Lie-Poisson theory for direct limit Lie algebras

Mark Colarusso ${ }^{\text {a }}$, Michael Lau ${ }^{\mathrm{b}, *}$
a Department of Mathematics, University of Wisconsin-Milwaukee, United States
b Département de mathématiques et de statistique, Université Laval, Canada

A R T I C L E I N F O

Article history:

Received 20 March 2015
Received in revised form 24 August 2015
Available online 21 October 2015
Communicated by D. Nakano

MSC:

14L30; 20G20; 37K30; 53D17; 17B65

Abstract

In the first half of this paper, we develop the fundamentals of Lie-Poisson theory for direct limits $G=\underset{\longrightarrow}{\lim } G_{n}$ of complex algebraic groups and their Lie algebras $\mathfrak{g}=$ $\xrightarrow{\lim } \mathfrak{g}_{n}$. We describe the Poisson pro- and ind-variety structures on $\mathfrak{g}^{*}=\lim \mathfrak{g}_{n}^{*}$ and the coadjoint orbits of G, respectively. While the existence of symplectic foliations remains an open question for most infinite-dimensional Poisson manifolds, we show that for direct limit algebras, the coadjoint orbits give a weak symplectic foliation of the Poisson provariety \mathfrak{g}^{*}. The second half of the paper applies our general results to the concrete setting of $G=G L(\infty)$ and $\mathfrak{g}^{*}=M(\infty)$, the space of infinite-by-infinite complex matrices with arbitrary entries. We use the Poisson structure of \mathfrak{g}^{*} to construct an integrable system on $M(\infty)$ that generalizes the Gelfand-Zeitlin system on $\mathfrak{g l}(n, \mathbb{C})$ to the infinite-dimensional setting. We further show that this integrable system integrates to a global action of a direct limit group on $M(\infty)$, whose generic orbits are Lagrangian ind-subvarieties of the coadjoint orbits of $G L(\infty)$ on $M(\infty)$.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The interaction between Lie theory and Poisson geometry plays an important role in much of modern mathematics and mathematical physics; it is of central importance in geometric representation theory, integrable systems, and classical mechanics. Given a finite-dimensional real or complex Lie group G, there is a canonical Lie-Poisson structure on the dual space \mathfrak{g}^{*} of its Lie algebra \mathfrak{g}. The starting point of Lie-Poisson theory is the observation that the symplectic leaves of \mathfrak{g}^{*} are the coadjoint orbits of the identity component G^{0} of G equipped with the Kostant-Kirillov symplectic form. This symplectic structure is the cornerstone of the orbit method in representation theory and plays an important role in deformation quantization.

The main goal of this paper is to extend this theory to direct limit Lie algebras. Given a direct limit group G with Lie algebra \mathfrak{g}, we define an analogous Lie-Poisson structure on the dual space \mathfrak{g}^{*} and construct a

[^0]symplectic foliation using the coadjoint action of G on \mathfrak{g}^{*}. There is an extensive literature concerning direct limit groups and their Lie algebras, root systems, and representations, though there has been little study of Poisson geometry in this context. See for example, $[1,3,8,7,9,12,21,23,25]$ and the references therein. Categorification of direct limit Lie algebras has recently been used to study finite-dimensional representations of Lie superalgebras [2]. Applications of direct limit groups notably include early work on infinite-dimensional integrable systems, including the KP hierarchy. See [17], for instance. In particular, when $\mathfrak{g}=\mathfrak{g l}(\infty):=\lim _{\underline{g} l} \mathfrak{l}(n, \mathbb{C})$, we use our new Lie-Poisson structure to define an infinite-dimensional analogue of the Gelfand-Zeitlin integrable system on $\mathfrak{g l}(\infty)^{*}$.

In more detail, let $\left\{\left(G_{n}, \iota_{n m}\right)\right\}_{n \in \mathbb{N}}$ be a directed system of complex affine algebraic groups G_{n} for which the transition maps $\iota_{n m}: G_{n} \hookrightarrow G_{m}$ are homomorphic embeddings of algebraic groups. The direct limit group $G:=\underline{\longrightarrow} G_{n}$ has the structure of an ind-variety and its Lie algebra $\mathfrak{g}=\underset{\longrightarrow}{\lim } \mathfrak{g}_{n}$ is a direct limit Lie algebra. The algebraic dual $\mathfrak{g}^{*}=\lim _{\leftarrow} \mathfrak{g}_{n}^{*}$ is a provariety, an inverse limit in the category of varieties. We show that \mathfrak{g}^{*} has a natural Poisson structure inherited from the Lie-Poisson structure of each \mathfrak{g}_{n}^{*} and compute its characteristic distribution. This construction requires understanding subtle aspects about the geometry of provarieties including their structure sheaves, tangent spaces, and morphisms (Propositions 2.3, 2.7, and Theorem 2.10).

In infinite dimensions, there is no guarantee that the characteristic distribution of a Poisson manifold is integrable nor that its leaves possess a symplectic structure. Even in the comparatively well-behaved setting of Banach Lie groups G, it is not known whether the coadjoint orbits of G on a predual \mathfrak{g}_{*} of its Lie algebra \mathfrak{g} are weakly symplectic [24]. One of the main results of this paper is to show that the coadjoint orbits of a direct limit group G on the dual of its Lie algebra \mathfrak{g}^{*} form a symplectic foliation of \mathfrak{g}^{*} which is tangent to the characteristic distribution of \mathfrak{g}^{*}.

Theorem 1.1. (See Proposition 4.7 and Theorem 4.12.) Let $G=\underset{\longrightarrow}{\lim } G_{n}$ be a direct limit group, and let $\mathfrak{g}^{*}=\lim _{\leftrightarrows} \mathfrak{g}_{n}^{*}$ be the dual space of its Lie algebra. Let $\lambda \in \mathfrak{g}^{*}$, and let $\vec{G} \cdot \lambda$ be the coadjoint orbit of λ. Then
(1) $G \cdot \lambda$ has the structure of a weak symplectic ind-subvariety of \mathfrak{g}^{*}.
(2) $G \cdot \lambda$ is tangent to the characteristic distribution of \mathfrak{g}^{*}, and the symplectic structure on $G \cdot \lambda$ is compatible with the Poisson structure on \mathfrak{g}^{*}.

To prove Part (1), we observe that the coadjoint orbit $G \cdot \lambda$ inherits an ind-variety structure from G via:

$$
G \cdot \lambda=\underset{\longrightarrow}{\lim } G_{n} \cdot \lambda .
$$

Since $\lambda \in \mathfrak{g}^{*}=\lim \mathfrak{g}_{n}^{*}$, we can represent λ as an infinite sequence, $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}, \ldots\right)$ with $\lambda_{n} \in \mathfrak{g}_{n}^{*}$. Each variety $G_{n} \cdot \lambda$ inherits a 2 -form from the Kostant-Kirillov form on the G_{n}-coadjoint orbit of λ_{n}, and we show that these 2 -forms glue to give a non-degenerate, closed two form on $G \cdot \lambda$ (Proposition 4.7).

Part (2) of the theorem is much more difficult to prove than the analogous result in finite dimensions and requires relating the ind-variety structure of $G \cdot \lambda$ to the provariety structure of \mathfrak{g}^{*}. We use our basic results about morphisms of provarieties and ind-varieties (Propositions 2.19 and 3.1) to show that $G \cdot \lambda$ is an ind-subvariety of \mathfrak{g}^{*} whose tangent space agrees with the characteristic distribution of \mathfrak{g}^{*}. The compatibility of the Poisson structure on \mathfrak{g}^{*} with the symplectic structure of $G \cdot \lambda$ requires an explicit understanding of the anchor map of \mathfrak{g}^{*} and its kernel (Propositions 2.37 and 2.42).

In the second half of the paper, we apply our results to the case where G is the group $G L(\infty):=$ $\underset{\longrightarrow}{\lim } G L(n, \mathbb{C})$ with the Lie algebra $\mathfrak{g}=\mathfrak{g l}(\infty)=\underset{\longrightarrow}{\lim } \mathfrak{g l}(n, \mathbb{C})$ of infinite-by-infinite complex matrices with only finitely many nonzero entries. The dual space \mathfrak{g}^{*} is the Poisson provariety $M(\infty)$ of all infinite-by-infinite complex matrices. We construct an infinite-dimensional analogue of the Gelfand-Zeitlin integrable system on $M(\infty)$ which generalizes the one constructed by Kostant and Wallach on $\mathfrak{g l}(n, \mathbb{C})$ in $[19,20]$.

In more detail, we identify $M(\infty)$ with the set of infinite sequences:

$$
M(\infty):=\left\{X=(X(1), X(2), X(3), \ldots): X(n) \in \mathfrak{g l}(n, \mathbb{C}) \text { and } X(n+1)_{n}=X(n)\right\}
$$

where $X(n+1)_{n}$ denotes the $n \times n$ upper left corner of $X(n+1) \in \mathfrak{g l}(n+1, \mathbb{C})$. For any $n \in \mathbb{N}$ and $j=1, \ldots, n$, let $f_{n j}$ be the function on $M(\infty)$ given by $f_{n j}(X)=\operatorname{tr}\left(X(n)^{j}\right)$, where $\operatorname{tr}(\cdot)$ denotes the trace function. The algebra generated by the collection of functions

$$
J_{\infty}:=\left\{f_{n j}(X): n \in \mathbb{N}, j=1, \ldots, n\right\}
$$

is then a maximal Poisson-commutative subalgebra of the space of global regular functions on $M(\infty)$ (Proposition 5.5 and Remark 5.6). Moreover, the corresponding Lie algebra of Hamiltonian vector fields $\mathfrak{a}(\infty)$ is infinite dimensional and integrates to a global action of a direct limit group $A(\infty)$ which preserves the coadjoint orbits of $G L(\infty)$ on $M(\infty)$, but does not act algebraically on $M(\infty)$. Following [19], we say that an element $X \in M(\infty)$ is strongly regular if the differentials of the functions in J_{∞} are independent at X. It follows easily from work of the first author that the set of strongly regular elements of $M(\infty)$ is non-empty (Example 5.15). Despite the $A(\infty)$-action on $M(\infty)$ not being algebraic, we show that any strongly regular $A(\infty)$-orbit on $M(\infty)$ is an algebraic ind-subvariety of the corresponding $G L(\infty)$-coadjoint orbit which is Lagrangian with respect to the weak symplectic form constructed in Part (1) of Theorem 1.1. The following theorem generalizes one of the main results of Kostant and Wallach (cf. [19, Theorem 3.36]) to the direct limit setting.

Theorem 1.2. (See Theorem 5.18.) Let $X \in M(\infty)$ be strongly regular. Then $A(\infty) \cdot X \subset G L(\infty) \cdot X$ is an irreducible, Lagrangian ind-subvariety of $G L(\infty) \cdot X$.

As was the case with Theorem 1.1, the infinite-dimensional setting contains difficulties that are not present in finite dimensions. The foremost being that it is not automatic that the generic leaves of an integrable system are Lagrangian. To circumvent this difficulty, we have to develop a Lagrangian calculus for the weakly symplectic ind-varieties $G \cdot \lambda$ (Proposition 4.19).

In the philosophy of quantization, Lagrangian submanifolds of \mathfrak{g}^{*} correspond to irreducible representations of G. For the group of $n \times n$ unitary matrices, Guillemin and Sternberg have used the Gelfand-Zeitlin system to obtain a new quantization consistent with the Bott-Borel-Weil construction [13]. It would be interesting to apply the geometric methods and results concerning the infinite dimensional Gelfand-Zeitlin system developed in this paper to study the representations of direct limit groups geometrically. Dimitrov, Penkov, and Wolf have given the beautiful and nontrivial analogue of the Bott-Borel-Weil theorem for direct limit groups [9]. In the future, we plan to reinterpret the results of [9] using the Lie-Poisson theory developed in the first half of this paper. The quantum analogue of the finite dimensional Gelfand-Zeitlin system on $\mathfrak{g l}(n, \mathbb{C})$ are the Gelfand-Zeitlin modules introduced by Drozd, Futorny, and Ovsienko [10]. These modules have natural direct limit analogues, and we plan to use Theorem 1.2 and the geometry of the Gelfand-Zeitlin system on $M(\infty)$ to study them geometrically.

The paper is organized as follows. In Section 2, we study general provarieties $X=\lim _{\rightleftarrows} X_{n}$, where X_{n} is a finite-dimensional variety defined over an arbitrary algebraically closed field F of characteristic zero. We define a structure sheaf \mathcal{O}_{X} which makes the pair $\left(X, \mathcal{O}_{X}\right)$ into a locally ringed space and describe the tangent space of X (Propositions 2.3 and 2.7, Theorem 2.10). In Section 2.3, we study morphisms of provarieties and prove Proposition 2.19. In Section 2.4, we specialize to the case where each X_{n} is a Poisson variety and show that \mathcal{O}_{X} is a sheaf of Poisson algebras (Proposition-Definition 2.34). The provariety structure on \mathfrak{g}^{*} is described in Example 2.27, and its Lie-Poisson structure is obtained in Example 2.38. In Section 3, we review basic facts about ind-varieties and describe the ind-variety structure of the coadjoint orbits $G \cdot \lambda$ (Proposition 3.9 and Corollary 3.10). In Section 4, we develop the weak symplectic form on
$G \cdot \lambda$ and prove Theorem 1.1. In Section 5, we construct the Gelfand-Zeitlin integrable system on $M(\infty)$ and prove Theorem 1.2.

Notation. Throughout this paper, \mathbb{N} and \mathbb{C} will denote the positive integers and complex numbers, respectively.

2. Provarieties

2.1. The structure sheaf of a provariety

Let $\left\{\left(X_{n}, p_{n m}\right)\right\}_{n \in \mathbb{N}}$ be an inverse system of irreducible varieties over an algebraically closed field F of characteristic zero with surjective transition morphisms: $p_{n m}: X_{n} \rightarrow X_{m}$ for $n \geq m$. We call the inverse limit $X=\lim X_{n}$ of such a system $\left(X_{n}, p_{n m}\right)$ a provariety. Another introduction to provarieties may be found in [22]. They do not assume that their inverse system of varieties is countable. We will only consider countable inverse systems of varieties, and the exposition here is self-contained.

