for all i. Now let x ∈ p−1
n (Un), then x ∈ p−1

i (Ui) for some i ∈ I. We have

fi(x) = g(x) = gn(xn),

where xn = pn(x). Since pn : lim←−−Xk → Xn is surjective, gn ∈ F (Xn) is defined at all points of Un ⊂ Xn. 
Thus, gn ∈ OXn

(Un), so that g = p∗ngn ∈ OX(U).
Since the varieties Xn are irreducible for all n, the restriction maps ρp−1

n (Un),p−1
i (Ui) are injective. Indeed, 

suppose that f ∈ OX(p−1
n (Un)) with f |p−1

i (Ui) = 0 for some i ∈ I. Then there exist k ≥ n, i and a regular 
function fk ∈ OXk

(p−1
kn (Un)) such that f = p∗kfk and fk|p−1

ki (Ui) = 0. But then since p−1
ki (Ui) ⊆ p−1

kn (Un) is 
open and p−1

kn (Un) is irreducible, it follows that fk = 0 and hence f = 0. �
Proposition 2.3 implies that (X, OX) is a ringed space. Since stalks OX,x can be computed using basic 

open sets, Equation (2.1) implies that

OX,x = lim−−→ p∗nOXn,xn
∼= lim−−→OXn,xn

, (2.6)

where xn = pn(x). Equation (2.6) implies that (X, OX) is a locally ringed space.

Proposition 2.7. Let X = lim←−−Xn be a provariety, and let x ∈ X with xn = pn(x). Let mxn
be the unique 

maximal ideal of the local ring OXn,xn
. Then the stalk OX,x of the sheaf OX at x ∈ X is a local ring with 

maximal ideal m = lim−−→ p∗nmxn
.

The proposition follows immediately from the following general fact.

Lemma 2.8. Suppose {(An, mn, φnm)}n∈N is a directed system of local rings with mn ⊂ An the unique 
maximal ideal and local homomorphisms φnm : An → Am for n ≤ m. Then the direct limit A = lim−−→An is a 
local ring with unique maximal ideal m = lim−−→mn.

Proof. Let m = lim−−→mn and a ∈ A \ m. Abusing notation, we also denote by An and mn, the images of An

and mn in lim−−→An respectively. It follows that a ∈ Ai \mi for some i, whence a ∈ A is a unit. �
2.2. Tangent spaces to provarieties

Let (X, OX) be a provariety. Since (X, OX) is a locally ringed space, we can define the Zariski tangent 
space Tx(X) of a point x ∈ X as:
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Tx(X) := (mx/m
2
x)∗, (2.9)

where (mx/m
2
x)∗ is the dual of the infinite dimensional F -vector space mx/m

2
x. It is easy to see that Tx(X)

can be identified with the space of all F -linear point derivations of the F -algebra OX,x at the point x ∈ X. 
The F -vector space Tx(X) is also an inverse limit.

Theorem 2.10. Let {(Xn, pnm)} be an inverse system of varieties, and let X = lim←−−Xn be the corresponding 
provariety. There is a canonical isomorphism of F -vector spaces:

Tx(X) ∼= lim←−−Txn
(Xn), (2.11)

where xn = pn(x) for each x ∈ X. That is, the following diagram commutes:

lim←−−Txn
(Xn) ∼= Tx(X)

↓ πk ↓ (dpk)x

Txk
(Xk) = Txk

(Xk),
(2.12)

where πk : lim←−−Txn
(Xn) → Txk

(Xk) is the canonical projection.

Proof. Let x ∈ X, and let xn = pn(x) for n ∈ N. The inverse system {(Xn, pnm)} gives rise to an inverse 
system {Txn

(Xn), (dpnm)xn
}. We can then form the inverse limit lim←−−Txn

(Xn).
By Proposition 2.7, mx = lim−−→ p∗nmxn

, where mxn
⊂ OXn,xn

is the unique maximal ideal of OXn,xn
. It 

follows that m2
x = lim−−→ p∗n(m2

xn
). Indeed, suppose that f ∈ m2

x. Then f is a finite sum f =
∑

n,m(p∗nfn)(p∗mgm), 
with fn ∈ mxn

and gm ∈ mxm
. If we let γ be the maximum over all indices n and m appearing in this sum, 

then f =
∑
finite

p∗γ(fγgγ), where fγ = p∗γnfn and gγ = p∗γmgm. But then f ∈ lim−−→ p∗n(m2
xn

). It is easy to see that 

this argument is independent of the choice of indices used to represent f . Thus, m2
x ⊆ lim−−→ p∗n(m2

xn
) and the 

other inclusion is clear. Therefore,

lim←−−Txn
(Xn) = lim←−−(mxn

/m2
xn

)∗

∼= (lim−−→(mxn
/m2

xn
))∗

∼= (lim−−→mxn
/ lim−−→m2

xn
)∗

∼= (mx/m
2
x)∗

= Tx(X). (2.13)

The commutativity of Diagram (2.12) now follows from a simple computation. �
Remark 2.14. If the transition maps pnm are assumed to be surjective submersions for all n, m, then 
Tx(X) = lim←−−Txn

(Xn) has the structure of a provariety as in Section 2.1.

Definition 2.15. We call a derivation of the sheaf of F -algebras OX , ξ : OX → OX a (global) vector field 
on X. It follows from definitions that for each x ∈ X, ξ induces a point derivation of the stalk ξx : OX,x → F , 
so that for all x ∈ X, ξx ∈ Tx(X).

Definition 2.16. For x ∈ X = lim←−−Xn, we define the cotangent space at x to be

T ∗
x (X) := lim−−→T ∗

xn
(Xn),

where T ∗
xn

(Xn) is the contangent space at xn = pn(x) of Xn. Observe that (T ∗
x (X))∗ = Tx(X) by Theo-

rem 2.10.
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2.3. Morphisms of provarieties

In this section, we show that the provariety constructed in Section 2.1 is an inverse limit in the category 
of locally ringed spaces. We first observe that the canonical projection maps: pk : X = lim←−−Xn → Xk are 
morphisms of locally ringed spaces with differentials dpk = πk : T (X) = lim←−−T (Xn) → T (Xk). (See (2.12).) 
This follows immediately from Equation (2.1), Proposition 2.7, and Theorem 2.10. The following basic 
lemma, which appears without proof in [11], will be used to establish the main result of this section.

Lemma 2.17. Let X be a topological space, and let B be a basis for the topology on X. Let F , G be sheaves 
of F -algebras on X. Suppose that for any U ∈ B, we have a homomorphism of F -algebras:

ΦU : F(U) → G(U),

such that if W ⊆ U with W ∈ B, then the following diagram commutes:

F(U)
ΦU

ρF
UW

G(U)

ρG
UW

F(W )
ΦW G(W ).

(2.18)

(i.e. Φ is a morphism of the B-presheaves associated to the sheaves F and G.) Then Φ lifts to a morphism 
of sheaves Φ̃ : F → G such that Φ̃U = ΦU for U ∈ B.

Proof. Let V ⊆ X be open. Then since F and G are sheaves of F -algebras,

F(V ) ∼= lim←−−
U⊆V,U∈B

F(U) and G(V ) ∼= lim←−−
U⊆V,U∈B

G(U).

Since the diagram in (2.18) is commutative, the universal property of inverse limits gives a morphism:

Φ̃U := lim←−−
U⊆V

ΦU : F(V ) → G(V ).

It is easy to see that Φ̃ is a morphism of sheaves with the desired property. �
We now state and prove the main result of this section.

Proposition 2.19. Let {(Xn, pnk)} be an inverse system of varieties with surjective transition morphisms, 
and let OXn

be the structure sheaf of Xn. Let (X = lim←−−Xn, OX) be the corresponding provariety. Let 
(Y, OY ) be a locally ringed space. Suppose we are given morphisms of locally ringed spaces {fn}n∈N with 
fn : (Y, OY ) → (Xn, OXn

) such that for any m ≥ n the following diagram commutes:

(Y,OY )

fn
fm

(Xn,OXn
) (Xm,OXm

).
pmn

(2.20)

Then the map f := lim←−− fn is a morphism of locally ringed spaces

f : (Y,OY ) → (X,OX).
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Moreover, for any y ∈ Y , the differential (df)y : Ty(Y ) → Tf(y)(X) is given by:

(df)y = lim←−−(dfn)y. (2.21)

Proof. Since the diagram in (2.20) is commutative, the universal property of inverse limits gives us a map of 
sets f := lim←−− fn : Y → lim←−−Xn = X. Since X has the inverse limit topology, it follows that f is continuous.

We claim that f induces a morphism of sheaves of F -algebras on X, f � : OX → f∗OY . To show this, we 
use Lemma 2.17. Let U ⊆ X be a basic open set. Then U = p−1

n (Un) for some open set Un ⊆ Xn. Since the 
comorphism p∗n : OXn

→ (pn)∗OX is injective for all n, the commutativity of Diagram (2.20) implies that 
the following diagram is also commutative:

OY (f−1
n (Un))

p∗nOXn
(p−1

n (Un))

f�
n◦(p∗

n)−1

p∗
m◦p∗

mn◦(p∗
n)−1

p∗mOXm
(p−1

mn(Un)).

f�
m◦(p∗

m)−1 (2.22)

For ease of notation, let f̃m := f �
m ◦(p∗m)−1 for each m ∈ N. It follows from Diagram (2.22) and the universal 

property of direct limits that

lim−−→
m≥n

f̃m : OX(U) = lim−−→
m≥n

p∗mOXm
(p−1

mn(Un)) → OY (f−1
n (Un)) = f∗OY (p−1

n (Un)) (2.23)

is a homomorphism of F -algebras. It is easy to see that this homomorphism is compatible with restriction 
maps of the B-presheaf ÕX . Thus, by Lemma 2.17 we obtain a morphism of sheaves of F -algebras:

f � : OX → f∗OY .