As a topological space, X has the inverse limit topology. A basis for this topology is the collection of sets

$$
\mathcal{B}=\left\{p_{n}^{-1}\left(U_{n}\right): U_{n} \subset X_{n} \text { is open }\right\} .
$$

We construct a structure sheaf \mathcal{O}_{X} on X which makes $\left(X, \mathcal{O}_{X}\right)$ into a locally ringed space. We begin by defining a \mathcal{B}-presheaf $\widetilde{\mathcal{O}_{X}}$ of F-algebras on X, i.e. a presheaf whose sections $\widetilde{\mathcal{O}_{X}}(U)$ are defined only for $U \in \mathcal{B}$. Suppose $U \in \mathcal{B}$ with $U=p_{n}^{-1}\left(U_{n}\right)$ for some open subset $U_{n} \subseteq X_{n}$. The inverse system $\left\{\left(X_{k}, p_{\ell k}\right)\right\}_{\ell \geq k \geq n}$ gives rise to a directed system of F-algebras $\left\{\mathcal{O}_{X_{k}}\left(p_{k n}^{-1}\left(U_{n}\right)\right), p_{\ell k}^{*}\right\}_{\ell \geq k \geq n}$. Since the transition maps $p_{\ell k}$ are surjective for all pairs $\ell \geq k$, it follows that the canonical projections $p_{k}: X \rightarrow X_{k}$ are surjective for all k. Thus, $\mathcal{O}_{X_{k}}\left(p_{k n}^{-1}\left(U_{n}\right)\right) \cong p_{k}^{*} \mathcal{O}_{X_{k}}\left(p_{k n}^{-1}\left(U_{n}\right)\right)$ and we can define:

$$
\begin{equation*}
\widetilde{\mathcal{O}_{X}}(U):=\lim _{k \geq n} p_{k}^{*} \mathcal{O}_{X_{k}}\left(p_{k n}^{-1}\left(U_{n}\right)\right) . \tag{2.1}
\end{equation*}
$$

We claim that (2.1) makes $\widetilde{\mathcal{O}_{X}}$ into a \mathcal{B}-presheaf. Indeed, suppose we have $V \subseteq U$ with $V, U \in \mathcal{B}$. Let $V=p_{\ell}^{-1}\left(U_{\ell}\right)$ for $U_{\ell} \subseteq X_{\ell}$ open. We define the restriction maps

$$
\rho_{U V}: \widetilde{\mathcal{O}_{X}}(U) \rightarrow \widetilde{\mathcal{O}_{X}}(V)
$$

as follows. Suppose $f \in \widetilde{\mathcal{O}_{X}}(U)$. Then $f=p_{k}^{*} f_{k}$ for some $f_{k} \in \mathcal{O}_{X_{k}}\left(p_{k n}^{-1}\left(U_{n}\right)\right)$ and $k \geq n$. Let $m \geq \ell, k$. Then $f=p_{m}^{*} p_{m k}^{*} f_{k}$ with $p_{m k}^{*} f_{k} \in \mathcal{O}_{X_{m}}\left(p_{m n}^{-1}\left(U_{n}\right)\right)$. Since p_{m} is surjective, $p_{m \ell}^{-1}\left(U_{\ell}\right) \subseteq p_{m n}^{-1}\left(U_{n}\right)$. We can therefore define

$$
\rho_{U V}(f):=p_{m}^{*}\left(\left.p_{m k}^{*} f_{k}\right|_{p_{m \ell}^{-1}\left(U_{\ell}\right)}\right) \in \widetilde{\mathcal{O}_{X}}(V),
$$

where $\left.\left(p_{m k}^{*} f_{k}\right)\right|_{p_{m \ell}^{-1}\left(U_{\ell}\right)}$ denotes the restriction of $p_{m k}^{*} f_{k} \in \mathcal{O}_{X_{m}}\left(p_{m n}^{-1}\left(U_{n}\right)\right)$ to $p_{m \ell}^{-1}\left(U_{\ell}\right)$. One can verify that $\rho_{U V}$ is well defined and that for $W \subseteq V \subseteq U$ with $W \in \mathcal{B}$, we have $\rho_{U W}=\rho_{V W} \circ \rho_{U V}$. Note also that $\rho_{U U}=I d_{\widetilde{\mathcal{O}_{X}}(U)}$. Thus, $\widetilde{\mathcal{O}_{X}}$ is a \mathcal{B}-presheaf of F-algebras. Since inverse limits exist in the category of F-algebras, we can form a presheaf on all of X by setting

$$
\begin{equation*}
\mathcal{O}_{X}(U):=\lim _{V \subseteq \overleftarrow{U}, V \in \mathcal{B}} \widetilde{\mathcal{O}_{X}}(V) \tag{2.2}
\end{equation*}
$$

for each open set $U \subseteq X$. It follows from the universal property of the inverse limit that \mathcal{O}_{X} is a presheaf on X, and $\mathcal{O}_{X}(U)=\widetilde{\mathcal{O}_{X}}(U)$ for $U \in \mathcal{B}$. Moreover, \mathcal{O}_{X} is in fact a sheaf on X.

Proposition 2.3. The presheaf \mathcal{O}_{X} on X is a sheaf of F-algebras on X.
Proof. It follows from [11, Proposition I-12(i)] that it suffices to check the sheaf axioms on sections $\mathcal{O}_{X}(U)$ with $U \in \mathcal{B}$. Accordingly, let $U \in \mathcal{B}$ with $U=p_{n}^{-1}\left(U_{n}\right)$ with $U_{n} \subseteq X_{n}$ open, and let $\bigcup_{i \in I} p_{i}^{-1}\left(U_{i}\right)=U$ be an open cover of U by basic open sets of X. Suppose that for each $i \in I$, we are given $f_{i} \in \mathcal{O}_{X}\left(p_{i}^{-1}\left(U_{i}\right)\right)$ such that

$$
\begin{equation*}
\left.f_{i}\right|_{p_{i}^{-1}\left(U_{i}\right) \cap p_{j}^{-1}\left(U_{j}\right)}=\left.f_{j}\right|_{p_{i}^{-1}\left(U_{i}\right) \cap p_{j}^{-1}\left(U_{j}\right)} \tag{2.4}
\end{equation*}
$$

for every $i, j \in I$. Let $F\left(X_{n}\right)$ be the function field of X_{n}. Consider the field:

$$
\begin{equation*}
F(X):=\underset{\longrightarrow}{\lim } p_{n}^{*} F\left(X_{n}\right) . \tag{2.5}
\end{equation*}
$$

Equation (2.4) implies that the functions f_{i} with $i \in I$ define the same element $g \in F(X)$. Without loss of generality, we may assume that $g=p_{n}^{*} g_{n}$ for $g_{n} \in F\left(X_{n}\right)$. We claim that $g_{n} \in \mathcal{O}_{X_{n}}\left(U_{n}\right)$. By construction, $\left.g\right|_{p_{i}^{-1}\left(U_{i}\right)}=f_{i}$ for all i. Now let $x \in p_{n}^{-1}\left(U_{n}\right)$, then $x \in p_{i}^{-1}\left(U_{i}\right)$ for some $i \in I$. We have

$$
f_{i}(x)=g(x)=g_{n}\left(x_{n}\right),
$$

where $x_{n}=p_{n}(x)$. Since $p_{n}: \lim _{k} X_{k} \rightarrow X_{n}$ is surjective, $g_{n} \in F\left(X_{n}\right)$ is defined at all points of $U_{n} \subset X_{n}$. Thus, $g_{n} \in \mathcal{O}_{X_{n}}\left(U_{n}\right)$, so that $g=p_{n}^{*} g_{n} \in \mathcal{O}_{X}(U)$.

Since the varieties X_{n} are irreducible for all n, the restriction maps $\rho_{p_{n}^{-1}\left(U_{n}\right), p_{i}^{-1}\left(U_{i}\right)}$ are injective. Indeed, suppose that $f \in \mathcal{O}_{X}\left(p_{n}^{-1}\left(U_{n}\right)\right)$ with $\left.f\right|_{p_{i}^{-1}\left(U_{i}\right)}=0$ for some $i \in I$. Then there exist $k \geq n, i$ and a regular function $f_{k} \in \mathcal{O}_{X_{k}}\left(p_{k n}^{-1}\left(U_{n}\right)\right)$ such that $f=p_{k}^{*} f_{k}$ and $\left.f_{k}\right|_{p_{k i}^{-1}\left(U_{i}\right)}=0$. But then since $p_{k i}^{-1}\left(U_{i}\right) \subseteq p_{k n}^{-1}\left(U_{n}\right)$ is open and $p_{k n}^{-1}\left(U_{n}\right)$ is irreducible, it follows that $f_{k}=0$ and hence $f=0$.

Proposition 2.3 implies that $\left(X, \mathcal{O}_{X}\right)$ is a ringed space. Since stalks $\mathcal{O}_{X, x}$ can be computed using basic open sets, Equation (2.1) implies that

$$
\begin{equation*}
\mathcal{O}_{X, x}=\underset{\longrightarrow}{\lim } p_{n}^{*} \mathcal{O}_{X_{n}, x_{n}} \cong \underline{\lim } \mathcal{O}_{X_{n}, x_{n}}, \tag{2.6}
\end{equation*}
$$

where $x_{n}=p_{n}(x)$. Equation (2.6) implies that $\left(X, \mathcal{O}_{X}\right)$ is a locally ringed space.
Proposition 2.7. Let $X=\lim _{\rightleftarrows} X_{n}$ be a provariety, and let $x \in X$ with $x_{n}=p_{n}(x)$. Let $\mathfrak{m}_{x_{n}}$ be the unique maximal ideal of the local ring $\mathcal{O}_{X_{n}, x_{n}}$. Then the stalk $\mathcal{O}_{X, x}$ of the sheaf \mathcal{O}_{X} at $x \in X$ is a local ring with maximal ideal $\mathfrak{m}=\underset{\longrightarrow}{\lim } p_{n}^{*} \mathfrak{m}_{x_{n}}$.

The proposition follows immediately from the following general fact.
Lemma 2.8. Suppose $\left\{\left(A_{n}, \mathfrak{m}_{n}, \phi_{n m}\right)\right\}_{n \in \mathbb{N}}$ is a directed system of local rings with $\mathfrak{m}_{n} \subset A_{n}$ the unique maximal ideal and local homomorphisms $\phi_{n m}: A_{n} \rightarrow A_{m}$ for $n \leq m$. Then the direct limit $A=\underline{\longrightarrow} A_{n}$ is a local ring with unique maximal ideal $\mathfrak{m}=\underline{\longrightarrow} \lim _{n}$.

Proof. Let $\mathfrak{m}=\underline{\longrightarrow} \lim _{n}$ and $a \in A \backslash \mathfrak{m}$. Abusing notation, we also denote by A_{n} and \mathfrak{m}_{n}, the images of A_{n} and \mathfrak{m}_{n} in $\varliminf_{\longrightarrow} A_{n}$ respectively. It follows that $a \in A_{i} \backslash \mathfrak{m}_{i}$ for some i, whence $a \in A$ is a unit.

2.2. Tangent spaces to provarieties

Let $\left(X, \mathcal{O}_{X}\right)$ be a provariety. Since $\left(X, \mathcal{O}_{X}\right)$ is a locally ringed space, we can define the Zariski tangent space $T_{x}(X)$ of a point $x \in X$ as:

$$
\begin{equation*}
T_{x}(X):=\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)^{*}, \tag{2.9}
\end{equation*}
$$

where $\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)^{*}$ is the dual of the infinite dimensional F-vector space $\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}$. It is easy to see that $T_{x}(X)$ can be identified with the space of all F-linear point derivations of the F-algebra $\mathcal{O}_{X, x}$ at the point $x \in X$. The F-vector space $T_{x}(X)$ is also an inverse limit.

Theorem 2.10. Let $\left\{\left(X_{n}, p_{n m}\right)\right\}$ be an inverse system of varieties, and let $X=\lim _{\leftrightarrows} X_{n}$ be the corresponding provariety. There is a canonical isomorphism of F-vector spaces:

$$
\begin{equation*}
T_{x}(X) \cong \lim _{\leftrightarrows} T_{x_{n}}\left(X_{n}\right), \tag{2.11}
\end{equation*}
$$

where $x_{n}=p_{n}(x)$ for each $x \in X$. That is, the following diagram commutes:

$$
\begin{align*}
\stackrel{\lim }{\rightleftarrows} T_{x_{n}}\left(X_{n}\right) & \cong T_{x}(X) \\
\downarrow \pi_{k} & \downarrow\left(d p_{k}\right)_{x} \tag{2.12}\\
T_{x_{k}}\left(X_{k}\right) & =T_{x_{k}}\left(X_{k}\right),
\end{align*}
$$

where $\pi_{k}: \varliminf_{\rightleftarrows} T_{x_{n}}\left(X_{n}\right) \rightarrow T_{x_{k}}\left(X_{k}\right)$ is the canonical projection.
Proof. Let $x \in X$, and let $x_{n}=p_{n}(x)$ for $n \in \mathbb{N}$. The inverse system $\left\{\left(X_{n}, p_{n m}\right)\right\}$ gives rise to an inverse system $\left\{T_{x_{n}}\left(X_{n}\right),\left(d p_{n m}\right)_{x_{n}}\right\}$. We can then form the inverse limit $\varliminf_{\leftarrow} T_{x_{n}}\left(X_{n}\right)$.

By Proposition 2.7, $\mathfrak{m}_{x}=\underset{\longrightarrow}{\lim } p_{n}^{*} \mathfrak{m}_{x_{n}}$, where $\mathfrak{m}_{x_{n}} \subset \mathcal{O}_{X_{n}, x_{n}}$ is the unique maximal ideal of $\mathcal{O}_{X_{n}, x_{n}}$. It follows that $\mathfrak{m}_{x}^{2}=\underline{\longrightarrow} \lim _{n}^{*}\left(\mathfrak{m}_{x_{n}}^{2}\right)$. Indeed, suppose that $f \in \mathfrak{m}_{x}^{2}$. Then f is a finite sum $f=\sum_{n, m}\left(p_{n}^{*} f_{n}\right)\left(p_{m}^{*} g_{m}\right)$, with $f_{n} \in \mathfrak{m}_{x_{n}}$ and $g_{m} \in \mathfrak{m}_{x_{m}}$. If we let γ be the maximum over all indices n and m appearing in this sum, then $f=\sum_{\text {finite }} p_{\gamma}^{*}\left(f_{\gamma} g_{\gamma}\right)$, where $f_{\gamma}=p_{\gamma n}^{*} f_{n}$ and $g_{\gamma}=p_{\gamma m}^{*} g_{m}$. But then $f \in \underline{\longrightarrow} \lim _{n}^{*}\left(\mathfrak{m}_{x_{n}}^{2}\right)$. It is easy to see that this argument is independent of the choice of indices used to represent f. Thus, $\mathfrak{m}_{x}^{2} \subseteq \underline{\longrightarrow} \lim _{n} p_{n}^{*}\left(\mathfrak{m}_{x_{n}}^{2}\right)$ and the other inclusion is clear. Therefore,

$$
\begin{align*}
\mathfrak{l i m} T_{x_{n}}\left(X_{n}\right) & =\underset{\leftrightarrows}{\lim }\left(\mathfrak{m}_{x_{n}} / \mathfrak{m}_{x_{n}}^{2}\right)^{*} \\
& \cong\left(\underset{\longrightarrow}{\lim }\left(\mathfrak{m}_{x_{n}} / \mathfrak{m}_{x_{n}}^{2}\right)\right)^{*} \\
& \cong\left(\lim _{\mathfrak{m}_{x_{n}}} / \longrightarrow \mathfrak{m}_{x_{n}}^{2}\right)^{*} \\
& \cong\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)^{*} \\
& =T_{x}(X) . \tag{2.13}
\end{align*}
$$

The commutativity of Diagram (2.12) now follows from a simple computation.
Remark 2.14. If the transition maps $p_{n m}$ are assumed to be surjective submersions for all n, m, then $T_{x}(X)=\lim _{\leftrightarrows} T_{x_{n}}\left(X_{n}\right)$ has the structure of a provariety as in Section 2.1.

Definition 2.15. We call a derivation of the sheaf of F-algebras $\mathcal{O}_{X}, \xi: \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}$ a (global) vector field on X. It follows from definitions that for each $x \in X, \xi$ induces a point derivation of the stalk $\xi_{x}: \mathcal{O}_{X, x} \rightarrow F$, so that for all $x \in X, \xi_{x} \in T_{x}(X)$.

Definition 2.16. For $x \in X=\lim _{\leftrightarrows} X_{n}$, we define the cotangent space at x to be

$$
T_{x}^{*}(X):=\underset{\longrightarrow}{\lim } T_{x_{n}}^{*}\left(X_{n}\right),
$$

where $T_{x_{n}}^{*}\left(X_{n}\right)$ is the contangent space at $x_{n}=p_{n}(x)$ of X_{n}. Observe that $\left(T_{x}^{*}(X)\right)^{*}=T_{x}(X)$ by Theorem 2.10.

2.3. Morphisms of provarieties

In this section, we show that the provariety constructed in Section 2.1 is an inverse limit in the category of locally ringed spaces. We first observe that the canonical projection maps: $p_{k}: X=\lim _{n} \rightarrow X_{k}$ are morphisms of locally ringed spaces with differentials $d p_{k}=\pi_{k}: T(X)=\lim _{\ddagger} T\left(X_{n}\right) \rightarrow T\left(X_{k}\right)$. (See (2.12).) This follows immediately from Equation (2.1), Proposition 2.7, and Theorem 2.10. The following basic lemma, which appears without proof in [11], will be used to establish the main result of this section.

Lemma 2.17. Let X be a topological space, and let \mathcal{B} be a basis for the topology on X. Let \mathcal{F}, \mathcal{G} be sheaves of F-algebras on X. Suppose that for any $U \in \mathcal{B}$, we have a homomorphism of F-algebras:

$$
\Phi_{U}: \mathcal{F}(U) \rightarrow \mathcal{G}(U),
$$

such that if $W \subseteq U$ with $W \in \mathcal{B}$, then the following diagram commutes:

(i.e. Φ is a morphism of the \mathcal{B}-presheaves associated to the sheaves \mathcal{F} and \mathcal{G}.) Then Φ lifts to a morphism of sheaves $\tilde{\Phi}: \mathcal{F} \rightarrow \mathcal{G}$ such that $\widetilde{\Phi}_{U}=\Phi_{U}$ for $U \in \mathcal{B}$.

Proof. Let $V \subseteq X$ be open. Then since \mathcal{F} and \mathcal{G} are sheaves of F-algebras,

$$
\mathcal{F}(V) \cong \lim _{U \subseteq \overparen{V}, U \in \mathcal{B}} \mathcal{F}(U) \text { and } \mathcal{G}(V) \cong \lim _{U \subseteq \overparen{V}, U \in \mathcal{B}} \mathcal{G}(U) \text {. }
$$

Since the diagram in (2.18) is commutative, the universal property of inverse limits gives a morphism:

$$
\widetilde{\Phi}_{U}:=\lim _{U \subseteq V} \Phi_{U}: \mathcal{F}(V) \rightarrow \mathcal{G}(V)
$$

It is easy to see that $\tilde{\Phi}$ is a morphism of sheaves with the desired property.
We now state and prove the main result of this section.
Proposition 2.19. Let $\left\{\left(X_{n}, p_{n k}\right)\right\}$ be an inverse system of varieties with surjective transition morphisms, and let $\mathcal{O}_{X_{n}}$ be the structure sheaf of X_{n}. Let $\left(X=\lim _{n}, \mathcal{O}_{X}\right)$ be the corresponding provariety. Let $\left(Y, \mathcal{O}_{Y}\right)$ be a locally ringed space. Suppose we are given morphisms of locally ringed spaces $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ with $f_{n}:\left(Y, \mathcal{O}_{Y}\right) \rightarrow\left(X_{n}, \mathcal{O}_{X_{n}}\right)$ such that for any $m \geq n$ the following diagram commutes:

Then the map $f:=\underset{\leftrightarrows}{\lim } f_{n}$ is a morphism of locally ringed spaces

$$
f:\left(Y, \mathcal{O}_{Y}\right) \rightarrow\left(X, \mathcal{O}_{X}\right)
$$

Moreover, for any $y \in Y$, the differential $(d f)_{y}: T_{y}(Y) \rightarrow T_{f(y)}(X)$ is given by:

$$
\begin{equation*}
(d f)_{y}=\lim _{\leftrightarrows}\left(d f_{n}\right)_{y} . \tag{2.21}
\end{equation*}
$$

Proof. Since the diagram in (2.20) is commutative, the universal property of inverse limits gives us a map of sets $f:=\lim f_{n}: Y \rightarrow \underset{\rightleftarrows}{\lim } X_{n}=X$. Since X has the inverse limit topology, it follows that f is continuous.

We claim that f induces a morphism of sheaves of F-algebras on $X, f^{\sharp}: \mathcal{O}_{X} \rightarrow f_{*} \mathcal{O}_{Y}$. To show this, we use Lemma 2.17. Let $U \subseteq X$ be a basic open set. Then $U=p_{n}^{-1}\left(U_{n}\right)$ for some open set $U_{n} \subseteq X_{n}$. Since the comorphism $p_{n}^{*}: \mathcal{O}_{X_{n}} \rightarrow\left(p_{n}\right)_{*} \mathcal{O}_{X}$ is injective for all n, the commutativity of Diagram (2.20) implies that the following diagram is also commutative:

$$
\begin{equation*}
p_{n}^{*} \mathcal{O}_{X_{n}}\left(p_{n}^{-1}\left(U_{n}\right)\right) \xrightarrow[p_{m}^{*} \circ p_{m n}^{*} \circ\left(p_{n}^{*}\right)^{-1}]{f_{n}^{\sharp} \circ\left(p_{n}^{*}\right)^{-1}} p_{m}^{*} \mathcal{O}_{X_{m}}\left(p_{m n}^{-1}\left(U_{n}\right)\right) . \tag{2.22}
\end{equation*}
$$

For ease of notation, let $\tilde{f_{m}}:=f_{m}^{\sharp} \circ\left(p_{m}^{*}\right)^{-1}$ for each $m \in \mathbb{N}$. It follows from Diagram (2.22) and the universal property of direct limits that

$$
\begin{equation*}
\underline{\lim }_{m \geq n} \tilde{f_{m}}: \mathcal{O}_{X}(U)={\underset{m \geq n}{ }}_{\lim _{m}^{*}} p_{m}^{*} \mathcal{O}_{X_{m}}\left(p_{m n}^{-1}\left(U_{n}\right)\right) \rightarrow \mathcal{O}_{Y}\left(f_{n}^{-1}\left(U_{n}\right)\right)=f_{*} \mathcal{O}_{Y}\left(p_{n}^{-1}\left(U_{n}\right)\right) \tag{2.23}
\end{equation*}
$$

is a homomorphism of F-algebras. It is easy to see that this homomorphism is compatible with restriction maps of the $\mathcal{\mathcal { B }}$-presheaf $\widetilde{\mathcal{O}_{X}}$. Thus, by Lemma 2.17 we obtain a morphism of sheaves of F-algebras:

$$
f^{\sharp}: \mathcal{O}_{X} \rightarrow f_{*} \mathcal{O}_{Y} .
$$

Since the maps f_{n} are morphisms of locally ringed spaces, it follows from Proposition 2.7 that $\left(f, f^{\sharp}\right)$ is a morphism of locally ringed spaces.

We now compute the differential of f. The diagram in (2.20) gives rise to a commutative diagram

for any $y \in Y$. It follows from Theorem 2.10 that

$$
(d f)_{y}=\lim _{\leftrightarrows}\left(d f_{n}\right)_{y}: T_{y}(Y) \rightarrow \lim _{\leftrightarrows} T_{f_{n}(y)}\left(X_{n}\right)=T_{f(y)}(X) .
$$

Corollary 2.25. Let $\left\{\left(X_{n}, p_{n k}\right)_{n \in \mathbb{N}}\right\}$ and $\left\{\left(Y_{n}, q_{n k}\right)\right\}_{n \in \mathbb{N}}$ be inverse systems of varieties with surjective transition morphisms, and let $\left(X=\lim _{\rightleftarrows} X_{n}, \mathcal{O}_{X}\right)$ and $\left(Y=\lim _{\leftrightarrows} Y_{n}, \mathcal{O}_{Y}\right)$ be the corresponding provarieties. Suppose that for each $n \in \mathbb{N}$, we have morphisms $f_{n}: X_{n} \rightarrow Y_{n}$ such that for any $m \geq n$ the following diagram commutes:

$$
\begin{gather*}
X_{m} \xrightarrow{f_{m}} Y_{m} \tag{2.26}\\
p_{m n} \downarrow \stackrel{q_{m n}}{\downarrow} \stackrel{q_{m n}}{{ }^{f_{n}}} \stackrel{Y_{n} .}{ }
\end{gather*}
$$

Then the map $f=\lim _{\ddagger} f_{n}:\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ is a morphism of locally ringed spaces with differential:

$$
d f=\lim _{\leftrightarrows} d f_{n}: \lim _{\leftrightarrows} T\left(X_{n}\right) \rightarrow \lim _{\leftrightarrows} T\left(Y_{n}\right) .
$$

Proof. The hypotheses of the corollary imply that the maps

$$
\tilde{f}_{n}: \lim _{\leftrightarrows} X_{n} \xrightarrow{p_{n}} X_{n} \xrightarrow{f_{n}} Y_{n}
$$

are morphisms of locally ringed spaces satisfying the conditions of Proposition 2.19. It then follows that $\lim _{\leftrightarrows} \tilde{f}_{n}=\lim _{\leftrightarrows} f_{n}$ is a morphism of locally ringed spaces with differential $\lim _{\leftrightarrows} d \tilde{f}_{n}=\lim _{\leftrightarrows} d f_{n}$.

Example 2.27. For $n \in \mathbb{N}$, let \mathfrak{g}_{n} be a finite dimensional Lie algebra over \mathbb{C}. Suppose we have a chain

$$
\begin{equation*}
\mathfrak{g}_{1} \xrightarrow{j_{12}} \mathfrak{g}_{2} \xrightarrow{j_{23}} \mathfrak{g}_{3} \rightarrow \cdots \rightarrow \mathfrak{g}_{n} \xrightarrow{j_{n, n+1}} \cdots \tag{2.28}
\end{equation*}
$$

where $j_{n, n+1}: \mathfrak{g}_{n} \rightarrow \mathfrak{g}_{n+1}$ is an injective homomorphism of Lie algebras. The direct limit $\mathfrak{g}:=\underline{\longrightarrow} \lim _{n}$ is naturally a Lie algebra, and the full vector space dual $\mathfrak{g}^{*}=\lim _{\leftrightarrows} \mathfrak{g}_{n}^{*}$ is a provariety. For $\lambda \in \mathfrak{g}^{*}$, the tangent space at λ is naturally the provariety:

$$
T_{\lambda}\left(\mathfrak{g}^{*}\right)=\lim _{\leftrightarrows} T_{\lambda_{n}}\left(\mathfrak{g}_{n}^{*}\right)=\mathfrak{g}^{*}
$$

by Theorem 2.10 and Remark 2.14. Similarly, we can identify the cotangent space at $\lambda \in \mathfrak{g}^{*}$ with the Lie algebra \mathfrak{g} as a vector space:

$$
\begin{equation*}
T_{\lambda}^{*}\left(\mathfrak{g}^{*}\right)=\underline{\lim } T_{\lambda_{n}}^{*}\left(\mathfrak{g}_{n}^{*}\right)=\underline{\longrightarrow}\left(\mathfrak{g}_{n}^{*}\right)^{*} \cong \mathfrak{g} . \tag{2.29}
\end{equation*}
$$

Suppose that for each $n \in \mathbb{N}$, the Lie algebra \mathfrak{g}_{n} is reductive with non-degenerate, associative form $\ll \cdot \cdot \gg$. Then we can use the form $\ll \cdot, \cdot \gg$ to identify \mathfrak{g}_{n} with \mathfrak{g}_{n}^{*}, giving the vector space

$$
\begin{equation*}
\tilde{\mathfrak{g}}:=\lim _{\leftrightarrows} \mathfrak{g}_{n} \tag{2.30}
\end{equation*}
$$

the structure of a provariety. By Corollary $2.25, \tilde{\mathfrak{g}} \cong \mathfrak{g}^{*}$ as provarieties.
In particular, consider the case where $\mathfrak{g}_{n}=\mathfrak{g l}(n, \mathbb{C})$ is the Lie algebra of $n \times n$ complex matrices. For $X \in \mathfrak{g}_{n}$, let $j_{n, n+1}(X)$ be the $(n+1) \times(n+1)$ matrix with $\left(j_{n, n+1}(X)\right)_{k j}=X_{k j}$ for $k, j \in\{1, \ldots, n\}$ and $\left(j_{n, n+1}(X)\right)_{k j}=0$ otherwise. Then $\mathfrak{g}=\mathfrak{g l}(\infty)$ is the Lie algebra of infinite-by-infinite complex matrices with only finitely many non-zero entries. Moreover, the Lie algebra \mathfrak{g}_{n} is reductive with non-degenerate, associative form $\ll X, Y \gg \operatorname{tr}(X Y)$, where $\operatorname{tr}(\cdot)$ denotes the trace function. Using the trace form, the map $j_{n, n+1}^{*}: \mathfrak{g}_{n+1}^{*} \rightarrow \mathfrak{g}_{n}^{*}$ is identified with the map $p_{n+1, n}: \mathfrak{g}_{n+1} \rightarrow \mathfrak{g}_{n}$, where $p_{n+1, n}(X)=X_{n}$, and X_{n} is the $n \times n$ submatrix in the upper left-hand corner of $X \in \mathfrak{g}_{n+1}$. We denote the dual space of \mathfrak{g}, $\tilde{\mathfrak{g}}$ defined in Equation (2.30) as $M(\infty)$. Thus,

$$
\begin{equation*}
M(\infty):=\left\{(X(1), X(2), \ldots, X(n), X(n+1), \ldots,): X(n) \in \mathfrak{g}_{n} \text { and } X(n+1)_{n}=X(n)\right\} \tag{2.31}
\end{equation*}
$$

The provariety $M(\infty)$ is naturally isomorphic to the vector space of infinite-by-infinite complex matrices with arbitrary entries.