Since the maps fn are morphisms of locally ringed spaces, it follows from Proposition 2.7 that (f, f �) is a 
morphism of locally ringed spaces.

We now compute the differential of f . The diagram in (2.20) gives rise to a commutative diagram

Ty(Y )

(dfn)y
(dfm)y

Tfn(y)(Xn) Tfm(y)(Xm)
(dpmn)fm(y)

(2.24)

for any y ∈ Y . It follows from Theorem 2.10 that

(df)y = lim←−−(dfn)y : Ty(Y ) → lim←−−Tfn(y)(Xn) = Tf(y)(X). �
Corollary 2.25. Let {(Xn, pnk)n∈N} and {(Yn, qnk)}n∈N be inverse systems of varieties with surjective transi-
tion morphisms, and let (X = lim←−−Xn, OX) and (Y = lim←−−Yn, OY ) be the corresponding provarieties. Suppose 
that for each n ∈ N, we have morphisms fn : Xn → Yn such that for any m ≥ n the following diagram 
commutes:

Xm

pmn

fm
Ym

qmn

Xn

fn
Yn.

(2.26)
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Then the map f = lim←−− fn : (X, OX) → (Y, OY ) is a morphism of locally ringed spaces with differential:

df = lim←−− dfn : lim←−−T (Xn) → lim←−−T (Yn).

Proof. The hypotheses of the corollary imply that the maps

f̃n : lim←−−Xn
pn−−→ Xn

fn−−→ Yn

are morphisms of locally ringed spaces satisfying the conditions of Proposition 2.19. It then follows that 
lim←−− f̃n = lim←−− fn is a morphism of locally ringed spaces with differential lim←−− df̃n = lim←−− dfn. �
Example 2.27. For n ∈ N, let gn be a finite dimensional Lie algebra over C. Suppose we have a chain

g1
j12−−→ g2

j23−−→ g3 → · · · → gn
jn,n+1−−−−−→ · · · , (2.28)

where jn,n+1 : gn → gn+1 is an injective homomorphism of Lie algebras. The direct limit g := lim−−→ gn is 
naturally a Lie algebra, and the full vector space dual g∗ = lim←−− g∗n is a provariety. For λ ∈ g∗, the tangent 
space at λ is naturally the provariety:

Tλ(g∗) = lim←−−Tλn
(g∗n) = g∗

by Theorem 2.10 and Remark 2.14. Similarly, we can identify the cotangent space at λ ∈ g∗ with the Lie 
algebra g as a vector space:

T ∗
λ (g∗) = lim−−→T ∗

λn
(g∗n) = lim−−→(g∗n)∗ ∼= g. (2.29)

Suppose that for each n ∈ N, the Lie algebra gn is reductive with non-degenerate, associative form 
� ·,· . Then we can use the form � ·,·  to identify gn with g∗n, giving the vector space

g̃ := lim←−− gn (2.30)

the structure of a provariety. By Corollary 2.25, g̃ ∼= g∗ as provarieties.
In particular, consider the case where gn = gl(n, C) is the Lie algebra of n × n complex matrices. For 

X ∈ gn, let jn,n+1(X) be the (n + 1) × (n + 1) matrix with (jn,n+1(X))kj = Xkj for k, j ∈ {1, . . . , n} and 
(jn,n+1(X))kj = 0 otherwise. Then g = gl(∞) is the Lie algebra of infinite-by-infinite complex matrices 
with only finitely many non-zero entries. Moreover, the Lie algebra gn is reductive with non-degenerate, 
associative form � X, Y = tr(XY ), where tr(·) denotes the trace function. Using the trace form, the 
map j∗n,n+1 : g∗n+1 → g∗n is identified with the map pn+1,n : gn+1 → gn, where pn+1,n(X) = Xn, and Xn is 
the n × n submatrix in the upper left-hand corner of X ∈ gn+1. We denote the dual space of g, g̃ defined 
in Equation (2.30) as M(∞). Thus,

M(∞) := {(X(1), X(2), . . . , X(n), X(n + 1), . . . , ) : X(n) ∈ gn and X(n + 1)n = X(n)}. (2.31)

The provariety M(∞) is naturally isomorphic to the vector space of infinite-by-infinite complex matrices 
with arbitrary entries.

A similar construction works for any classical direct limit Lie algebra. For example, if gn = so(n, C)
is the Lie algebra of n × n complex skew-symmetric matrices, then so(∞) := lim−−→ gn is the Lie algebra 
of infinite-by-infinite skew-symmetric matrices with only finitely many nonzero entries. The dual space 
g̃ ∼= so(∞)∗ is the provariety of infinite-by-infinite complex skew-symmetric matrices.

We will see in the next section that the Lie–Poisson structure of g∗n has a natural generalization to the 
provariety g∗ = lim g∗n.
←−−
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2.4. Poisson provarieties

We briefly recall some basic definitions from Poisson geometry. A variety X is a Poisson variety if the 
structure sheaf OX is a sheaf of Poisson algebras. That is to say that for each open subset U ⊆ X, OX(U)
is a Poisson algebra and the restriction maps ρUV : OX(U) → OX(V ) are homomorphisms of Poisson 
algebras. This is equivalent to specifying a regular bivector field π ∈ ∧2TX, whose Schouten–Nijenhuis 
bracket [π, π] = 0. We have the relation

{f, g}(x) = πx(dfx, dgx), (2.32)

for x ∈ X and f, g ∈ OX(X), where {·,·} denotes the Poisson bracket on OX(X). For a regular function 
f ∈ OX(X), we define the Hamiltonian vector field ξf by

ξf (g) = {f, g},

for g ∈ OX(X). The Poisson bivector π defines a bundle map π̃ : T ∗(X) → T (X), given by

π̃(λ)(μ) = π(λ, μ),

for λ, μ ∈ T ∗(X). It follows from (2.32) that π̃(df) = ξf . We refer to π̃ as the anchor map.
Given two Poisson varieties (X1, π1), (X2, π2), a morphism φ : X1 → X2 is said to be Poisson if the 

comorphism φ� : OX2 → φ∗OX1 is a morphism of sheaves of Poisson algebras. In particular, we say that 
(X1, π1) ⊂ (X2, π2) is a Poisson subvariety if the inclusion map i : X1 → X2 is Poisson.

Let (Xn, pnm) be an inverse system of varieties with surjective transition morphisms. Suppose that each 
of the varieties Xn is Poisson and the morphisms pnm : Xn → Xm are Poisson. We claim that the structure 
sheaf OX constructed in Section 2.1 is a sheaf of Poisson algebras. We begin with the following lemma 
whose proof is elementary.

Lemma 2.33.

(1) Let (An, φnm) be a directed system of Poisson algebras. That is, An is a Poisson algebra for each n
and φnm : An → Am is a homomorphism of Poisson algebras for each n ≤ m. Then the direct limit 
A = lim−−→An has a natural Poisson algebra structure and is a direct limit in the category of Poisson 
algebras.

(2) Let (Bn, ψnm) be an inverse system of Poisson algebras. Then lim←−−Bn has the structure of a Poisson 
algebra and is the inverse limit in the category of Poisson algebras.

Proposition–Definition 2.34. Let (Xn, pnm) be an inverse system of Poisson varieties Xn, with surjective 
Poisson morphisms pnm, and let (X = lim←−−Xn, OX) be the corresponding provariety. Then the structure sheaf 
OX constructed in Section 2.1 is a sheaf of Poisson algebras. We call X = lim←−−Xn a Poisson provariety.

Proof. It follows from (2.1) and Part (1) of Lemma 2.33 that the B-presheaf ÕX is a B-presheaf of Poisson 
algebras. Part (2) of Lemma 2.33 and Equation (2.2) then imply that the sheaf OX is a sheaf of Poisson 
algebras. �

The following lemma will play an important role in the constructions that follow.

Lemma 2.35. Let {Vn, φnm} be a directed system of vector spaces. Then for any k ∈ N(∧
k lim−−→Vn

)∗
∼= lim←−−

[(∧
k Vn

)∗]
.

n n
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Proof. By universal properties of direct limits, there exist φ� : V� → lim−−→
n

Vn compatible with transition 

functions φ�m : V� → Vm for all � ≤ m. These define maps ∧kφ� : ∧kV� → ∧k lim−−→
n

Vn compatible with the 

transition maps ∧kφ�m : ∧kV� → ∧kVm. This induces a map lim−−→
n

∧kφn : lim−−→
n

∧kVn → ∧k lim−−→
n

Vn. Dualizing, 

we obtain the desired map

ψ :
(∧

k lim−−→
n

Vn

)∗
→

(
lim−−→
n

∧
k Vn

)∗
= lim←−−

n

[(∧
k Vn

)∗]
.

It is straightforward to verify that ψ is a vector space isomorphism. Concretely, ψ(f) = (f1, f2, . . .), where

fn = f ◦ ∧kφn,

for each n. �
Let X = lim←−−Xn be a Poisson provariety. As in the finite dimensional case, the Hamiltonian vector field 

ξf of f is defined by ξf (g) = {f, g} for any f, g ∈ OX(X). The cotangent space T ∗
x (X) = lim−−→T ∗

xn
(Xn) is 

spanned by the differentials dfx of global functions f ∈ OX(X) ∼= lim−−→OXn
(Xn). Thus, for each x ∈ X, the 

Poisson bracket {·,·} defines an element πX,x ∈
(
∧2T ∗

xX
)∗ given by

πX,x(dfx, dgx) := {f, g}(x), (2.36)

cf. (2.32). By Lemma 2.35, we can view πX,x as an element of lim←−−∧2Txn
Xn at each x ∈ X. We define the 

Poisson bivector of X, πX to be the element of lim←−−∧2TXn whose value at each x ∈ X is given by (2.36). 
The bivector πX is an inverse limit of the Poisson bivector on each Xn.

Proposition 2.37. Let X = lim←−−Xn be a Poisson provariety, and let πn ∈ ∧2TXn be the bivector fields 
defining the Poisson structure on Xn. Then πX = lim←−−πn ∈ lim←−−∧2TXn. For each x ∈ X, the anchor map 
π̃X,x : T ∗

xX → TxX is

π̃X,x(λn) =
(
dpn1π̃n,xn

(λn), dpn2π̃n,xn
(λn), . . . , π̃n,xn

(λn), π̃n+1,xn+1(dp∗n+1,nλn), . . .
)
,

for λn ∈ lim−−→T ∗
xn
Xn, a representative of λn ∈ T ∗

xn
(Xn) in the direct limit.

Proof. This is an elementary computation using the definition of the Poisson bracket {·,·} on X. �
Example 2.38. For n ∈ N, let gn be a finite dimensional, complex Lie algebra. Then g∗n is a Poisson variety 
with the Lie–Poisson structure. The Poisson bracket of linear functions xn, yn ∈ gn is given by their Lie 
bracket, i.e.

{xn, yn}(μn) = μn([xn, yn]), (2.39)

for μn ∈ g∗n (see for example, Section 1.3, [5]). We denote the corresponding bivector by πn ∈ ∧2Tg∗n. We let 
ad∗ denote the coadjoint action of gn on g∗n. Equation (2.39) implies the anchor map π̃n for the Lie–Poisson 
structure on g∗n is given by

π̃n,μn
(xn) = − ad∗(xn)μn. (2.40)

Now suppose we have a chain of Lie algebras as in Equation (2.28) of Example 2.27:

g1
j12−−→ g2

j23−−→ g3 → · · · → gn
jn,n+1−−−−−→ · · · ,
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and let g := lim−−→ gn be the corresponding direct limit Lie algebra. Since the homomorphisms jn,n+1 :
gn → gn+1 are inclusions, their pullbacks pn+1,n : g∗n+1 → g∗n are Poisson submersions with respect to the 
Lie–Poisson structures on g∗n+1 and g∗n. Thus, g∗ = lim←−− g∗n is a Poisson provariety with bivector πg∗ = lim←−−πn.

For μ ∈ g∗, we identify the cotangent space T ∗
μ(g∗) with g as in (2.29). Then Proposition 2.37 and 

Equation (2.40) imply that the anchor map is

π̃g∗,μ(xn) =
(
− ad∗(xn)μn|g1 , . . . ,− ad∗(xn)μn|gn−1 ,− ad∗(xn)μn, . . . ,− ad∗(xn)μk, . . .

)
, (2.41)

for xn ∈ gn ⊂ g, μ ∈ g∗, and where − ad∗(xn)μn|g�
denotes the restriction of the linear functional 

− ad∗(xn)μn ∈ g∗n to g� for � < n.

By Equation (2.41), the kernel of the anchor map consists precisely of the covectors xn ∈ T ∗
μn

g∗n ⊆ T ∗
μg

∗ =
g whose coadjoint action ad∗(xn) annihilates μk for k ≥ n. For k ≥ n, let gμk

n := {xn ∈ gn : ad∗(xn)μk = 0}
denote the annihilator of μk in gn.

Proposition 2.42. Let μ ∈ g∗ and let Ker π̃g∗
μ be the kernel of the anchor map π̃g∗ at μ. Then

Ker π̃g∗
μ = lim−−→

n

⋂
k≥n

gμk
n . (2.43)

In the case where gn is reductive with adjoint group Gn, we can use the non-degenerate Gn-equivariant 
form � ·,·  on gn to transfer the Lie–Poisson structure of g∗n to gn. The coadjoint action of Gn on g∗n
is then identified with the adjoint action of Gn on gn. The induced maps pn+1,n : gn+1 → gn are Poisson 
submersions and the provariety g̃ = lim←−− gn defined in Equation (2.30) is a Poisson provariety. For example, 
the provariety M(∞) defined in Equation (2.31) is a Poisson provariety.

Let X be a Poisson provariety with bivector πX ∈ lim←−−∧2TXn. For each x ∈ X, consider the subspace

X(X)x = {(ξf )x : f ∈ OX(X)} = Im{π̃X,x(T ∗
x (X))} ⊆ Tx(X). (2.44)

As in the finite dimensional case, we refer to the union X(X) =
⋃

x∈X X(X)x as the characteristic distribution
of X.

If (X, OX) is a finite dimensional, non-singular, Poisson variety over C then X(X) is an integrable 
distribution. Its leaves are immersed Poisson analytic submanifolds of (S, {·,·}S) where the Poisson bracket 
on S is induced by a symplectic form ωS on S (see Chapter 2, [26] for example). The Poisson submanifolds 
(S, {·,·}S) are referred to as symplectic leaves of X. For example, let g∗n be the dual space of a finite 
dimensional Lie algebra over C with the Lie–Poisson structure πn as in Example 2.38. Then the symplectic 
leaves of (g∗n, πn) are the coadjoint orbits of Gn on g∗n equipped with Kostant–Kirillov symplectic structure, 
where Gn is any connected Lie group with Lie algebra gn (see Proposition 3.1, [26]).

In infinite dimensions, it is not known whether the characteristic distribution is integrable even for the 
case of Banach–Poisson manifolds [24]. In Section 4, we show that for the dual g∗ of a direct limit Lie 
algebra g, the characteristic distribution is integrable, and that the symplectic foliation of g∗ is given by the 
coadjoint orbits of an Ind-group G on g∗ with Lie algebra g. For this, we need to study ind-varieties and 
direct limit groups in more detail.

3. Ind-groups

3.1. Basic definitions

In this section, we recall some basic facts about ind-varieties. For further reading, see [18].
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For each n ∈ N, let Xn be a finite dimensional variety defined over the field F . Suppose for any m ∈ N

with n ≤ m, we have a locally closed embedding inm : Xn → Xm. We call the direct limit X := lim−−→Xn of 
the varieties {Xn}n∈N, an ind-variety.1

As a topological space X is endowed with the final topology (i.e. the finest topology for which the 
inclusion maps ιn : Xn ↪→ X are continuous), so that U ⊂ X is open if and only if U ∩Xn is open for all 
n ∈ N. It is easy to see that Z ⊂ X is closed if and only if Z ∩Xn is closed for all n ∈ N. An ind-variety 
X is said to be irreducible if its underlying topological space is irreducible. One notes that if X = lim−−→Xn

with Xn irreducible for all n, then X is irreducible.
For any open set U ⊆ X, the structure sheaf is given by OX(U) = lim←−−OXn

(Un), where Un = U ∩Xn. 
(When there is no ambiguity, we identify Xn with its image ιn(Xn) ⊆ X.) A map f : X → Y is a morphism 
of ind-varieties if there is a strictly increasing function m : N → N, such that the restriction fn of f to 
Xn ⊆ X is a morphism of varieties fn : Xn → Ym(n). The map f induces a morphism of ringed spaces 
(X, OX) → (Y, OY ). Two ind-variety structures on the same set X are said to be equivalent if the identity 
map IX : X → X is an isomorphism of ind-varieties. We will not distinguish between equivalent ind-variety 
structures.

The product X × Y of two ind-varieties X and Y is naturally an ind-variety, by viewing X × Y =
lim−−→(X × Y )n, where (X × Y )n = Xn × Yn, and the transition maps ιnm : (X × Y )n → (X × Y )m are given 
by ιnm = ιXnm × ιYnm, where ιXnm : Xn → Xm and ιYnm : Yn → Ym are the corresponding transition maps 
for X and Y .

Given an element x of an ind-variety X = lim−−→Xn, there exists k ∈ N so that x ∈ X� for all � ≥ k. 
We define the tangent space Tx(X) to X at x to be Tx(X) = lim−−→

�≥k

Tx(X�). For a morphism of ind-varieties 

f : X → Y , the differential (df)x at x ∈ X is given by

(df)x = lim−−→
�≥k

(df�)x : lim−−→
�≥k

Tx(X�) → lim−−→
�≥k

Tf(x)(Ym(�)),

where f� : X� → Ym(�) is the morphism obtained by restricting f to X�.
The next proposition asserts that an ind-variety is a direct limit in the category of ringed spaces.

Proposition 3.1. Let (X = lim−−→Xn,OX) be an ind-variety and let (Y, OY ) be a locally ringed space. For each 
i ∈ N, suppose we have morphisms of locally ringed spaces

fn : (Xn,OXn
) → (Y,OY )

such that the following diagram commutes.