A similar construction works for any classical direct limit Lie algebra. For example, if $\mathfrak{g}_{n}=\mathfrak{s o}(n, \mathbb{C})$ is the Lie algebra of $n \times n$ complex skew-symmetric matrices, then $\mathfrak{s o}(\infty):=\lim _{\longrightarrow} \mathfrak{g}_{n}$ is the Lie algebra of infinite-by-infinite skew-symmetric matrices with only finitely many nonzero entries. The dual space $\tilde{\mathfrak{g}} \cong \mathfrak{s o}(\infty)^{*}$ is the provariety of infinite-by-infinite complex skew-symmetric matrices.

We will see in the next section that the Lie-Poisson structure of \mathfrak{g}_{n}^{*} has a natural generalization to the provariety $\mathfrak{g}^{*}=\lim _{\ddagger} \mathfrak{g}_{n}^{*}$.

2.4. Poisson provarieties

We briefly recall some basic definitions from Poisson geometry. A variety X is a Poisson variety if the structure sheaf \mathcal{O}_{X} is a sheaf of Poisson algebras. That is to say that for each open subset $U \subseteq X, \mathcal{O}_{X}(U)$ is a Poisson algebra and the restriction maps $\rho_{U V}: \mathcal{O}_{X}(U) \rightarrow \mathcal{O}_{X}(V)$ are homomorphisms of Poisson algebras. This is equivalent to specifying a regular bivector field $\pi \in \wedge^{2} T X$, whose Schouten-Nijenhuis bracket $[\pi, \pi]=0$. We have the relation

$$
\begin{equation*}
\{f, g\}(x)=\pi_{x}\left(d f_{x}, d g_{x}\right), \tag{2.32}
\end{equation*}
$$

for $x \in X$ and $f, g \in \mathcal{O}_{X}(X)$, where $\{\cdot, \cdot\}$ denotes the Poisson bracket on $\mathcal{O}_{X}(X)$. For a regular function $f \in \mathcal{O}_{X}(X)$, we define the Hamiltonian vector field ξ_{f} by

$$
\xi_{f}(g)=\{f, g\},
$$

for $g \in \mathcal{O}_{X}(X)$. The Poisson bivector π defines a bundle map $\widetilde{\pi}: T^{*}(X) \rightarrow T(X)$, given by

$$
\widetilde{\pi}(\lambda)(\mu)=\pi(\lambda, \mu),
$$

for $\lambda, \mu \in T^{*}(X)$. It follows from (2.32) that $\widetilde{\pi}(d f)=\xi_{f}$. We refer to $\widetilde{\pi}$ as the anchor map.
Given two Poisson varieties $\left(X_{1}, \pi_{1}\right),\left(X_{2}, \pi_{2}\right)$, a morphism $\phi: X_{1} \rightarrow X_{2}$ is said to be Poisson if the comorphism $\phi^{\sharp}: \mathcal{O}_{X_{2}} \rightarrow \phi_{*} \mathcal{O}_{X_{1}}$ is a morphism of sheaves of Poisson algebras. In particular, we say that $\left(X_{1}, \pi_{1}\right) \subset\left(X_{2}, \pi_{2}\right)$ is a Poisson subvariety if the inclusion map $i: X_{1} \rightarrow X_{2}$ is Poisson.

Let $\left(X_{n}, p_{n m}\right)$ be an inverse system of varieties with surjective transition morphisms. Suppose that each of the varieties X_{n} is Poisson and the morphisms $p_{n m}: X_{n} \rightarrow X_{m}$ are Poisson. We claim that the structure sheaf \mathcal{O}_{X} constructed in Section 2.1 is a sheaf of Poisson algebras. We begin with the following lemma whose proof is elementary.

Lemma 2.33.

(1) Let $\left(A_{n}, \phi_{n m}\right)$ be a directed system of Poisson algebras. That is, A_{n} is a Poisson algebra for each n and $\phi_{n m}: A_{n} \rightarrow A_{m}$ is a homomorphism of Poisson algebras for each $n \leq m$. Then the direct limit $A=\underline{\lim } A_{n}$ has a natural Poisson algebra structure and is a direct limit in the category of Poisson algebras.
(2) Let $\left(B_{n}, \psi_{n m}\right)$ be an inverse system of Poisson algebras. Then $\lim _{\leftrightarrows} B_{n}$ has the structure of a Poisson algebra and is the inverse limit in the category of Poisson algebras.

Proposition-Definition 2.34. Let $\left(X_{n}, p_{n m}\right)$ be an inverse system of Poisson varieties X_{n}, with surjective Poisson morphisms $p_{n m}$, and let $\left(X=\lim _{n} X_{n}, \mathcal{O}_{X}\right)$ be the corresponding provariety. Then the structure sheaf \mathcal{O}_{X} constructed in Section 2.1 is a sheaf of Poisson algebras. We call $X=\lim _{\rightleftarrows} X_{n}$ a Poisson provariety.

Proof. It follows from (2.1) and Part (1) of Lemma 2.33 that the \mathcal{B}-presheaf $\widetilde{\mathcal{O}_{X}}$ is a \mathcal{B}-presheaf of Poisson algebras. Part (2) of Lemma 2.33 and Equation (2.2) then imply that the sheaf \mathcal{O}_{X} is a sheaf of Poisson algebras.

The following lemma will play an important role in the constructions that follow.
Lemma 2.35. Let $\left\{V_{n}, \phi_{n m}\right\}$ be a directed system of vector spaces. Then for any $k \in \mathbb{N}$

$$
\left(\bigwedge^{k} \underset{n}{\lim } V_{n}\right)^{*} \cong{\underset{\check{n}}{n}}^{\lim _{n}}\left[\left(\bigwedge^{k} V_{n}\right)^{*}\right]
$$

Proof. By universal properties of direct limits, there exist $\phi_{\ell}: V_{\ell} \rightarrow \underset{\vec{n}}{\lim } V_{n}$ compatible with transition functions $\phi_{\ell m}: V_{\ell} \rightarrow V_{m}$ for all $\ell \leq m$. These define maps $\wedge^{k} \phi_{\ell}: \wedge^{k} V_{\ell} \rightarrow \wedge^{k} \underset{\vec{n}}{\lim } V_{n}$ compatible with the transition maps $\wedge^{k} \phi_{\ell m}: \wedge^{k} V_{\ell} \rightarrow \wedge^{k} V_{m}$. This induces a map $\underset{n}{\lim _{\vec{n}}} \wedge^{k} \phi_{n}: \underset{n}{\lim _{\vec{n}}} \wedge^{k} V_{n} \rightarrow \wedge^{k} \underset{\vec{n}}{\lim } V_{n}$. Dualizing, we obtain the desired map

$$
\psi:\left(\bigwedge^{k} \underset{n}{\lim } V_{n}\right)^{*} \rightarrow\left(\underset{\vec{n}}{\lim _{n}} \bigwedge^{k} V_{n}\right)^{*}=\lim _{n}\left[\left(\bigwedge^{k} V_{n}\right)^{*}\right] .
$$

It is straightforward to verify that ψ is a vector space isomorphism. Concretely, $\psi(f)=\left(f_{1}, f_{2}, \ldots\right)$, where

$$
f_{n}=f \circ \wedge^{k} \phi_{n},
$$

for each n.
Let $X=\lim _{n} X_{n}$ be a Poisson provariety. As in the finite dimensional case, the Hamiltonian vector field ξ_{f} of f is defined by $\xi_{f}(g)=\{f, g\}$ for any $f, g \in \mathcal{O}_{X}(X)$. The cotangent space $T_{x}^{*}(X)=\underset{\longrightarrow}{\lim } T_{x_{n}}^{*}\left(X_{n}\right)$ is spanned by the differentials $d f_{x}$ of global functions $f \in \mathcal{O}_{X}(X) \cong \underline{\longrightarrow} \mathcal{O}_{X_{n}}\left(X_{n}\right)$. Thus, for each $x \in X$, the Poisson bracket $\{\cdot, \cdot\}$ defines an element $\pi_{X, x} \in\left(\wedge^{2} T_{x}^{*} X\right)^{*}$ given by

$$
\begin{equation*}
\pi_{X, x}\left(d f_{x}, d g_{x}\right):=\{f, g\}(x), \tag{2.36}
\end{equation*}
$$

cf. (2.32). By Lemma 2.35, we can view $\pi_{X, x}$ as an element of $\lim \wedge^{2} T_{x_{n}} X_{n}$ at each $x \in X$. We define the Poisson bivector of X, π_{X} to be the element of $\lim _{\leftrightarrows} \wedge^{2} T X_{n}$ whose value at each $x \in X$ is given by (2.36). The bivector π_{X} is an inverse limit of the Poisson bivector on each X_{n}.

Proposition 2.37. Let $X=\lim X_{n}$ be a Poisson provariety, and let $\pi_{n} \in \wedge^{2} T X_{n}$ be the bivector fields defining the Poisson structure on X_{n}. Then $\pi_{X}=\lim _{\rightleftarrows} \pi_{n} \in \lim _{\rightleftarrows} \wedge^{2} T X_{n}$. For each $x \in X$, the anchor map $\widetilde{\pi}_{X, x}: T_{x}^{*} X \rightarrow T_{x} X$ is

$$
\widetilde{\pi}_{X, x}\left(\lambda_{n}\right)=\left(d p_{n 1} \widetilde{\pi}_{n, x_{n}}\left(\lambda_{n}\right), d p_{n 2} \widetilde{\pi}_{n, x_{n}}\left(\lambda_{n}\right), \ldots, \widetilde{\pi}_{n, x_{n}}\left(\lambda_{n}\right), \widetilde{\pi}_{n+1, x_{n+1}}\left(d p_{n+1, n}^{*} \lambda_{n}\right), \ldots\right),
$$

for $\lambda_{n} \in \underline{\longrightarrow} T_{x_{n}}^{*} X_{n}$, a representative of $\lambda_{n} \in T_{x_{n}}^{*}\left(X_{n}\right)$ in the direct limit.
Proof. This is an elementary computation using the definition of the Poisson bracket $\{\cdot \cdot$,$\} on X$.
Example 2.38. For $n \in \mathbb{N}$, let \mathfrak{g}_{n} be a finite dimensional, complex Lie algebra. Then \mathfrak{g}_{n}^{*} is a Poisson variety with the Lie-Poisson structure. The Poisson bracket of linear functions $x_{n}, y_{n} \in \mathfrak{g}_{n}$ is given by their Lie bracket, i.e.

$$
\begin{equation*}
\left\{x_{n}, y_{n}\right\}\left(\mu_{n}\right)=\mu_{n}\left(\left[x_{n}, y_{n}\right]\right), \tag{2.39}
\end{equation*}
$$

for $\mu_{n} \in \mathfrak{g}_{n}^{*}$ (see for example, Section 1.3, [5]). We denote the corresponding bivector by $\pi_{n} \in \wedge^{2} T \mathfrak{g}_{n}^{*}$. We let ad * denote the coadjoint action of \mathfrak{g}_{n} on \mathfrak{g}_{n}^{*}. Equation (2.39) implies the anchor map $\widetilde{\pi}_{n}$ for the Lie-Poisson structure on \mathfrak{g}_{n}^{*} is given by

$$
\begin{equation*}
\widetilde{\pi}_{n, \mu_{n}}\left(x_{n}\right)=-\operatorname{ad}^{*}\left(x_{n}\right) \mu_{n} . \tag{2.40}
\end{equation*}
$$

Now suppose we have a chain of Lie algebras as in Equation (2.28) of Example 2.27:

$$
\mathfrak{g}_{1} \xrightarrow{j_{12}} \mathfrak{g}_{2} \xrightarrow{j_{23}} \mathfrak{g}_{3} \rightarrow \cdots \rightarrow \mathfrak{g}_{n} \xrightarrow{j_{n, n+1}} \cdots,
$$

and let $\mathfrak{g}:=\underline{\longrightarrow} \mathfrak{g}_{n}$ be the corresponding direct limit Lie algebra. Since the homomorphisms $j_{n, n+1}$: $\mathfrak{g}_{n} \rightarrow \mathfrak{g}_{n+1}$ are inclusions, their pullbacks $p_{n+1, n}: \mathfrak{g}_{n+1}^{*} \rightarrow \mathfrak{g}_{n}^{*}$ are Poisson submersions with respect to the Lie-Poisson structures on \mathfrak{g}_{n+1}^{*} and \mathfrak{g}_{n}^{*}. Thus, $\mathfrak{g}^{*}=\lim \mathfrak{g}_{n}^{*}$ is a Poisson provariety with bivector $\pi_{\mathfrak{g}^{*}}=\lim _{\ddagger} \pi_{n}$.