(Y,OY )

(Xn,OXn
)

fn

inm (Xm,OXm
).

fm (3.2)

Then f := lim−−→ fn : (X, OX) → (Y, OY ) is a morphism of ringed spaces with differential: df = lim−−→ dfn :
T (X) → T (Y ).

1 The traditional definition of an ind-variety stipulates that the embeddings inm : Xn → Xm are closed (see for example [18,9]). 
We require a slightly more general notion for the objects we consider.
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Proof. By the universal property of the direct limit, there is a map of sets f := lim−−→ fn : lim−−→Xn → Y . We note 

that f is continuous, since X = lim−−→Xn =
⋃
n∈N

Xn has the final topology and each of the maps fn : Xn → Y

are continuous.
We claim that f induces a morphism of sheaves of F -algebras on Y , f � : OY → f∗OX . The commutative 

diagram in (3.2) gives rises to a commutative diagram of morphisms of sheaves of F -algebras on Y :

OY

f�
n

f�
m

fn,∗OXn
fm,∗OXm

,
i�nm

(3.3)

and {fm,∗OXm
, i�nm} is an inverse system of sheaves of F -algebras on Y . By Exercise II 1.12, [14], lim←−− fn,∗OXn

is a sheaf of F -algebras on Y , which satisfies the universal property of inverse limits in the category of sheaves 
of F -algebras on Y . Thus, we get a morphism of sheaves of F -algebras on Y :

lim←−− f �
n : OY → lim←−− fn,∗OXn

.

It follows from definitions that lim←−− fn,∗OXn
= f∗OX . If we let f � := lim←−− f �

n, then (f, f �) : (X, OX) → (Y, OY )
is a morphism of ringed spaces.

We now compute the differential df . Let x ∈ Xn ⊂ X. The commutative diagram in (3.2) yields a 
commutative diagram:

T (Y )f(x)

Tx(Xn)

(dfn)x

(dinm)x
Tx(Xm).

(dfm)x
(3.4)

By the universal property of direct limits, we obtain a map:

lim−−→
m≥n

(dfm)x : lim−−→
m≥n

Tx(Xm) → Tf(x)(Y ).

Since Tx(X) = lim−−→
m≥n

Tx(Xm), we have (df)x = lim−−→
m≥n

(dfm)x. �

3.2. Affine direct limit groups

Let {Gn, inm}m≥n∈N be a directed system of affine algebraic groups, and let inm : Gn → Gm be a 
homomorphic embedding of algebraic groups. Then the image of Gn is closed in Gm (see for example, 
Section 7.2, [15]). The (affine) direct limit group G = lim−−→Gn is then naturally an ind-variety.

For G = lim−−→Gn a direct limit group, we consider the tangent space at the identity, Te(G). We have 
Te(G) = lim−−→Te(Gn) ∼= lim−−→ gn, where gn = Lie(Gn) ∼= Te(Gn), and we think of Lie(Gn) as the Lie algebra of 
right invariant vector fields on Gn. The ind-variety g := lim−−→ gn = Lie(G) is a direct limit Lie algebra (see 
Example 2.27).

Example 3.5. For each n ∈ N, let Gn := GL(n, C) be the group of n ×n invertible matrices over the complex 
numbers. We can embed Gn in Gn+1 via the map

inn+1 : g ↪→
[
g 0
0 1

]
∈ Gn+1.
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This map is clearly a closed embedding, so we can form the direct limit group:

GL(∞) := lim−−→Gn. (3.6)

Of course, Lie(GL(∞)) = gl(∞) = lim−−→ gl(n, C) is the direct limit Lie algebra discussed in Example 2.27.

An algebraic action of a direct limit group G on an ind-variety V is a morphism of ind-varieties f :
G × V → V such that each restriction fn = f |Gn×Vn

defines an algebraic action of Gn on Vn, and the 
following diagram commutes:

Gn × Vn

ιGnm×ιVnm

fn
Vn

ιVnm

Gm × Vm
fm

Vm ,

i.e. f = lim−−→ fn. If the algebraic action of G on V is transitive, we say that V is a homogeneous space for G. 
If each Vn is a vector space over the base field F , then V is an algebraic representation. Any algebraic 
representation ρ : G × V → V induces a representation dρ : g × V → V of g by differentiation.

Example 3.7. The adjoint representation Ad : G × g → g defines an algebraic representation of G on g, and 
its differential ad : g × g → g is the adjoint representation of g:

ad(X)(Y ) = [X,Y ]k,

where X ∈ gn, Y ∈ gm, k = max{n, m}, and [X, Y ]k is the bracket of X and Y thought of as elements 
of gk.

The directed system ιnm : gn → gm induces an inverse system ι∗nm : g∗m → g∗n for n ≤ m. The transition 
maps ι∗nm : g∗m → g∗n are Gn-equivariant with respect to the coadjoint action of Gn ⊂ Gm on g∗m and g∗n. 
Thus, we obtain an action of G on the dual space of its Lie algebra g∗ = lim←−− g∗n, which we refer to as the 
coadjoint action of G on g∗. Concretely, let λ = (λ1, . . . , λn, λn+1, . . . , ) ∈ g∗. For g ∈ G, there exists n > 0
so that g ∈ Gn, and then

Ad∗(g) · λ = ((Ad∗(g) · λn)|g1 , . . . , (Ad∗(g) · λn)|gn−1 ,Ad∗(g) · λn, . . . ,Ad∗(g) · λk, . . . ), (3.8)

where (Ad∗(g) · λn)|gj
denotes the restriction of Ad∗(g) · λn ∈ g∗n to gj for j < n.

As has already been discussed in Section 2.4, g∗ is a Poisson provariety. In the next section, we will see 
that the coadjoint orbits of G on g∗ form a weak symplectic foliation of the Poisson provariety g∗. To do 
this, we first need to endow the coadjoint orbits described in (3.8) with the structure of a G-homogeneous 
ind-variety in a natural way. The key ingredient is the following proposition.

Proposition 3.9. Let H be a closed subgroup of a direct limit group G. Then H is a direct limit group, and 
the quotient space G/H is an ind-variety and thus a homogeneous space for G. For any g ∈ G, the tangent 
space TgH(G/H) can be identified with the ind-variety g/Ad(g)h.

Conversely, if G acts transitively on a nonempty set X and the isotropy group Gx of any x ∈ X is closed, 
then X can naturally be given the structure of an ind-variety by identifying X with the G-homogeneous 
ind-variety G/Gx. The resulting ind-variety structure on X is independent of the choice of point x ∈ X.
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Proof. Write G = lim−−→Gn and Hn = H ∩ Gn for each n ∈ N. Then H = lim−−→Hn is naturally a direct limit 
subgroup of G, and we have the following commutative diagram with exact rows:

0 Hn

ιnm

Gn

ιnm

Gn/Hn

ιnm

0

0 Hm Gm Gm/Hm 0

where ιnm denotes the transition map Gn → Gm as well as its restriction to Hn and the induced map on 
the quotient inm : Gn/Hn → Gm/Hm. The transition maps inm : Gn/Hn → Gm/Hm are locally closed 
embeddings. By exactness of the direct limit functor, the sequence

0 → lim−−→Hn → lim−−→Gn → lim−−→Gn/Hn → 0

is exact, so lim−−→Gn/Hn
∼= lim−−→Gn/ lim−−→Hn = G/H is naturally an ind-variety. It follows from definitions that 

the action of G on G/H is algebraic, so that G/H is a G-homogeneous space.
Let gH ∈ G/H and consider the tangent space TgH(G/H). By our discussion above, gH can be identified 

with a unique element gnHn ∈ lim−−→k
Gk/Hk. It follows that

TgH(G/H) = lim−−→
k≥n

TgnHk
(Gk/Hk) = lim−−→

k≥n

gk/Ad(gn)hk ∼= lim−−→
k≥n

gk/ lim−−→
k≥n

Ad(gn)hk = g/Ad(g)h,

where we have used right invariant vector fields to identify the tangent space TxHk
(Gk/Hk) with gk/Ad(x)hk

for any x ∈ Gk.
Conversely, suppose that G acts on a nonempty set X. Let x ∈ X. Then X = G · x =

⋃∞
n=1 Gn · x. Since 

Gx is closed, Gx
n = Gn ∩Gx is closed for each n. Thus, Gn · x can be given the structure of a variety such 

that Gn · x ∼= Gn/G
x
n as algebraic varieties. Thus,

X = lim−−→Gn · x ∼= lim−−→Gn/G
x
n
∼= lim−−→Gn/ lim−−→Gx

n = G/Gx

has the structure of G-homogeneous ind-variety. It is easy to see that the choice of any other point y ∈ X

produces an equivalent ind-variety structure on X. �
For a point λ ∈ g∗, we denote its coadjoint orbit by G ·λ. Using Proposition 3.9, we can endow G ·λ with 

the structure of a G-homogeneous ind-variety.

Corollary 3.10. Let λ = (λ1, . . . , λn, . . . , λk, . . . ) ∈ g∗, with λk ∈ g∗k, and let G · λ ⊂ g∗ denote the coadjoint 
orbit through λ. Then the isotropy group of λ, Gλ is given by

Gλ = lim−−→Gλ
n where Gλ

n = Gλ ∩Gn =
⋂
k≥n

Gλk
n , (3.11)

where Gλk
n is the isotropy group of λk ∈ g∗k under the coadjoint action of Gn ⊂ Gk.

Thus, Gλ
n is closed, so that

G · λ = lim−−→Gn · λ ∼= lim−−→Gn/G
λ
n
∼= G/Gλ (3.12)

has the structure of a G-homogeneous ind-variety. For any μ ∈ G · λ, we have

Tμ(G · λ) = g/gμ = lim−−→ gn/g
μ
n = Tμ(G · μ), (3.13)

where gμ = Lie(Gμ) with Gμ ⊂ G the isotropy group of μ.
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Proof. We need only verify that

Gλ
n =

⋂
k≥n

Gλk
n , (3.14)

since the other statements of the corollary then follow immediately from Proposition 3.9. But (3.14) follows 
from the definition of the coadjoint action in Equation (3.8). �
4. Symplectic foliation of g∗

4.1. Kostant–Kirillov form

Throughout this section, let G = lim−−→Gn be an (affine) direct limit group, with Gn a connected, complex, 
affine algebraic group. Let λ = (λ1, . . . , λn, . . . , λk, . . . ) be an element of the dual g∗ = lim←−− g∗n of the Lie 
algebra g = lim−−→ gn of G. Since Gn is connected for each n, the coadjoint orbit G ·λ = lim−−→Gn ·λ is irreducible. 
In this section, we develop an analogue of the Kostant–Kirillov form on G · λ.

We now construct a 2-form on G · λ. That is to say, that for each μ ∈ G · λ, we construct an element 
(ω∞)μ ∈ (∧2Tμ(G · λ))∗, which is closed with respect to a natural exterior derivative on (∧2T (G · λ))∗. By 
Equation (3.13), it suffices to define ω∞ at μ = λ.

For each n ∈ N, we have a natural projection pn : Gn · λ ∼= Gn/G
λ
n → Gn/G

λn
n

∼= Gn · λn, where 
Gn · λn ⊂ g∗n is the Gn-coadjoint orbit of λn ∈ g∗n. Consider the diagram

Gn · λ
ιn,n+1
↪−−−−→ Gn+1 · λ

↓ pn ↓ pn+1

Gn · λn Gn+1 · λn+1.

(4.1)

The map pn : Gn · λ → Gn · λn is easily seen to be a surjective submersion with differential at λ ∈ g∗

(dpn)λ : gn/gλn → gn/g
λn
n given by (dpn)λ(X + gλn) = X + gλn

n ,

for X ∈ gn. For n ∈ N, let ωn be the Kostant–Kirillov form on the coadjoint orbit Gn · λn. We claim that

dι∗n,n+1(dp∗n+1ωn+1)λ = (dp∗nωn)λ. (4.2)

Indeed, let X + gλn, Y + gλn ∈ gn/g
λ
n. It is straightforward to verify that

dι∗n,n+1(dp∗n+1ωn+1)λ(X + gλn, Y + gλn) = λn+1([X,Y ]).

Similarly, dp∗nωn(X + gλn, Y + gλn) = λn([X, Y ]). Since λn+1|gn
= λn, these expressions agree. Thus, by 

Lemma 2.35, we can define an element of the inverse limit lim←−−∧2T ∗(Gn · λ) ∼= (∧2 lim−−→T (Gn · λ))∗ =
(∧2T (G · λ))∗ by

ω∞ := lim←−− dp∗nωn = (dp∗1ω1, dp
∗
2ω2, dp

∗
3ω3, . . .). (4.3)

By Lemma 2.35, the alternating k-forms on T (G · λ) can be identified with elements of the space 
lim←−−
n

∧
k T ∗(Gn · λ). We consider the following bicomplex, where dk,n are the exterior derivatives and the 

∧kdι∗n,n+1 are obtained from pullbacks of the transition maps ιn,n+1 : Gn → Gn+1 in the directed system 
defining G:
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...

dk−1,1

...

dk−1,2

...

dk−1,3

∧kT ∗(G1 · λ)

dk,1

∧kT ∗(G2 · λ)
∧kdι∗12

dk,2

∧kT ∗(G3 · λ)
∧kdι∗23

dk,3

· · ·
∧kdι∗34

∧k+1T ∗(G1 · λ)

dk+1,1

∧k+1T ∗(G2 · λ)
∧k+1dι∗12

dk+1,2

∧k+1T ∗(G3 · λ)
∧k+1dι∗23

dk+1,3

· · ·
∧k+1dι∗34

∧k+2T ∗(G1 · λ)

dk+2,1

∧k+2T ∗(G2 · λ)
∧k+2dι∗12

dk+2,2

∧k+2T ∗(G3 · λ)
∧k+2dι∗23

dk+2,3

· · ·
∧k+2dι∗34

...
...

...

(4.4)

It is straightforward to verify that all the squares in the bicomplex (4.4) commute. Thus, there is a map

dk,∞ : lim←−−
n

∧
k T ∗(Gn · λ) → lim←−−

n

∧
k+1 T ∗(Gn · λ),

for each k ≥ 0, given by

dk,∞(α1, α2, α3, . . .) = (dk,1(α1), dk,2(α2), dk,3(α3), . . .), (4.5)

where (α1, α2, α3, . . .) ∈ lim←−−
n

∧
kT ∗(Gn · λ). In particular, d0,∞ : O(G · λ) → T ∗(G · λ) coincides with the 

usual notion of the differential for functions in O(G · λ) = lim←−−O(Gn · λ).
The 2-form ω∞ ∈ (∧2T (G · λ))∗ induces a map ω̃∞ : T (G · λ) → T ∗(G · λ) given by:

(ω̃∞)μ(Y )(Z) = ω∞,μ(Y,Z) for μ ∈ G · λ, Y, Z ∈ Tλ(G · μ) = Tμ(G · μ). (4.6)

Following [24], we call ω∞ a weak symplectic form on G · λ if the following two conditions are satisfied:
(1) The form ω∞ is closed with respect to the differential d2,∞ defined in Equation (4.5).
(2) For each μ ∈ G · λ, the map (ω̃∞)μ defined in (4.6) is an injective, regular linear map from the 

linear ind-variety Tμ(G · μ) = lim−−→Tμ(Gn · μn) to the linear provariety T ∗
μ(G · μ) = lim←−−T ∗

μ(Gn · μn) (see Re-
mark 2.14).

Proposition 4.7. For λ ∈ g∗, the coadjoint orbit (G · λ, ω∞) is a weak symplectic ind-variety. If we identify 
Tλ(G · λ) ∼= g/gλ, then ω∞ is given by the formula

(ω∞)λ(X + gλ, Y + gλ) = λ([X,Y ]), (4.8)

for X, Y ∈ g.

Proof. Equation (4.8) follows directly from the definition of ω∞. We now show that ω∞ satisfies (2) in 
the definition of a weak symplectic form. Without loss of generality, we may assume μ = λ. Consider the 
map (ω̃∞)λ defined in (4.6). We first show that (ω̃∞)λ is injective. Suppose that X ∈ gn is such that 
(ω∞)λ(X + gλn, Y + gλk) = 0 for all Y ∈ gk and k ≥ 1. For k ≥ n, Equation (4.8) implies that λk([X, Y ]) = 0
for all Y ∈ gk. Thus, X ∈

⋂
gλk
n = gλn.
k≥n
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We now show that (ω̃∞)λ is a morphism. By Propositions 2.19 and 3.1, (ω̃∞)λ is a morphism if for every 
m, k ∈ N, the following composition of maps

gm/gλm ↪→ g/gλ
(ω̃∞)λ−−−−−→ lim←−−

n

T ∗
λ (gn/gλn) pk−−→ T ∗

λ (gk/gλk)

is a morphism of finite dimensional affine varieties. This is an elementary computation using (4.8).
We now show that the 2-form ω∞ is closed with respect to the differential d2,∞ defined in (4.5). Since the 

Kostant–Kirillov form ωn on Gn ·λn is closed, we have dnωn = 0, where dn :
∧2

T ∗(Gn ·λn) →
∧3

T ∗(Gn ·λn)
is the exterior derivative on Gn · λn = Gn/G

λn
n . Thus,

d2,∞ = d2,∞(dp∗1ω1, dp
∗
2ω2, dp

∗
3ω3, . . .)

= (d2,1(dp∗1ω1), d2,2(dp∗2ω2), d2,3(dp∗3ω3), . . .)

= (dp∗1(d1ω1), dp∗2(d2ω2), dp∗3(d3ω3), . . .)

= (dp∗1(0), dp∗2(0), dp∗3(0), . . .)

= 0,

so the 2-form ω∞ is closed. �
Remark 4.9. Suppose that G = lim−−→Gn, where Gn is a reductive algebraic group. Then Lie(Gn) = gn is 
reductive with a non-degenerate, Ad(Gn)-invariant form � ·,· , which allows us to identify gn with g∗n. 
The induced isomorphism g∗ ∼= g̃ = lim←−− gn is equivariant with respect to the coadjoint action of G on g∗

and the adjoint action of G on g̃:

Ad(g)(x1, x2, x3, . . .) =
(
Ad(g)xn|g1 , . . . ,Ad(g)xn|gn−1 ,Ad(g)xn,Ad(g)xn+1, . . .

)
,

where g ∈ Gn. In particular, we can transfer the symplectic form on coadjoint orbits in g∗ to adjoint orbits 
in g̃.