For $\mu \in \mathfrak{g}^{*}$, we identify the cotangent space $T_{\mu}^{*}\left(\mathfrak{g}^{*}\right)$ with \mathfrak{g} as in (2.29). Then Proposition 2.37 and Equation (2.40) imply that the anchor map is

$$
\begin{equation*}
\widetilde{\pi}_{\mathfrak{g}^{*}, \mu}\left(x_{n}\right)=\left(-\left.\operatorname{ad}^{*}\left(x_{n}\right) \mu_{n}\right|_{\mathfrak{g}_{1}}, \ldots,-\left.\operatorname{ad}^{*}\left(x_{n}\right) \mu_{n}\right|_{\mathfrak{g}_{n-1}},-\operatorname{ad}^{*}\left(x_{n}\right) \mu_{n}, \ldots,-\operatorname{ad}^{*}\left(x_{n}\right) \mu_{k}, \ldots\right), \tag{2.41}
\end{equation*}
$$

for $x_{n} \in \mathfrak{g}_{n} \subset \mathfrak{g}, \mu \in \mathfrak{g}^{*}$, and where $-\left.\operatorname{ad}^{*}\left(x_{n}\right) \mu_{n}\right|_{\mathfrak{g} \ell}$ denotes the restriction of the linear functional $-\operatorname{ad}^{*}\left(x_{n}\right) \mu_{n} \in \mathfrak{g}_{n}^{*}$ to \mathfrak{g}_{ℓ} for $\ell<n$.

By Equation (2.41), the kernel of the anchor map consists precisely of the covectors $x_{n} \in T_{\mu_{n}}^{*} \mathfrak{g}_{n}^{*} \subseteq T_{\mu}^{*} \mathfrak{g}^{*}=$ \mathfrak{g} whose coadjoint action $\operatorname{ad}^{*}\left(x_{n}\right)$ annihilates μ_{k} for $k \geq n$. For $k \geq n$, let $\mathfrak{g}_{n}^{\mu_{k}}:=\left\{x_{n} \in \mathfrak{g}_{n}: \operatorname{ad}^{*}\left(x_{n}\right) \mu_{k}=0\right\}$ denote the annihilator of μ_{k} in \mathfrak{g}_{n}.

Proposition 2.42. Let $\mu \in \mathfrak{g}^{*}$ and let Ker $\widetilde{\pi_{\mathfrak{g}^{*}}}$, be the kernel of the anchor map $\widetilde{\pi_{\mathfrak{g}^{*}}}$ at μ. Then

$$
\begin{equation*}
\operatorname{Ker} \widetilde{\pi_{\mathfrak{g}^{*}}} \mu=\underset{\vec{n}}{\lim } \bigcap_{k \geq n} \mathfrak{g}_{n}^{\mu_{k}} . \tag{2.43}
\end{equation*}
$$

In the case where \mathfrak{g}_{n} is reductive with adjoint group G_{n}, we can use the non-degenerate G_{n}-equivariant form $<\cdot \cdot \cdot \gg$ on \mathfrak{g}_{n} to transfer the Lie-Poisson structure of \mathfrak{g}_{n}^{*} to \mathfrak{g}_{n}. The coadjoint action of G_{n} on \mathfrak{g}_{n}^{*} is then identified with the adjoint action of G_{n} on \mathfrak{g}_{n}. The induced maps $p_{n+1, n}: \mathfrak{g}_{n+1} \rightarrow \mathfrak{g}_{n}$ are Poisson submersions and the provariety $\tilde{\mathfrak{g}}=\lim _{\ddagger} \mathfrak{g}_{n}$ defined in Equation (2.30) is a Poisson provariety. For example, the provariety $M(\infty)$ defined in Equation (2.31) is a Poisson provariety.

$$
\begin{equation*}
\mathfrak{X}(X)_{x}=\left\{\left(\xi_{f}\right)_{x}: f \in \mathcal{O}_{X}(X)\right\}=\operatorname{Im}\left\{\tilde{\pi}_{X, x}\left(T_{x}^{*}(X)\right)\right\} \subseteq T_{x}(X) . \tag{2.44}
\end{equation*}
$$

As in the finite dimensional case, we refer to the union $\mathfrak{X}(X)=\bigcup_{x \in X} \mathfrak{X}(X)_{x}$ as the characteristic distribution of X.

If $\left(X, \mathcal{O}_{X}\right)$ is a finite dimensional, non-singular, Poisson variety over \mathbb{C} then $\mathfrak{X}(X)$ is an integrable distribution. Its leaves are immersed Poisson analytic submanifolds of $\left(S,\{\cdot,\}_{S}\right)$ where the Poisson bracket on S is induced by a symplectic form ω_{S} on S (see Chapter 2, [26] for example). The Poisson submanifolds $\left(S,\{\cdot, \cdot\}_{S}\right)$ are referred to as symplectic leaves of X. For example, let \mathfrak{g}_{n}^{*} be the dual space of a finite dimensional Lie algebra over \mathbb{C} with the Lie-Poisson structure π_{n} as in Example 2.38. Then the symplectic leaves of $\left(\mathfrak{g}_{n}^{*}, \pi_{n}\right)$ are the coadjoint orbits of G_{n} on \mathfrak{g}_{n}^{*} equipped with Kostant-Kirillov symplectic structure, where G_{n} is any connected Lie group with Lie algebra \mathfrak{g}_{n} (see Proposition 3.1, [26]).

In infinite dimensions, it is not known whether the characteristic distribution is integrable even for the case of Banach-Poisson manifolds [24]. In Section 4, we show that for the dual \mathfrak{g}^{*} of a direct limit Lie algebra \mathfrak{g}, the characteristic distribution is integrable, and that the symplectic foliation of \mathfrak{g}^{*} is given by the coadjoint orbits of an Ind-group G on \mathfrak{g}^{*} with Lie algebra \mathfrak{g}. For this, we need to study ind-varieties and direct limit groups in more detail.

3. Ind-groups

3.1. Basic definitions

In this section, we recall some basic facts about ind-varieties. For further reading, see [18].

For each $n \in \mathbb{N}$, let X_{n} be a finite dimensional variety defined over the field F. Suppose for any $m \in \mathbb{N}$ with $n \leq m$, we have a locally closed embedding $i_{n m}: X_{n} \rightarrow X_{m}$. We call the direct limit $X:=\underset{\longrightarrow}{\lim } X_{n}$ of the varieties $\left\{X_{n}\right\}_{n \in \mathbb{N}}$, an ind-variety. ${ }^{1}$

As a topological space X is endowed with the final topology (i.e. the finest topology for which the inclusion maps $\iota_{n}: X_{n} \hookrightarrow X$ are continuous), so that $U \subset X$ is open if and only if $U \cap X_{n}$ is open for all $n \in \mathbb{N}$. It is easy to see that $Z \subset X$ is closed if and only if $Z \cap X_{n}$ is closed for all $n \in \mathbb{N}$. An ind-variety X is said to be irreducible if its underlying topological space is irreducible. One notes that if $X=\underline{\longrightarrow} X_{n}$ with X_{n} irreducible for all n, then X is irreducible.

For any open set $U \subseteq X$, the structure sheaf is given by $\mathcal{O}_{X}(U)=\lim _{\mathcal{O}_{X_{n}}}\left(U_{n}\right)$, where $U_{n}=U \cap X_{n}$. (When there is no ambiguity, we identify X_{n} with its image $\iota_{n}\left(X_{n}\right) \subseteq X$.) A map $f: X \rightarrow Y$ is a morphism of ind-varieties if there is a strictly increasing function $m: \mathbb{N} \rightarrow \mathbb{N}$, such that the restriction f_{n} of f to $X_{n} \subseteq X$ is a morphism of varieties $f_{n}: X_{n} \rightarrow Y_{m(n)}$. The map f induces a morphism of ringed spaces $\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$. Two ind-variety structures on the same set X are said to be equivalent if the identity map $I_{X}: X \rightarrow X$ is an isomorphism of ind-varieties. We will not distinguish between equivalent ind-variety structures.

The product $X \times Y$ of two ind-varieties X and Y is naturally an ind-variety, by viewing $X \times Y=$ $\xrightarrow{\lim }(X \times Y)_{n}$, where $(X \times Y)_{n}=X_{n} \times Y_{n}$, and the transition maps $\iota_{n m}:(X \times Y)_{n} \rightarrow(X \times Y)_{m}$ are given by $\iota_{n m}=\iota_{n m}^{X} \times \iota_{n m}^{Y}$, where $\iota_{n m}^{X}: X_{n} \rightarrow X_{m}$ and $\iota_{n m}^{Y}: Y_{n} \rightarrow Y_{m}$ are the corresponding transition maps for X and Y.

Given an element x of an ind-variety $X=\underset{\longrightarrow}{\lim } X_{n}$, there exists $k \in \mathbb{N}$ so that $x \in X_{\ell}$ for all $\ell \geq k$. We define the tangent space $T_{x}(X)$ to X at x to be $T_{x}(X)=\lim _{\ell \geq k} T_{x}\left(X_{\ell}\right)$. For a morphism of ind-varieties $f: X \rightarrow Y$, the differential $(d f)_{x}$ at $x \in X$ is given by

$$
(d f)_{x}=\lim _{\ell \geq \vec{k}}\left(d f_{\ell}\right)_{x}: \lim _{\overrightarrow{\ell \geq k}} T_{x}\left(X_{\ell}\right) \rightarrow \lim _{\ell \geq \vec{k}} T_{f(x)}\left(Y_{m(\ell)}\right),
$$

where $f_{\ell}: X_{\ell} \rightarrow Y_{m(\ell)}$ is the morphism obtained by restricting f to X_{ℓ}.
The next proposition asserts that an ind-variety is a direct limit in the category of ringed spaces.

Proposition 3.1. Let $\left(X=\lim X_{n}, \mathcal{O}_{X}\right)$ be an ind-variety and let $\left(Y, \mathcal{O}_{Y}\right)$ be a locally ringed space. For each $i \in \mathbb{N}$, suppose we have morphisms of locally ringed spaces

$$
f_{n}:\left(X_{n}, \mathcal{O}_{X_{n}}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)
$$

such that the following diagram commutes.

Then $f:=\underline{\lim } f_{n}:\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ is a morphism of ringed spaces with differential: $d f=\underline{\lim } d f_{n}:$ $T(X) \rightarrow T(Y)$.

[^1]Proof．By the universal property of the direct limit，there is a map of sets $f:=\underset{\longrightarrow}{\lim } f_{n}: \underset{\longrightarrow}{\lim } X_{n} \rightarrow Y$ ．We note that f is continuous，since $X=\underline{\longrightarrow} X_{n}=\bigcup_{n \in \mathbb{N}} X_{n}$ has the final topology and each of the maps $f_{n}: X_{n} \rightarrow Y$ are continuous．

We claim that f induces a morphism of sheaves of F－algebras on $Y, f^{\sharp}: \mathcal{O}_{Y} \rightarrow f_{*} \mathcal{O}_{X}$ ．The commutative diagram in（3．2）gives rises to a commutative diagram of morphisms of sheaves of F－algebras on Y ：

and $\left\{f_{m, *} \mathcal{O}_{X_{m}}, i_{n m}^{\sharp}\right\}$ is an inverse system of sheaves of F－algebras on Y ．By Exercise II 1．12，［14］， $\lim _{幺} f_{n, *} \mathcal{O}_{X_{n}}$ is a sheaf of F－algebras on Y ，which satisfies the universal property of inverse limits in the category of sheaves of F－algebras on Y ．Thus，we get a morphism of sheaves of F－algebras on Y ：

$$
\lim _{\leftrightarrows} f_{n}^{\sharp}: \mathcal{O}_{Y} \rightarrow \lim _{\leftrightarrows} f_{n, *} \mathcal{O}_{X_{n}} .
$$

It follows from definitions that $\lim _{幺} f_{n, *} \mathcal{O}_{X_{n}}=f_{*} \mathcal{O}_{X}$ ．If we let $f^{\sharp}:=\lim _{幺} f_{n}^{\sharp}$ ，then $\left(f, f^{\sharp}\right):\left(X, \mathcal{O}_{X}\right) \rightarrow\left(Y, \mathcal{O}_{Y}\right)$ is a morphism of ringed spaces．

We now compute the differential $d f$ ．Let $x \in X_{n} \subset X$ ．The commutative diagram in（3．2）yields a commutative diagram：

$$
\begin{equation*}
\overbrace{\left(d f_{n}\right)_{x}}^{T(Y)_{f(x)}} \underbrace{\left(X_{n}\right)}_{\left(d i_{n m}\right)_{x}} \xrightarrow{T} T_{x}\left(X_{m}\right) . \tag{3.4}
\end{equation*}
$$

By the universal property of direct limits，we obtain a map：

$$
\underset{m \geq n}{\lim _{\longrightarrow}}\left(d f_{m}\right)_{x}: \underset{m \geq n}{\lim _{\overrightarrow{2}}} T_{x}\left(X_{m}\right) \rightarrow T_{f(x)}(Y) .
$$

Since $T_{x}(X)=\underset{m \geq n}{\lim _{\longrightarrow}} T_{x}\left(X_{m}\right)$ ，we have $(d f)_{x}=\underset{m \geq n}{\lim _{m}}\left(d f_{m}\right)_{x}$ ．

3．2．Affine direct limit groups

Let $\left\{G_{n}, i_{n m}\right\}_{m \geq n \in \mathbb{N}}$ be a directed system of affine algebraic groups，and let $i_{n m}: G_{n} \rightarrow G_{m}$ be a homomorphic embedding of algebraic groups．Then the image of G_{n} is closed in G_{m}（see for example， Section 7．2，［15］）．The（affine）direct limit group $G=\underset{\longrightarrow}{\lim } G_{n}$ is then naturally an ind－variety．

For $G=\underline{\lim } G_{n}$ a direct limit group，we consider the tangent space at the identity，$T_{e}(G)$ ．We have $T_{e}(G)=\underset{\longrightarrow}{\lim } \overrightarrow{T_{e}}\left(G_{n}\right) \cong \underline{\lim } \mathfrak{g}_{n}$ ，where $\mathfrak{g}_{n}=\operatorname{Lie}\left(G_{n}\right) \cong T_{e}\left(G_{n}\right)$ ，and we think of $\operatorname{Lie}\left(G_{n}\right)$ as the Lie algebra of right invariant vector fields on G_{n} ．The ind－variety $\mathfrak{g}:=\underline{\longrightarrow} \mathfrak{l}_{n}=\operatorname{Lie}(G)$ is a direct limit Lie algebra（see Example 2．27）．

Example 3．5．For each $n \in \mathbb{N}$ ，let $G_{n}:=G L(n, \mathbb{C})$ be the group of $n \times n$ invertible matrices over the complex numbers．We can embed G_{n} in G_{n+1} via the map

$$
i_{n n+1}: g \hookrightarrow\left[\begin{array}{ll}
g & 0 \\
0 & 1
\end{array}\right] \in G_{n+1}
$$

This map is clearly a closed embedding, so we can form the direct limit group:

$$
\begin{equation*}
G L(\infty):=\underset{\longrightarrow}{\lim } G_{n} . \tag{3.6}
\end{equation*}
$$

Of course, $\operatorname{Lie}(G L(\infty))=\mathfrak{g l}(\infty)=\underset{\longrightarrow}{\lim } \mathfrak{g l}(n, \mathbb{C})$ is the direct limit Lie algebra discussed in Example 2.27.
An algebraic action of a direct limit group G on an ind-variety V is a morphism of ind-varieties f : $G \times V \rightarrow V$ such that each restriction $f_{n}=\left.f\right|_{G_{n} \times V_{n}}$ defines an algebraic action of G_{n} on V_{n}, and the following diagram commutes:

i.e. $f=\underline{\lim _{\longrightarrow}} f_{n}$. If the algebraic action of G on V is transitive, we say that V is a homogeneous space for G. If each V_{n} is a vector space over the base field F, then V is an algebraic representation. Any algebraic representation $\rho: G \times V \rightarrow V$ induces a representation $d \rho: \mathfrak{g} \times V \rightarrow V$ of \mathfrak{g} by differentiation.