In the next theorem, we will consider the inclusion of the coadjoint orbits into the provariety g∗ and the 
compatibility of the symplectic structure on coadjoint orbits with the Poisson structure on g∗. Consider the 
natural inclusion

i = lim−−→ in : lim−−→Gn · λ ↪→ g∗, (4.10)

where in : Gn/G
λ
n ↪→ g∗ is given by

in(gnGλ
n) = (Ad∗(gn)λn|g1 , . . . , (Ad∗(gn)λn)|gn−1 ,Ad∗(gn)λn,Ad∗(gn)λn+1, . . . ). (4.11)

Via the map i, the coadjoint orbits G · λ = lim−−→Gn · λ are irreducible, immersed ind-subvarieties that 
are tangent to the characteristic distribution X(g∗) defined in (2.44). More precisely, we have the following 
theorem.

Theorem 4.12. (1) The natural inclusion i : G · λ ↪→ g∗ is an injective immersion of the irreducible 
ind-variety G · λ into the provariety g∗.

(2) The coadjoint orbits are tangent to the characteristic distribution of the Poisson provariety (g∗, πg∗):

(di)λ(Tλ(G · λ)) = X(g∗)λ, (4.13)



1508 M. Colarusso, M. Lau / Journal of Pure and Applied Algebra 220 (2016) 1489–1516
(3) The symplectic form ω∞ on G · λ is consistent with the Poisson structure of g∗, i.e.

ω∞,λ(Y,Z) = πg∗,λ([π̃g∗
,λ]−1 ◦ diλ(Y ), [π̃g∗

,λ]−1 ◦ diλ(Z)) (4.14)

where [π̃g∗
,λ] is the bijective morphism [π̃g∗

,λ] : T ∗
λ (g∗)/Ker π̃g∗

,λ → X(g∗)λ induced by the anchor map 
π̃g∗

,λ (see Equation (2.41)).

Proof. Written explicitly, the inclusion in in (4.11) is simply the map lim←−−j
inj , where inj : Gn/G

λ
n → g∗j is 

given by

inj : gnG
λ
n �→ Ad∗(gn)λj , (4.15)

for all j ≥ n, and

inj : gnG
λ
n �→ (Ad∗(gn)λn)|gj

, (4.16)

for j < n. By Propositions 3.1 and 2.19, the map i : G ·λ ↪→ g∗ is a morphism if the maps ijn are morphisms 
for all j, n ∈ N. This follows from the universal property of the geometric quotient Gn/G

λ
n.

By Propositions 3.1 and 2.19, it follows that the differential

di : T (G · λ) = lim−−→
n

T (Gn · λ) → T (g∗) = lim←−−
j

T (g∗j ) is precisely di = lim−−→
n

lim←−−
j

dinj .

Using Equations (4.15) and (4.16), we see that (din)λ : gn/gλn → Tλ(g∗) is given by

(din)λ(Xn + gλn) = (ad∗(Xn)λ1|g1 , . . . , (ad∗(Xn)λn)|gn−1 , ad∗(Xn)λn, . . . , ad∗(Xn)λk, . . . ). (4.17)

From Equation (4.17), it follows that (di)λ = lim−−→(din)λ is injective. Thus, G ·λ is an immersed ind-subvariety 
of g∗.

Part (2) follows directly from Equations (2.41) and (4.17). Indeed,

X(g∗)λ = Im π̃g∗,λ

= lim−−→
n

((ad∗(gn)λn|g1 , . . . , (ad∗(gn)λn)|gn−1 , ad∗(gn)λn, . . . , ad∗(gn)λk, . . . )

= diλ(Tλ(G · λ)).

Finally, we show that (4.14) holds. Without loss of generality, we may assume that Y = Ym + gλm and 
Z = Zn + gλn with Ym ∈ gm, Zn ∈ gn, and n ≥ m. By (4.8), the left-hand side of (4.14) is λn([Ym, Zn]n), 
where [Ym, Zn]n denotes the Lie bracket of Ym, Zn as elements of gn.

To compute the right-hand side of (4.14), note that Ker π̃g∗
,λ = gλ, by (2.43) and (3.11). Then (2.41)

and (4.17) imply that [π̃g∗
,λ]−1 ◦ diλ is the identity map on g/gλ. Therefore,

πg∗,μ([π̃g∗
,λ]−1 ◦ diλ(Y ), [π̃g∗

,λ]−1 ◦ diλ(Z)) = πg∗,λ(Ym + gλm, Zn + gλn).

Proposition 2.37 implies that πg∗,λ = lim←−−πg∗
n,λn

, where πg∗
n,λn

is the bivector for the Lie–Poisson structure 
on g∗n evaluated at λn. Thus, πg∗,λ(Ym + gλm, Zn + gλn) = λn([Ym, Zn]n), and Equation (4.14) holds. �

Equation (4.14) lets us define Hamiltonian vector fields for functions on G · λ obtained as pullbacks of 
functions on g∗, giving a Poisson algebra structure on the set of such functions. The following proposition 
is a restatement of Proposition 7.2 in [24]. The proof given there carries over to our case.
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Proposition 4.18. Let λ ∈ g∗, let (G · λ, ω∞) be the coadjoint orbit through λ, and let i : (G · λ, ω∞) ↪→ g∗ be 
the inclusion morphism given in Equation (4.10).

(1) Let U ⊂ g∗ be open and suppose μ ∈ i−1(U) ⊂ G · λ. Let f ∈ Og∗(U), so that f ◦ i ∈ OG·λ(i−1(U)). 
The differential d(f ◦ i)(μ) ∈ T ∗

μ(G · λ) is given by:

d(f ◦ i)(μ) = ω∞,μ(di−1
μ (ξf )μ, ·).

(2) Let U ⊂ g∗ be open. Then i∗Og∗(U) ⊂ OG·λ(i−1(U)) has the structure of a Poisson algebra with Poisson 
bracket given by:

{f ◦ i, g ◦ i}∞(μ) := ω∞,μ((diμ)−1(ξf )μ, (diμ)−1(ξg)μ).

The pullback i∗ : (Og∗(U), {·,·}) → (i∗Og∗(U), {·,·}∞) is a homomorphism of Poisson algebras.

We end this section with a discussion of the Lagrangian calculus of a coadjoint orbit G · λ that will be 
useful in Section 5.2.

Proposition 4.19. Let L ⊆ G · λ be an ind-subvariety, so that L =
⋃∞

n=1 Ln with Ln := L ∩ (Gn · λ) a locally 
closed subvariety of Gn · λ. Let pn : Gn · λ → Gn · λn be the projection. Define L̃n := pn(Ln) and suppose 
that L̃n satisfies the following conditions:

(1) L̃n ⊆ Gn · λn is a subvariety.
(2) dpnT (Ln) = T (L̃n).
(3) dp−1

n (T (L̃n)) ⊆ T (Ln).
(4) L̃n ⊆ (Gn · λn, ωn) is Lagrangian.

Then L ⊆ (G · λ, ω∞) is a Lagrangian ind-subvariety.

Proof. Fix μ ∈ L and let � ≥ 1 be such that μ ∈ G� ·λ, but μ /∈ Gk ·λ for any k < �. Note that for any n ≥ �, 
we have Gn ·λ = Gn ·μ, so that Tμ(L) = lim−−→n≥�

Tμ(Ln) ⊂ lim−−→n≥�
Tμ(Gn ·μ). We show that Tμ(L) = Tμ(L)⊥, 

where Tμ(L)⊥ denotes the annihilator of Tμ(L) in Tμ(G · μ) with respect to the weak symplectic form ω∞.
We first show that L is coisotropic, i.e., that Tμ(L)⊥ ⊆ Tμ(L). Let ξ ∈ Tμ(L)⊥, with ξ = ξn +gμn for some 

ξn ∈ gn and n ≥ 1. We consider (ω∞)μ(ξn + gμn, Lk + g
μ
k), where k ≥ �. Suppose n ≤ �. Then by definition 

of ω∞, we have

(ω∞)μ(ξn + gμn, Tμ(L)) = (ω∞)μ(din�(ξ) + g
μ
� , Tμ(L)),

where din� denotes the differential of the inclusion in� : Gn · μ → G� · μ. We can thus assume, without loss 
of generality, that n ≥ �.

Note that (ω∞)μ(ξn + gμn, Tμ(L)) = 0, so (ω∞)μ(ξn + gμn, Tμ(Lk)) = 0 for all k ≥ �. In particular,

(ω∞)μ(ξn + gμn, Ln + gμn) = (ωn)μn
(ξn + gμn

n , dpn(Ln + gμn))

= 0,

for all Ln + gμn ∈ Tμ(Ln). By (2), dpnTμ(Ln) = Tμn
(L̃n), so ξn + gμn

n ∈ Tμn
(L̃n)⊥. By (4), L̃n is Lagrangian 

in Gn · μn = Gn · λn, whence Tμn
(L̃n)⊥ = Tμn

(L̃n). Thus,

ξ = ξn + gμn ∈ dp−1
n (Tμn

(L̃n)) ⊆ Tμ(Ln) ⊆ Tμ(L)

by (3).
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We now show that L is isotropic. Suppose that ξ = ξn + gμn ∈ Tμ(Ln) with n ≥ �. Consider 
(ω∞)μ(ξ, Lk + g

μ
k) for Lk + g

μ
k ∈ Tμ(Lk), with k ≥ �. As before, if k ≤ n, we can identify Lk + g

μ
k with 

its pushforward in Tμ(Ln). This lets us reduce to the case where k ≥ n. Identifying ξ with its image 
dιnk(ξ) = ξn + g

μ
k ∈ Tμ(Lk), we have

(ω∞)μ(ξ, Lk + g
μ
k) = (ωk)μk

(dpk(ξn + g
μ
k), dpk(Lk + g

μ
k))

= (ωk)μk
(ξn + g

μk

k , Lk + g
μk

k ).