Example 3.7. The adjoint representation Ad : $G \times \mathfrak{g} \rightarrow \mathfrak{g}$ defines an algebraic representation of G on \mathfrak{g}, and its differential ad : $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ is the adjoint representation of \mathfrak{g} :

$$
\operatorname{ad}(X)(Y)=[X, Y]_{k},
$$

where $X \in \mathfrak{g}_{n}, Y \in \mathfrak{g}_{m}, k=\max \{n, m\}$, and $[X, Y]_{k}$ is the bracket of X and Y thought of as elements of \mathfrak{g}_{k}.

The directed system $\iota_{n m}: \mathfrak{g}_{n} \rightarrow \mathfrak{g}_{m}$ induces an inverse system $\iota_{n m}^{*}: \mathfrak{g}_{m}^{*} \rightarrow \mathfrak{g}_{n}^{*}$ for $n \leq m$. The transition maps $\iota_{n m}^{*}: \mathfrak{g}_{m}^{*} \rightarrow \mathfrak{g}_{n}^{*}$ are G_{n}-equivariant with respect to the coadjoint action of $G_{n} \subset G_{m}$ on \mathfrak{g}_{m}^{*} and \mathfrak{g}_{n}^{*}. Thus, we obtain an action of G on the dual space of its Lie algebra $\mathfrak{g}^{*}=\lim \mathfrak{g}_{n}^{*}$, which we refer to as the coadjoint action of G on \mathfrak{g}^{*}. Concretely, let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}, \lambda_{n+1}, \ldots,\right) \in \mathfrak{g}^{*}$. For $g \in G$, there exists $n>0$ so that $g \in G_{n}$, and then

$$
\begin{equation*}
\operatorname{Ad}^{*}(g) \cdot \lambda=\left(\left.\left(\operatorname{Ad}^{*}(g) \cdot \lambda_{n}\right)\right|_{\mathfrak{g}_{1}}, \ldots,\left.\left(\operatorname{Ad}^{*}(g) \cdot \lambda_{n}\right)\right|_{\mathfrak{g}_{n-1}}, \operatorname{Ad}^{*}(g) \cdot \lambda_{n}, \ldots, \operatorname{Ad}^{*}(g) \cdot \lambda_{k}, \ldots\right), \tag{3.8}
\end{equation*}
$$

where $\left.\left(\operatorname{Ad}^{*}(g) \cdot \lambda_{n}\right)\right|_{\mathfrak{g}_{j}}$ denotes the restriction of $\operatorname{Ad}^{*}(g) \cdot \lambda_{n} \in \mathfrak{g}_{n}^{*}$ to \mathfrak{g}_{j} for $j<n$.
As has already been discussed in Section 2.4, \mathfrak{g}^{*} is a Poisson provariety. In the next section, we will see that the coadjoint orbits of G on \mathfrak{g}^{*} form a weak symplectic foliation of the Poisson provariety \mathfrak{g}^{*}. To do this, we first need to endow the coadjoint orbits described in (3.8) with the structure of a G-homogeneous ind-variety in a natural way. The key ingredient is the following proposition.

Proposition 3.9. Let H be a closed subgroup of a direct limit group G. Then H is a direct limit group, and the quotient space G / H is an ind-variety and thus a homogeneous space for G. For any $g \in G$, the tangent space $T_{g H}(G / H)$ can be identified with the ind-variety $\mathfrak{g} / \operatorname{Ad}(g) \mathfrak{h}$.

Conversely, if G acts transitively on a nonempty set X and the isotropy group G^{x} of any $x \in X$ is closed, then X can naturally be given the structure of an ind-variety by identifying X with the G-homogeneous ind-variety G / G^{x}. The resulting ind-variety structure on X is independent of the choice of point $x \in X$.

Proof. Write $G=\underline{\longrightarrow} \lim _{n}$ and $H_{n}=H \cap G_{n}$ for each $n \in \mathbb{N}$. Then $H=\underset{\longrightarrow}{\lim } H_{n}$ is naturally a direct limit subgroup of G, and we have the following commutative diagram with exact rows:

where $\iota_{n m}$ denotes the transition map $G_{n} \rightarrow G_{m}$ as well as its restriction to H_{n} and the induced map on the quotient $i_{n m}: G_{n} / H_{n} \rightarrow G_{m} / H_{m}$. The transition maps $i_{n m}: G_{n} / H_{n} \rightarrow G_{m} / H_{m}$ are locally closed embeddings. By exactness of the direct limit functor, the sequence

$$
0 \rightarrow \xrightarrow[\longrightarrow]{\lim } H_{n} \rightarrow \xrightarrow[\longrightarrow]{\lim } G_{n} \rightarrow \xrightarrow{\lim } G_{n} / H_{n} \rightarrow 0
$$

is exact, so $\xrightarrow{\lim } G_{n} / H_{n} \cong \underline{\longrightarrow} G_{n} / \underline{\longrightarrow} H_{n}=G / H$ is naturally an ind-variety. It follows from definitions that the action of G on G / H is algebraic, so that G / H is a G-homogeneous space.

Let $g H \in G / H$ and consider the tangent space $T_{g H}(G / H)$. By our discussion above, $g H$ can be identified with a unique element $g_{n} H_{n} \in{\underset{\longrightarrow}{\longrightarrow}}^{\lim _{k}} G_{k} / H_{k}$. It follows that

$$
T_{g H}(G / H)=\lim _{k \geq n} T_{g_{n} H_{k}}\left(G_{k} / H_{k}\right)=\lim _{\overrightarrow{k \geq n}} \mathfrak{g}_{k} / \operatorname{Ad}\left(g_{n}\right) \mathfrak{h}_{k} \cong \lim _{k \geq n} \mathfrak{g}_{k} / \lim _{k \geq n} \operatorname{Ad}\left(g_{n}\right) \mathfrak{h}_{k}=\mathfrak{g} / \operatorname{Ad}(g) \mathfrak{h},
$$

where we have used right invariant vector fields to identify the tangent space $T_{x H_{k}}\left(G_{k} / H_{k}\right)$ with $\mathfrak{g}_{k} / \operatorname{Ad}(x) \mathfrak{h}_{k}$ for any $x \in G_{k}$.

Conversely, suppose that G acts on a nonempty set X. Let $x \in X$. Then $X=G \cdot x=\bigcup_{n=1}^{\infty} G_{n} \cdot x$. Since G^{x} is closed, $G_{n}^{x}=G_{n} \cap G^{x}$ is closed for each n. Thus, $G_{n} \cdot x$ can be given the structure of a variety such that $G_{n} \cdot x \cong G_{n} / G_{n}^{x}$ as algebraic varieties. Thus,

$$
X=\underset{\longrightarrow}{\lim } G_{n} \cdot x \cong \underline{\lim } G_{n} / G_{n}^{x} \cong \underline{\lim } G_{n} / \xrightarrow{\lim } G_{n}^{x}=G / G^{x}
$$

has the structure of G-homogeneous ind-variety. It is easy to see that the choice of any other point $y \in X$ produces an equivalent ind-variety structure on X.

For a point $\lambda \in \mathfrak{g}^{*}$, we denote its coadjoint orbit by $G \cdot \lambda$. Using Proposition 3.9, we can endow $G \cdot \lambda$ with the structure of a G-homogeneous ind-variety.

Corollary 3.10. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}, \ldots, \lambda_{k}, \ldots\right) \in \mathfrak{g}^{*}$, with $\lambda_{k} \in \mathfrak{g}_{k}^{*}$, and let $G \cdot \lambda \subset \mathfrak{g}^{*}$ denote the coadjoint orbit through λ. Then the isotropy group of λ, G^{λ} is given by

$$
\begin{equation*}
G^{\lambda}=\underset{\longrightarrow}{\lim } G_{n}^{\lambda} \text { where } G_{n}^{\lambda}=G^{\lambda} \cap G_{n}=\bigcap_{k \geq n} G_{n}^{\lambda_{k}}, \tag{3.11}
\end{equation*}
$$

where $G_{n}^{\lambda_{k}}$ is the isotropy group of $\lambda_{k} \in \mathfrak{g}_{k}^{*}$ under the coadjoint action of $G_{n} \subset G_{k}$.
Thus, G_{n}^{λ} is closed, so that

$$
\begin{equation*}
G \cdot \lambda=\underset{\longrightarrow}{\lim } G_{n} \cdot \lambda \cong \underline{\lim } G_{n} / G_{n}^{\lambda} \cong G / G^{\lambda} \tag{3.12}
\end{equation*}
$$

has the structure of a G-homogeneous ind-variety. For any $\mu \in G \cdot \lambda$, we have

$$
\begin{equation*}
T_{\mu}(G \cdot \lambda)=\mathfrak{g} / \mathfrak{g}^{\mu}=\underline{\longrightarrow} \mathfrak{l i m}_{n} / \mathfrak{g}_{n}^{\mu}=T_{\mu}(G \cdot \mu), \tag{3.13}
\end{equation*}
$$

where $\mathfrak{g}^{\mu}=\operatorname{Lie}\left(G^{\mu}\right)$ with $G^{\mu} \subset G$ the isotropy group of μ.

Proof. We need only verify that

$$
\begin{equation*}
G_{n}^{\lambda}=\bigcap_{k \geq n} G_{n}^{\lambda_{k}}, \tag{3.14}
\end{equation*}
$$

since the other statements of the corollary then follow immediately from Proposition 3.9. But (3.14) follows from the definition of the coadjoint action in Equation (3.8).

4. Symplectic foliation of \mathfrak{g}^{*}

4.1. Kostant-Kirillov form

Throughout this section, let $G=\underset{\longrightarrow}{\lim } G_{n}$ be an (affine) direct limit group, with G_{n} a connected, complex, affine algebraic group. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}, \ldots, \lambda_{k}, \ldots\right)$ be an element of the dual $\mathfrak{g}^{*}=\lim _{t} \mathfrak{g}_{n}^{*}$ of the Lie algebra $\mathfrak{g}=\underset{\longrightarrow}{\lim } \mathfrak{g}_{n}$ of G. Since G_{n} is connected for each n, the coadjoint orbit $G \cdot \lambda=\underline{\longrightarrow} G_{n} \cdot \lambda$ is irreducible. In this section, we develop an analogue of the Kostant-Kirillov form on $G \cdot \lambda$.

We now construct a 2 -form on $G \cdot \lambda$. That is to say, that for each $\mu \in G \cdot \lambda$, we construct an element $\left(\omega_{\infty}\right)_{\mu} \in\left(\wedge^{2} T_{\mu}(G \cdot \lambda)\right)^{*}$, which is closed with respect to a natural exterior derivative on $\left(\wedge^{2} T(G \cdot \lambda)\right)^{*}$. By Equation (3.13), it suffices to define ω_{∞} at $\mu=\lambda$.

For each $n \in \mathbb{N}$, we have a natural projection $p_{n}: G_{n} \cdot \lambda \cong G_{n} / G_{n}^{\lambda} \rightarrow G_{n} / G_{n}^{\lambda_{n}} \cong G_{n} \cdot \lambda_{n}$, where $G_{n} \cdot \lambda_{n} \subset \mathfrak{g}_{n}^{*}$ is the G_{n}-coadjoint orbit of $\lambda_{n} \in \mathfrak{g}_{n}^{*}$. Consider the diagram

$$
\begin{array}{ccc}
G_{n} \cdot \lambda \tag{4.1}\\
\downarrow p_{n} \\
G_{n} \cdot \lambda_{n} & \stackrel{\iota_{n, n+1}}{ } & \begin{array}{c}
G_{n+1} \cdot \lambda \\
\\
\downarrow p_{n+1} \\
G_{n+1} \cdot \lambda_{n+1} .
\end{array}
\end{array}
$$

The map $p_{n}: G_{n} \cdot \lambda \rightarrow G_{n} \cdot \lambda_{n}$ is easily seen to be a surjective submersion with differential at $\lambda \in \mathfrak{g}^{*}$

$$
\left(d p_{n}\right)_{\lambda}: \mathfrak{g}_{n} / \mathfrak{g}_{n}^{\lambda} \rightarrow \mathfrak{g}_{n} / \mathfrak{g}_{n}^{\lambda_{n}} \text { given by }\left(d p_{n}\right)_{\lambda}\left(X+\mathfrak{g}_{n}^{\lambda}\right)=X+\mathfrak{g}_{n}^{\lambda_{n}},
$$

for $X \in \mathfrak{g}_{n}$. For $n \in \mathbb{N}$, let ω_{n} be the Kostant-Kirillov form on the coadjoint orbit $G_{n} \cdot \lambda_{n}$. We claim that

$$
\begin{equation*}
d \iota_{n, n+1}^{*}\left(d p_{n+1}^{*} \omega_{n+1}\right)_{\lambda}=\left(d p_{n}^{*} \omega_{n}\right)_{\lambda} . \tag{4.2}
\end{equation*}
$$

Indeed, let $X+\mathfrak{g}_{n}^{\lambda}, Y+\mathfrak{g}_{n}^{\lambda} \in \mathfrak{g}_{n} / \mathfrak{g}_{n}^{\lambda}$. It is straightforward to verify that

$$
d \iota_{n, n+1}^{*}\left(d p_{n+1}^{*} \omega_{n+1}\right)_{\lambda}\left(X+\mathfrak{g}_{n}^{\lambda}, Y+\mathfrak{g}_{n}^{\lambda}\right)=\lambda_{n+1}([X, Y]) .
$$

Similarly, $d p_{n}^{*} \omega_{n}\left(X+\mathfrak{g}_{n}^{\lambda}, Y+\mathfrak{g}_{n}^{\lambda}\right)=\lambda_{n}([X, Y])$. Since $\left.\lambda_{n+1}\right|_{\mathfrak{g}_{n}}=\lambda_{n}$, these expressions agree. Thus, by Lemma 2.35, we can define an element of the inverse limit $\underset{\leftrightarrows}{\lim } \wedge^{2} T^{*}\left(G_{n} \cdot \lambda\right) \cong\left(\wedge^{2} \underset{\longrightarrow}{\lim } T\left(G_{n} \cdot \lambda\right)\right)^{*}=$ $\left(\wedge^{2} T(G \cdot \lambda)\right)^{*}$ by

$$
\begin{equation*}
\omega_{\infty}:=\varliminf_{\rightleftarrows} d p_{n}^{*} \omega_{n}=\left(d p_{1}^{*} \omega_{1}, d p_{2}^{*} \omega_{2}, d p_{3}^{*} \omega_{3}, \ldots\right) . \tag{4.3}
\end{equation*}
$$

By Lemma 2.35, the alternating k-forms on $T(G \cdot \lambda)$ can be identified with elements of the space $\underset{{ }_{n}}{\lim } \bigwedge^{k} T^{*}\left(G_{n} \cdot \lambda\right)$. We consider the following bicomplex, where $d_{k, n}$ are the exterior derivatives and the $\wedge^{k} d \iota_{n, n+1}^{*}$ are obtained from pullbacks of the transition maps $\iota_{n, n+1}: G_{n} \rightarrow G_{n+1}$ in the directed system defining G :

It is straightforward to verify that all the squares in the bicomplex (4.4) commute. Thus, there is a map

$$
d_{k, \infty}: \underset{\check{c}}{\lim _{n}} \bigwedge^{k} T^{*}\left(G_{n} \cdot \lambda\right) \rightarrow \underset{n}{\lim _{\check{m}}} \bigwedge^{k+1} T^{*}\left(G_{n} \cdot \lambda\right),
$$

for each $k \geq 0$, given by

$$
\begin{equation*}
d_{k, \infty}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right)=\left(d_{k, 1}\left(\alpha_{1}\right), d_{k, 2}\left(\alpha_{2}\right), d_{k, 3}\left(\alpha_{3}\right), \ldots\right), \tag{4.5}
\end{equation*}
$$

 usual notion of the differential for functions in $\mathcal{O}(G \cdot \lambda)=\underset{\sim}{\lim } \mathcal{O}\left(G_{n} \cdot \lambda\right)$.

The 2 -form $\omega_{\infty} \in\left(\wedge^{2} T(G \cdot \lambda)\right)^{*}$ induces a map $\widetilde{\omega_{\infty}}: T(G \cdot \lambda) \rightarrow T^{*}(G \cdot \lambda)$ given by:

$$
\begin{equation*}
\left(\widetilde{\omega_{\infty}}\right)_{\mu}(Y)(Z)=\omega_{\infty, \mu}(Y, Z) \text { for } \mu \in G \cdot \lambda, Y, Z \in T_{\lambda}(G \cdot \mu)=T_{\mu}(G \cdot \mu) . \tag{4.6}
\end{equation*}
$$

Following [24], we call ω_{∞} a weak symplectic form on $G \cdot \lambda$ if the following two conditions are satisfied:
(1) The form ω_{∞} is closed with respect to the differential $d_{2, \infty}$ defined in Equation (4.5).
(2) For each $\mu \in G \cdot \lambda$, the map $\left(\widetilde{\omega_{\infty}}\right)_{\mu}$ defined in (4.6) is an injective, regular linear map from the linear ind-variety $T_{\mu}(G \cdot \mu)=\underline{\longrightarrow} T_{\mu}\left(G_{n} \cdot \mu_{n}\right)$ to the linear provariety $T_{\mu}^{*}(G \cdot \mu)=\lim _{\leftrightarrows} T_{\mu}^{*}\left(G_{n} \cdot \mu_{n}\right)$ (see Remark 2.14).

Proposition 4.7. For $\lambda \in \mathfrak{g}^{*}$, the coadjoint orbit $\left(G \cdot \lambda, \omega_{\infty}\right)$ is a weak symplectic ind-variety. If we identify $T_{\lambda}(G \cdot \lambda) \cong \mathfrak{g} / \mathfrak{g}^{\lambda}$, then ω_{∞} is given by the formula

$$
\begin{equation*}
\left(\omega_{\infty}\right)_{\lambda}\left(X+\mathfrak{g}^{\lambda}, Y+\mathfrak{g}^{\lambda}\right)=\lambda([X, Y]), \tag{4.8}
\end{equation*}
$$

for $X, Y \in \mathfrak{g}$.
Proof. Equation (4.8) follows directly from the definition of ω_{∞}. We now show that ω_{∞} satisfies (2) in the definition of a weak symplectic form. Without loss of generality, we may assume $\mu=\lambda$. Consider the map $\left(\widetilde{\omega_{\infty}}\right)_{\lambda}$ defined in (4.6). We first show that $\left(\widetilde{\omega_{\infty}}\right)_{\lambda}$ is injective. Suppose that $X \in \mathfrak{g}_{n}$ is such that $\left(\omega_{\infty}\right)_{\lambda}\left(X+\mathfrak{g}_{n}^{\lambda}, Y+\mathfrak{g}_{k}^{\lambda}\right)=0$ for all $Y \in \mathfrak{g}_{k}$ and $k \geq 1$. For $k \geq n$, Equation (4.8) implies that $\lambda_{k}([X, Y])=0$ for all $Y \in \mathfrak{g}_{k}$. Thus, $X \in \bigcap_{k \geq n} \mathfrak{g}_{n}^{\lambda_{k}}=\mathfrak{g}_{n}^{\lambda}$.

We now show that $\left(\widetilde{\omega_{\infty}}\right)_{\lambda}$ is a morphism. By Propositions 2.19 and $3.1,\left(\widetilde{\omega_{\infty}}\right)_{\lambda}$ is a morphism if for every $m, k \in \mathbb{N}$, the following composition of maps

$$
\mathfrak{g}_{m} / \mathfrak{g}_{m}^{\lambda} \hookrightarrow \mathfrak{g} / \mathfrak{g}^{\lambda} \xrightarrow{\left(\widetilde{\omega_{\infty}}\right)_{\lambda}} \underset{n}{\underset{\rightleftarrows}{l}} T_{\lambda}^{*}\left(\mathfrak{g}_{n} / \mathfrak{g}_{n}^{\lambda}\right) \xrightarrow{p_{k}} T_{\lambda}^{*}\left(\mathfrak{g}_{k} / \mathfrak{g}_{k}^{\lambda}\right)
$$

is a morphism of finite dimensional affine varieties. This is an elementary computation using (4.8).
We now show that the 2-form ω_{∞} is closed with respect to the differential $d_{2, \infty}$ defined in (4.5). Since the Kostant-Kirillov form ω_{n} on $G_{n} \cdot \lambda_{n}$ is closed, we have $d_{n} \omega_{n}=0$, where $d_{n}: \bigwedge^{2} T^{*}\left(G_{n} \cdot \lambda_{n}\right) \rightarrow \bigwedge^{3} T^{*}\left(G_{n} \cdot \lambda_{n}\right)$ is the exterior derivative on $G_{n} \cdot \lambda_{n}=G_{n} / G_{n}^{\lambda_{n}}$. Thus,

$$
\begin{aligned}
d_{2, \infty} & =d_{2, \infty}\left(d p_{1}^{*} \omega_{1}, d p_{2}^{*} \omega_{2}, d p_{3}^{*} \omega_{3}, \ldots\right) \\
& =\left(d_{2,1}\left(d p_{1}^{*} \omega_{1}\right), d_{2,2}\left(d p_{2}^{*} \omega_{2}\right), d_{2,3}\left(d p_{3}^{*} \omega_{3}\right), \ldots\right) \\
& =\left(d p_{1}^{*}\left(d_{1} \omega_{1}\right), d p_{2}^{*}\left(d_{2} \omega_{2}\right), d p_{3}^{*}\left(d_{3} \omega_{3}\right), \ldots\right) \\
& =\left(d p_{1}^{*}(0), d p_{2}^{*}(0), d p_{3}^{*}(0), \ldots\right) \\
& =0
\end{aligned}
$$

so the 2 -form ω_{∞} is closed.

Remark 4.9. Suppose that $G=\underset{\longrightarrow}{\lim } G_{n}$, where G_{n} is a reductive algebraic group. Then $\operatorname{Lie}\left(G_{n}\right)=\mathfrak{g}_{n}$ is reductive with a non-degenerate, $\operatorname{Ad}\left(G_{n}\right)$-invariant form $\ll \cdot \cdot>$, which allows us to identify \mathfrak{g}_{n} with \mathfrak{g}_{n}^{*}. The induced isomorphism $\mathfrak{g}^{*} \cong \widetilde{\mathfrak{g}}=\lim _{\leftrightarrows} \mathfrak{g}_{n}$ is equivariant with respect to the coadjoint action of G on \mathfrak{g}^{*} and the adjoint action of G on \mathfrak{g} :

$$
\operatorname{Ad}(g)\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(\left.\operatorname{Ad}(g) x_{n}\right|_{\mathfrak{g}_{1}}, \ldots,\left.\operatorname{Ad}(g) x_{n}\right|_{\mathfrak{g}_{n-1}}, \operatorname{Ad}(g) x_{n}, \operatorname{Ad}(g) x_{n+1}, \ldots\right),
$$

where $g \in G_{n}$. In particular, we can transfer the symplectic form on coadjoint orbits in \mathfrak{g}^{*} to adjoint orbits in $\widetilde{\mathfrak{g}}$.

In the next theorem, we will consider the inclusion of the coadjoint orbits into the provariety \mathfrak{g}^{*} and the compatibility of the symplectic structure on coadjoint orbits with the Poisson structure on \mathfrak{g}^{*}. Consider the natural inclusion

$$
\begin{equation*}
i=\underline{\longrightarrow} i_{n}: \xrightarrow[\longrightarrow]{\lim } G_{n} \cdot \lambda \hookrightarrow \mathfrak{g}^{*}, \tag{4.10}
\end{equation*}
$$

where $i_{n}: G_{n} / G_{n}^{\lambda} \hookrightarrow \mathfrak{g}^{*}$ is given by

$$
\begin{equation*}
i_{n}\left(g_{n} G_{n}^{\lambda}\right)=\left(\left.\operatorname{Ad}^{*}\left(g_{n}\right) \lambda_{n}\right|_{\mathfrak{g}_{1}}, \ldots,\left.\left(\operatorname{Ad}^{*}\left(g_{n}\right) \lambda_{n}\right)\right|_{\mathfrak{g}_{n-1}}, \operatorname{Ad}^{*}\left(g_{n}\right) \lambda_{n}, \operatorname{Ad}^{*}\left(g_{n}\right) \lambda_{n+1}, \ldots\right) \tag{4.11}
\end{equation*}
$$

Via the map i, the coadjoint orbits $G \cdot \lambda=\underline{\lim } G_{n} \cdot \lambda$ are irreducible, immersed ind-subvarieties that are tangent to the characteristic distribution $\mathfrak{X}\left(\mathfrak{g}^{*}\right)$ defined in (2.44). More precisely, we have the following theorem.

Theorem 4.12. (1) The natural inclusion $i: G \cdot \lambda \hookrightarrow \mathfrak{g}^{*}$ is an injective immersion of the irreducible ind-variety $G \cdot \lambda$ into the provariety \mathfrak{g}^{*}.
(2) The coadjoint orbits are tangent to the characteristic distribution of the Poisson provariety $\left(\mathfrak{g}^{*}, \pi_{\mathfrak{g}^{*}}\right)$:

$$
\begin{equation*}
(d i)_{\lambda}\left(T_{\lambda}(G \cdot \lambda)\right)=\mathfrak{X}\left(\mathfrak{g}^{*}\right)_{\lambda}, \tag{4.13}
\end{equation*}
$$

(3) The symplectic form ω_{∞} on $G \cdot \lambda$ is consistent with the Poisson structure of \mathfrak{g}^{*}, i.e.

$$
\begin{equation*}
\omega_{\infty, \lambda}(Y, Z)=\pi_{\mathfrak{g}^{*}, \lambda}\left(\left[\widetilde{\pi_{\mathfrak{g}^{*}}, \lambda}\right]^{-1} \circ d i_{\lambda}(Y),\left[\widetilde{\pi_{\mathfrak{g}^{*}}, \lambda}\right]^{-1} \circ d i_{\lambda}(Z)\right) \tag{4.14}
\end{equation*}
$$

where $\left[\widetilde{\pi_{\mathfrak{g}^{*}}, \lambda}\right]$ is the bijective morphism $\left[\widetilde{\pi_{\mathfrak{g}^{*}}, \lambda}\right]: T_{\lambda}^{*}\left(\mathfrak{g}^{*}\right) / \operatorname{Ker} \widetilde{\pi_{\mathfrak{g}^{*}}, \lambda} \rightarrow \mathcal{X}\left(\mathfrak{g}^{*}\right)_{\lambda}$ induced by the anchor map $\widetilde{\pi_{\mathfrak{g}^{*}, \lambda}}($ see Equation (2.41)).

Proof. Written explicitly, the inclusion i_{n} in (4.11) is simply the map $\varliminf_{\leftrightarrows} i_{n j}$, where $i_{n j}: G_{n} / G_{n}^{\lambda} \rightarrow \mathfrak{g}_{j}^{*}$ is given by

$$
\begin{equation*}
i_{n j}: g_{n} G_{n}^{\lambda} \mapsto \operatorname{Ad}^{*}\left(g_{n}\right) \lambda_{j}, \tag{4.15}
\end{equation*}
$$

for all $j \geq n$, and

$$
\begin{equation*}
i_{n j}:\left.g_{n} G_{n}^{\lambda} \mapsto\left(\operatorname{Ad}^{*}\left(g_{n}\right) \lambda_{n}\right)\right|_{\mathfrak{g}_{j}}, \tag{4.16}
\end{equation*}
$$

for $j<n$. By Propositions 3.1 and 2.19, the map $i: G \cdot \lambda \hookrightarrow \mathfrak{g}^{*}$ is a morphism if the maps $i_{j n}$ are morphisms for all $j, n \in \mathbb{N}$. This follows from the universal property of the geometric quotient G_{n} / G_{n}^{λ}.