But dpkTμ(Lk) = Tμk
(L̃k) by (2), and L̃k is Lagrangian in Gk · λk = Gk · μk. Thus, Tμk

(L̃k) ⊆ Tμk
(L̃k)⊥, 

so (ω∞)μ(ξ, Lk + g
μ
k) = 0. Since k ≥ � is arbitrary, we have Tμ(L) ⊆ Tμ(L)⊥, and L is Lagrangian. �

5. Gelfand–Zeitlin integrable system on M(∞)

5.1. The group A(∞)

In this section, we study the analogue of the Gelfand–Zeitlin2 collection of functions for the Poisson 
provariety M(∞) defined in Example 2.27. We show that the corresponding Lie algebra of Hamiltonian 
vector fields integrates to the action of a direct limit group A(∞) on M(∞) whose generic orbits form 
Lagrangian ind-subvarieties of the corresponding adjoint orbit. We begin by recalling some facts about the 
Gelfand–Zeitlin integrable system on gn = gl(n, C) constructed by Kostant and Wallach in [19].

We denote by C[gn] the polynomial functions on gn. For i = 1, . . . , n and j = 1, . . . , i, we let fij ∈ C[gn]
be the polynomial fij(X) = tr(Xj

i ), where Xi is the i × i submatrix in the upper left-hand corner of X ∈ gn, 
and tr(·) denotes the trace function on gn. If C[gn]Gn denotes the Ad(Gn)-invariant polynomials on gn, then 
C[gn]Gn is the polynomial ring C[fn1, . . . , fnn]. Consider the Hamiltonian vector field ξfij on gn. For X ∈ gn, 
(dfij)X ∈ T ∗

X(gn) = g∗n. We can use the trace form � X, Z = tr(XZ) on gn to identify the differential 
(dfij)X with an element ∇fij(X) ∈ gn. The element ∇fij(X) is determined by its pairing against Z ∈ gn

by the formula

� ∇fij(X), Z  = d

dt
|t=0fij(X + tZ) = (dfij)X(Z).

We compute

∇fij(X) = jXj−1
i ∈ gi ↪→ gn, (5.1)

where gi is embedded in the top left-hand corner of gn (see Example 2.27). It follows that

(ξfij )X = −[jXj−1
i , X] (5.2)

(cf. Equation (2.40)). Note that if i = n, then ξfnj
= 0 for all j = 1, . . . , n, since fnj ∈ C[gn]Gn is a 

Casimir function for the Lie–Poisson structure on gn. The Gelfand–Zeitlin collection of functions on gn is 
JGZ := {fij : 1 ≤ j ≤ i ≤ n}. The functions JGZ are Poisson commutative and their restriction to a regular 
adjoint orbit of Gn on gn forms an integrable system [19].

We let

a(n) := span{ξfij : 1 ≤ j ≤ i ≤ n− 1}

2 Alternate spellings of Zeitlin include Cetlin, Tsetlin, Tzetlin, and Zetlin. In this paper, we follow the convention from the earlier 
work of the first author.
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be the corresponding Lie algebra of Gelfand–Zeitlin vector fields on gn. Then a(n) is an abelian Lie algebra 
of dimension 

(
n
2
)
. Moreover, the Lie algebra a(n) integrates to an analytic action of A(n) := C

(n
2
)

on gn (see 
[19, Section 3]). This action can be described as follows. We take t = (t1, . . . , tn−1) ∈ C

1×· · ·×C
n−1 = C

(n
2
)

as coordinates on A(n), where ti = (ti1, . . . , tii) ∈ C
i for 1 ≤ i ≤ n − 1. In these coordinates, the action of 

A(n) on gn is given by

a ·X = Ad(exp(t1,1)) · . . . · Ad(exp(jti,jXj−1
i )) · . . . · Ad(exp((n− 1)tn−1,n−1X

n−2
n−1 )) ·X, (5.3)

for all 1 ≤ j ≤ i ≤ n −1 and X ∈ gn. Since the Gelfand–Zeitlin functions Poisson commute, A(n) ·X ⊂ Gn ·X
is an isotropic submanifold. For each X ∈ gn, it follows from Equation (5.2) that

TX(A(n) ·X) = a(n)X = span{[Xj−1
i , X] : 1 ≤ j ≤ i ≤ n− 1}. (5.4)

We now define an infinite dimensional Gelfand–Zeitlin system J∞ for the provariety M(∞) by pulling 
back the Gelfand–Zeitlin functions fij to M(∞). We recall from Example 2.27 that M(∞) can be identified 
with the space of sequences:

M(∞) = {X = (X(1), X(2), . . . , X(n), X(n + 1), . . . , ) : X(n) ∈ gn and X(n + 1)n = X(n)}.

We have a natural morphism of locally ringed spaces pn : M(∞) → gn, given by pn(X) = X(n). Also, the 
morphism pn is Poisson with respect to the Poisson provariety structure on M(∞) given in Example 2.38
and the Lie–Poisson structure on gn. Let

J∞ := {p∗nfnj : n ∈ N, j = 1, . . . , n}.

Proposition 5.5. The set J∞ of Gelfand–Zeitlin functions on M(∞) is Poisson commutative.

Proof. For the purposes of this proof, we will denote the Poisson bracket on M(∞) by {·,·}∞ and the 
Poisson bracket on gn by {·,·}n. Consider p∗nfnj ∈ J∞ for n ∈ N. Note that for any m ≤ n, and any 
1 ≤ k ≤ m, we have {p∗nfnj , p∗mfmk}∞ = 0. Indeed, p∗mfmk = p∗np

∗
nmfmk so that {p∗nfnj , p∗mfmk}∞ =

{p∗nfnj , p∗np∗nmfmk}∞ = p∗n{fnj , p∗nmfmk}n. But {fnj , p∗nmfmk}n = 0, since elements of C[gn]Gn are Casimir 
functions for the Lie–Poisson structure on gn. A completely analogous argument shows that if m > n, 
{p∗mfmk, p∗nfnj}∞ = 0. �
Remark 5.6. In fact, it can be shown that the functions J∞ generate a maximal Poisson commutative 
subalgebra of C[M(∞)] := lim−−→C[gn].

We consider the abelian Lie algebra of Hamiltonian vector fields on M(∞),

a(∞) := span{ξf : f ∈ J∞}. (5.7)

Let f = p∗nfn,j , we compute ξf . It follows from definitions that (ξf )X = π̃∞,X(dp∗nfn,j), where π̃∞,X is the 
anchor map for the Poisson structure π∞ on M(∞) evaluated at X = (X1, . . . , Xn, . . . , Xk, . . . , ) ∈ M(∞). 
Equation (2.41) implies that

(ξf )X = (0, . . . , 0,−[jXj−1
n , Xn+1]︸ ︷︷ ︸
n+1

, . . . ,−[jXj−1
n , Xk], . . .). (5.8)

We now construct an action of a direct limit group A(∞) := C
∞ on M(∞) whose generic orbits on M(∞)

are tangent to the Lie algebra of Hamiltonian vector fields a(∞).
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For each n ∈ N, we have a natural homomorphism

φn,n+1 : A(n) ↪→ A(n + 1) given by φn,n+1(t1, . . . , tn−1) = (t1, . . . , tn−1, (0, . . . , 0)).

The maps φn,n+1 are clearly closed embeddings, and thus the direct limit

A(∞) := lim−−→A(n) =
⋃
n≥1

A(n)

naturally has the structure of a direct limit group. For each n ≥ 1, it follows from Equation (5.3) that A(n)
acts on M(∞) via:

a ·X = (X1, t11 ·X2, . . . , (t11, . . . , tn−2,n−2) ·Xn−1, (t11, . . . , tn−1,n−1) ·Xn, . . . ,

(t11, . . . , tn−1,n−1) ·Xk, . . . ). (5.9)

Observe that the diagram

A(n) ×M(∞)

φn,n+1×Id

M(∞)

Id

A(n + 1) ×M(∞) M(∞).

is commutative, where the horizontal maps are given by (5.9). We therefore obtain an action of A(∞)
on M(∞). Note that A(∞) · X ⊆ i(GL(∞) · X) ⊆ M(∞). However, this is not an algebraic action of 
A(∞) = C

∞ on M(∞).

5.2. Strongly regular orbits

We now show that the generic A(∞)-orbits on M(∞) form Lagrangian subvarieties of the corresponding 
GL(∞)-adjoint orbit with respect to the symplectic form ω∞ constructed in Section 4. We first recall the 
conditions for an A(n)-orbit on gl(n, C) to be generic. An element X ∈ gn is said to be strongly regular if 
the differentials {(dfij)X : 1 ≤ j ≤ i ≤ n} are linearly independent (see [19, Theorem 2.7]). We denote the 
set of strongly regular elements of gn by (gn)sreg.

Strongly regular elements may be characterized as follows:

Proposition 5.10. (See [19, Proposition 2.7 and Theorem 2.14].) The following statements are equivalent.

(1) X ∈ gn is strongly regular.
(2) The tangent vectors {(ξfij )X ; i = 1, . . . , n − 1, j = 1, . . . , i} are linearly independent.
(3) The elements Xi ∈ gi are regular for all i = 1, . . . , n and zgi

(Xi) ∩ zgi+1(Xi+1) = 0 for i = 1, . . . , n − 1, 
where zgi

(Xi) denotes the centralizer of Xi in gi.
(4) The A(n)-orbit of X, A(n) · X is a Lagrangian subvariety of the adjoint orbit Gn · X. In particular, 

dimA(n) ·X =
(
n
2
)
.

Remark 5.11. For i = 1, . . . , n, let ZGi
(Xi) denote the centralizer in Gi of Xi, so that Lie(ZGi

(Xi)) = zgi
(Xi). 

For any i = 1, . . . , n −1, it is easy to see that zgi
(Xi) ∩zgi+1(Xi+1) = 0 if and only if ZGi

(Xi) ∩ZGi+1(Xi+1) =
Idi+1, where Idi+1 denotes the (i + 1) × (i + 1) identity matrix (see [4, Lemma 5.12]).

The notion of strong regularity generalizes naturally to the action of A(∞) on M(∞).
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Definition 5.12. We say that X ∈ M(∞) is strongly regular if the differentials {(df)X : f ∈ J∞} are linearly 
independent at X. We denote the set of strongly regular elements in M(∞) by M(∞)sreg.

It is easy to see that X = (X1, . . . , Xn, . . . ) ∈ M(∞)sreg if and only if Xn ∈ (gn)sreg for all n. So that we 
have

M(∞)sreg = lim←−−(gn)sreg. (5.13)

Remark 5.14. One can show that M(∞)sreg is a dense subset of M(∞) with empty interior.

Using results of the first author, we can easily create examples of strongly regular elements.

Example 5.15. Let M(∞)θ ⊆ M(∞) be the set

M(∞)θ = {X ∈ M(∞) : σ(Xi) ∩ σ(Xi+1) = ∅ for each i ∈ N}, (5.16)

where σ(Xi) denotes the spectrum of Xi. It follows from [6, Theorem 5.5] that M(∞)θ ⊆ M(∞)sreg.

We also have the following characterization of strongly regular elements of M(∞).

Proposition 5.17. Let X = (X1, . . . , Xn, . . . , Xk, . . . ) ∈ M(∞). Then the following conditions are equivalent:

(1) X is strongly regular.
(2) For all i ∈ N, Xi is regular and ZGi

(Xi) ∩ ZGi+1(Xi+1) = Idi+1.
(3) The tangent vectors a(∞)X := {(ξf )X : f ∈ J∞} are linearly independent.

Proof. The equivalence of statements (1) and (2) follows from Equation (5.13) and Part (3) of Proposi-
tion 5.10 along with Remark 5.11. We now see that (1) is equivalent to (3). If X ∈ M(∞)sreg, then for any 
n ∈ N, we have 

⋂
k≥n zgk

(Xk) = 0 by Part (3) of Proposition 5.10. Thus, by Proposition 2.42, we have that 
(π̃∞)X is injective, which implies (3). That (3) implies (1) is trivial. �

Proposition 5.17 and the existence of strongly regular elements immediately imply that the Lie algebra 
a(∞) is infinite dimensional.

The main result of this section is the following theorem.

Theorem 5.18. Let X ∈ M(∞)sreg. Let i : GL(∞) ·X ↪→ M(∞) be the inclusion morphism in (4.10). Then

(1) The set i−1(A(∞) ·X) naturally has the structure of an irreducible ind-subvariety of GL(∞) ·X. Thus, 
A(∞) ·X ⊂ M(∞) is an immersed irreducible ind-subvariety.

(2) The ind-subvariety i−1(A(∞) ·X) ⊆ GL(∞) ·X is Lagrangian with respect to the weak symplectic form 
ω∞ on GL(∞) ·X.

(3) For any Y ∈ A(∞) ·X, we have

TY (A(∞) · Y ) = a(∞)Y , (5.19)

so that the strongly regular A(∞)-orbits in M(∞) are tangent to the Lie algebra a(∞) of Hamiltonian 
vector fields defined in Equation (5.7).
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Proof. Let X ∈ M(∞)sreg. It follows from Part (2) of Proposition 5.17 that for each n ∈ N, we have 
GX

n =
⋂
k≥n

ZGn
(Xk) = Idn, where Idn denotes the n × n identity matrix. Thus,

GL(∞) ·X = lim−−→Gn/G
X
n = lim−−→Gn = GL(∞).

We claim

i−1(A(∞) ·X) ∩Gn = i−1
n (A(∞) ·X) = ZG1(X1) · · ·ZGn

(Xn), (5.20)

where in : Gn → M(∞) is the morphism in Equation (4.11), and

ZG1(X1) · · ·ZGn
(Xn) = {g ∈ Gn : g = z1 · · · zn with zi ∈ ZGi

(Xi)}.

For ease of notation, we denote ZG1(X1) · · ·ZGn
(Xn) by Zn. Indeed, suppose that gn ∈ i−1

n (A(∞) · X). 
Then

((Ad(gn)Xn)1, . . . , (Ad(gn)Xn)n−1,Ad(gn)Xn, . . . ,Ad(gn)Xk, . . . , ) = am ·X for some am ∈ A(m),

with m ≥ 1. Let am = (t1, . . . , tm−1) ∈ C

(m
2
)
. By Equation (5.3), A(m) acts on gm via

am ·Xm = Ad(hm−1)Xm, where hm−1 = z1 · · · zm−1 ∈ Gm−1, with

zi = exp(ti1Idi) · · · exp(itiiXi−1
i ) ∈ ZGi

(Xi) ⊂ Gi.

First, suppose that m > n, and consider (Ad(hm−1)Xm)n+1. Since zi ∈ ZGi
(Xi) for i = 1, . . . , m − 1, it 

follows that

(Ad(hm−1)Xm)n+1 = Ad(z1 . . . zn)Xn+1 = Ad(gn)Xn+1.

Since X ∈ M(∞)sreg, we have gn = z1 . . . zn. The case where m < n is analogous. Thus, i−1
n (A(∞) ·X) ⊆ Zn.

We now show that Zn ⊂ i−1
n (A(∞) ·X). Since X ∈ M(∞)sreg, Xi is regular for all i by Proposition 5.17. 

Whence, ZGi
(Xi) is an abelian, connected algebraic group (Proposition 14, [16]). Therefore, the exponential 

map, exp : zgi
(Xi) → ZGi

(Xi) is a surjective homomorphism of algebraic groups. It is well-known that 
zgi

(Xi) = span{Idi, . . . , X
i−1
i } for Xi ∈ gi regular. It follows that any z ∈ ZGi

(Xi) can be written as 
z = exp(ti1Idi) . . . exp(tiiXi−1

i ), for some tij ∈ C. The inclusion Zn ⊆ i−1
n (A(∞) · X) now follows from 

Equations (5.3) and (5.9).
Now we claim that Zn is a smooth subvariety of Gn of dimension 

(
n+1

2
)
. It follows from our discussion 

above that Ad(ZG1(X1) · · ·ZGn−1(Xn−1))Xn ⊆ Gn · Xn coincides with the A(n)-orbit of Xn. Moreover, 
Theorem 3.12, [19] implies that A(n) · Xn is an irreducible, non-singular variety of dimension 

(
n
2
)
. If pn :

Gn → Gn ·Xn denotes the orbit map, then Proposition III 10.4, [14] implies that pn is a smooth morphism 
of relative dimension dimZGn

(Xn) = n. Since the diagram

Zn

pn

Gn

pn

A(n) ·Xn Gn ·Xn

is Cartesian, it follows from Proposition III 10.1 (b), [14] that Zn is a non-singular variety of dimension (
n+1

2
)
. Thus, i−1(A(∞) · X) =

⋃∞
n=1 Zn is an irreducible ind-subvariety of GL(∞) ∼= GL(∞) · X, and 

A(∞) ·X = i(
⋃∞ Zn) is an irreducible, immersed ind-subvariety of M(∞).
n=1
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We now compute the tangent space Tz(Zn) for z ∈ Zn and show that i−1(A(∞) · X) ⊂ GL(∞) · X
is Lagrangian. Represent z = z1 . . . zn with zi ∈ ZGi

(Xi) for i = 1, . . . , n. Let Y ∈ M(∞) be given by 
Y = Ad(z)X, so that Yn = Ad(z1 . . . zn−1)Xn. Then Y ∈ A(∞) · X and Yn ∈ A(n) · Xn. It follows from 
Equation (5.4) that

(dp−1
n )z(TYn

(A(n) · Yn)) = span{Y j
i : 1 ≤ j ≤ i ≤ n} = span{(dfij)Yn

: 1 ≤ j ≤ i ≤ n}.

It follows from the definition of strong regularity that dim span{Y j
i : 1 ≤ j ≤ i ≤ n} =

(
n+1

2
)
. Since 

dimZn =
(
n+1

2
)

and Zn is non-singular, we have

Tz(Zn) = span{Y j
i : 1 ≤ j ≤ i ≤ n}. (5.21)

Part (2) of the theorem now follows immediately from Proposition 4.19 and Part (4) of Proposition 5.10. 
Part (3) of the theorem follows from Equation (5.21) along with Equations (5.8) and (4.17). �
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