By Propositions 3.1 and 2.19, it follows that the differential

$$
d i: T(G \cdot \lambda)=\underset{n}{\lim } T\left(G_{n} \cdot \lambda\right) \rightarrow T\left(\mathfrak{g}^{*}\right)=\underset{\underset{~}{l}}{\underset{\leftrightarrows}{\lim }} T\left(\mathfrak{g}_{j}^{*}\right) \text { is precisely } d i=\underset{n}{\lim _{\leftrightarrows} \lim _{j}} d i_{n j} .
$$

Using Equations (4.15) and (4.16), we see that $\left(d i_{n}\right)_{\lambda}: \mathfrak{g}_{n} / \mathfrak{g}_{n}^{\lambda} \rightarrow T_{\lambda}\left(\mathfrak{g}^{*}\right)$ is given by

$$
\begin{equation*}
\left(d i_{n}\right)_{\lambda}\left(X_{n}+\mathfrak{g}_{n}^{\lambda}\right)=\left(\left.\operatorname{ad}^{*}\left(X_{n}\right) \lambda_{1}\right|_{\mathfrak{g}_{1}}, \ldots,\left.\left(\operatorname{ad}^{*}\left(X_{n}\right) \lambda_{n}\right)\right|_{\mathfrak{g}_{n-1}}, \operatorname{ad}^{*}\left(X_{n}\right) \lambda_{n}, \ldots, \operatorname{ad}^{*}\left(X_{n}\right) \lambda_{k}, \ldots\right) . \tag{4.17}
\end{equation*}
$$

From Equation (4.17), it follows that $(d i)_{\lambda}=\underset{\longrightarrow}{\lim }\left(d i_{n}\right)_{\lambda}$ is injective. Thus, $G \cdot \lambda$ is an immersed ind-subvariety of \mathfrak{g}^{*}.

Part (2) follows directly from Equations (2.41) and (4.17). Indeed,

$$
\begin{aligned}
\mathfrak{X}\left(\mathfrak{g}^{*}\right)_{\lambda} & =\operatorname{Im} \widetilde{\pi}_{\mathfrak{g}^{*}, \lambda} \\
& =\underset{\vec{n}}{\lim }\left(\left(\left.\operatorname{ad}^{*}\left(\mathfrak{g}_{n}\right) \lambda_{n}\right|_{\mathfrak{g}_{1}}, \ldots,\left.\left(\operatorname{ad}^{*}\left(\mathfrak{g}_{n}\right) \lambda_{n}\right)\right|_{\mathfrak{g}_{n-1}}, \operatorname{ad}^{*}\left(\mathfrak{g}_{n}\right) \lambda_{n}, \ldots, \operatorname{ad}^{*}\left(\mathfrak{g}_{n}\right) \lambda_{k}, \ldots\right)\right. \\
& =\operatorname{di}\left(T_{\lambda}(G \cdot \lambda)\right) .
\end{aligned}
$$

Finally, we show that (4.14) holds. Without loss of generality, we may assume that $Y=Y_{m}+\mathfrak{g}_{m}^{\lambda}$ and $Z=Z_{n}+\mathfrak{g}_{n}^{\lambda}$ with $Y_{m} \in \mathfrak{g}_{m}, Z_{n} \in \mathfrak{g}_{n}$, and $n \geq m$. By (4.8), the left-hand side of (4.14) is $\lambda_{n}\left(\left[Y_{m}, Z_{n}\right]_{n}\right)$, where $\left[Y_{m}, Z_{n}\right]_{n}$ denotes the Lie bracket of Y_{m}, Z_{n} as elements of \mathfrak{g}_{n}.

To compute the right-hand side of (4.14), note that Ker $\widetilde{\pi_{\mathfrak{g}^{*}, \lambda}}=\mathfrak{g}^{\lambda}$, by (2.43) and (3.11). Then (2.41) and (4.17) imply that $\left[\widetilde{\pi_{\mathfrak{g}^{*}}, \lambda}\right]^{-1} \circ d i_{\lambda}$ is the identity map on $\mathfrak{g} / \mathfrak{g}^{\lambda}$. Therefore,

$$
\pi_{\mathfrak{g}^{*}, \mu}\left(\left[\widetilde{\pi_{\mathfrak{g}^{*}}, \lambda}\right]^{-1} \circ d i_{\lambda}(Y),\left[\widetilde{\pi_{\mathfrak{g}^{*}}, \lambda}\right]^{-1} \circ d i_{\lambda}(Z)\right)=\pi_{\mathfrak{g}^{*}, \lambda}\left(Y_{m}+\mathfrak{g}_{m}^{\lambda}, Z_{n}+\mathfrak{g}_{n}^{\lambda}\right)
$$

Proposition 2.37 implies that $\pi_{\mathfrak{g}^{*}, \lambda}=\lim _{L} \pi_{\mathfrak{g}_{n}^{*}, \lambda_{n}}$, where $\pi_{\mathfrak{g}_{n}^{*}, \lambda_{n}}$ is the bivector for the Lie-Poisson structure on \mathfrak{g}_{n}^{*} evaluated at λ_{n}. Thus, $\pi_{\mathfrak{g}^{*}, \lambda}\left(Y_{m}+\mathfrak{g}_{m}^{\lambda}, Z_{n}+\mathfrak{g}_{n}^{\lambda}\right)=\lambda_{n}\left(\left[Y_{m}, Z_{n}\right]_{n}\right)$, and Equation (4.14) holds.

Equation (4.14) lets us define Hamiltonian vector fields for functions on $G \cdot \lambda$ obtained as pullbacks of functions on \mathfrak{g}^{*}, giving a Poisson algebra structure on the set of such functions. The following proposition is a restatement of Proposition 7.2 in [24]. The proof given there carries over to our case.

Proposition 4.18. Let $\lambda \in \mathfrak{g}^{*}$, let $\left(G \cdot \lambda, \omega_{\infty}\right)$ be the coadjoint orbit through λ, and let $i:\left(G \cdot \lambda, \omega_{\infty}\right) \hookrightarrow \mathfrak{g}^{*}$ be the inclusion morphism given in Equation (4.10).
(1) Let $U \subset \mathfrak{g}^{*}$ be open and suppose $\mu \in i^{-1}(U) \subset G \cdot \lambda$. Let $f \in \mathcal{O}_{\mathfrak{g}^{*}}(U)$, so that $f \circ i \in \mathcal{O}_{G \cdot \lambda}\left(i^{-1}(U)\right)$. The differential $d(f \circ i)(\mu) \in T_{\mu}^{*}(G \cdot \lambda)$ is given by:

$$
d(f \circ i)(\mu)=\omega_{\infty, \mu}\left(d i_{\mu}^{-1}\left(\xi_{f}\right)_{\mu}, \cdot\right) .
$$

(2) Let $U \subset \mathfrak{g}^{*}$ be open. Then $i^{*} \mathcal{O}_{\mathfrak{g}^{*}}(U) \subset \mathcal{O}_{G \cdot \lambda}\left(i^{-1}(U)\right)$ has the structure of a Poisson algebra with Poisson bracket given by:

$$
\{f \circ i, g \circ i\}_{\infty}(\mu):=\omega_{\infty, \mu}\left(\left(d i_{\mu}\right)^{-1}\left(\xi_{f}\right)_{\mu},\left(d i_{\mu}\right)^{-1}\left(\xi_{g}\right)_{\mu}\right) .
$$

The pullback $i^{*}:\left(\mathcal{O}_{\mathfrak{g}^{*}}(U),\{\cdot, \cdot\}\right) \rightarrow\left(i^{*} \mathcal{O}_{\mathfrak{g}^{*}}(U),\{\cdot \cdot \cdot\}_{\infty}\right)$ is a homomorphism of Poisson algebras.
We end this section with a discussion of the Lagrangian calculus of a coadjoint orbit $G \cdot \lambda$ that will be useful in Section 5.2.

Proposition 4.19. Let $\mathcal{L} \subseteq G \cdot \lambda$ be an ind-subvariety, so that $\mathcal{L}=\bigcup_{n=1}^{\infty} \mathcal{L}_{n}$ with $\mathcal{L}_{n}:=\mathcal{L} \cap\left(G_{n} \cdot \lambda\right)$ a locally closed subvariety of $G_{n} \cdot \lambda$. Let $p_{n}: G_{n} \cdot \lambda \rightarrow G_{n} \cdot \lambda_{n}$ be the projection. Define $\tilde{\mathcal{L}_{n}}:=p_{n}\left(\mathcal{L}_{n}\right)$ and suppose that $\tilde{\mathcal{L}_{n}}$ satisfies the following conditions:
(1) $\tilde{\mathcal{L}_{n}} \subseteq G_{n} \cdot \lambda_{n}$ is a subvariety.
(2) $d p_{n} T\left(\mathcal{L}_{n}\right)=T\left(\tilde{\mathcal{L}_{n}}\right)$.
(3) $d p_{n}^{-1}\left(T\left(\tilde{\mathcal{L}_{n}}\right)\right) \subseteq T\left(\mathcal{L}_{n}\right)$.
(4) $\tilde{\mathcal{L}_{n}} \subseteq\left(G_{n} \cdot \lambda_{n}, \omega_{n}\right)$ is Lagrangian.

Then $\mathcal{L} \subseteq\left(G \cdot \lambda, \omega_{\infty}\right)$ is a Lagrangian ind-subvariety.
Proof. Fix $\mu \in \mathcal{L}$ and let $\ell \geq 1$ be such that $\mu \in G_{\ell} \cdot \lambda$, but $\mu \notin G_{k} \cdot \lambda$ for any $k<\ell$. Note that for any $n \geq \ell$, we have $G_{n} \cdot \lambda=G_{n} \cdot \mu$, so that $T_{\mu}(\mathcal{L})=\underline{\lim }_{n \geq \ell} T_{\mu}\left(\mathcal{L}_{n}\right) \subset \underline{\lim }_{n \geq \ell} T_{\mu}\left(G_{n} \cdot \mu\right)$. We show that $T_{\mu}(\mathcal{L})=T_{\mu}(\mathcal{L})^{\perp}$, where $T_{\mu}(\mathcal{L})^{\perp}$ denotes the annihilator of $T_{\mu}(\mathcal{L})$ in $T_{\mu}(G \cdot \mu)$ with respect to the weak symplectic form ω_{∞}.

We first show that \mathcal{L} is coisotropic, i.e., that $T_{\mu}(\mathcal{L})^{\perp} \subseteq T_{\mu}(\mathcal{L})$. Let $\xi \in T_{\mu}(\mathcal{L})^{\perp}$, with $\xi=\xi_{n}+\mathfrak{g}_{n}^{\mu}$ for some $\xi_{n} \in \mathfrak{g}_{n}$ and $n \geq 1$. We consider $\left(\omega_{\infty}\right)_{\mu}\left(\xi_{n}+\mathfrak{g}_{n}^{\mu}, L_{k}+\mathfrak{g}_{k}^{\mu}\right)$, where $k \geq \ell$. Suppose $n \leq \ell$. Then by definition of ω_{∞}, we have

$$
\left(\omega_{\infty}\right)_{\mu}\left(\xi_{n}+\mathfrak{g}_{n}^{\mu}, T_{\mu}(\mathcal{L})\right)=\left(\omega_{\infty}\right)_{\mu}\left(d i_{n \ell}(\xi)+\mathfrak{g}_{\ell}^{\mu}, T_{\mu}(\mathcal{L})\right)
$$

where $d i_{n \ell}$ denotes the differential of the inclusion $i_{n \ell}: G_{n} \cdot \mu \rightarrow G_{\ell} \cdot \mu$. We can thus assume, without loss of generality, that $n \geq \ell$.

Note that $\left(\omega_{\infty}\right)_{\mu}\left(\xi_{n}+\mathfrak{g}_{n}^{\mu}, T_{\mu}(\mathcal{L})\right)=0$, so $\left(\omega_{\infty}\right)_{\mu}\left(\xi_{n}+\mathfrak{g}_{n}^{\mu}, T_{\mu}\left(\mathcal{L}_{k}\right)\right)=0$ for all $k \geq \ell$. In particular,

$$
\begin{aligned}
\left(\omega_{\infty}\right)_{\mu}\left(\xi_{n}+\mathfrak{g}_{n}^{\mu}, L_{n}+\mathfrak{g}_{n}^{\mu}\right) & =\left(\omega_{n}\right)_{\mu_{n}}\left(\xi_{n}+\mathfrak{g}_{n}^{\mu_{n}}, d p_{n}\left(L_{n}+\mathfrak{g}_{n}^{\mu}\right)\right) \\
& =0,
\end{aligned}
$$

for all $L_{n}+\mathfrak{g}_{n}^{\mu} \in T_{\mu}\left(\mathcal{L}_{n}\right)$. By (2), $d p_{n} T_{\mu}\left(\mathcal{L}_{n}\right)=T_{\mu_{n}}\left(\tilde{\mathcal{L}}_{n}\right)$, so $\xi_{n}+\mathfrak{g}_{n}^{\mu_{n}} \in T_{\mu_{n}}\left(\tilde{\mathcal{L}}_{n}\right)^{\perp}$. By (4), $\tilde{\mathcal{L}}_{n}$ is Lagrangian in $G_{n} \cdot \mu_{n}=G_{n} \cdot \lambda_{n}$, whence $T_{\mu_{n}}\left(\tilde{\mathcal{L}_{n}}\right)^{\perp}=T_{\mu_{n}}\left(\tilde{\mathcal{L}_{n}}\right)$. Thus,

$$
\xi=\xi_{n}+\mathfrak{g}_{n}^{\mu} \in d p_{n}^{-1}\left(T_{\mu_{n}}\left(\tilde{\mathcal{L}}_{n}\right)\right) \subseteq T_{\mu}\left(\mathcal{L}_{n}\right) \subseteq T_{\mu}(\mathcal{L})
$$

by (3).

We now show that \mathcal{L} is isotropic. Suppose that $\xi=\xi_{n}+\mathfrak{g}_{n}^{\mu} \in T_{\mu}\left(\mathcal{L}_{n}\right)$ with $n \geq \ell$. Consider $\left(\omega_{\infty}\right)_{\mu}\left(\xi, L_{k}+\mathfrak{g}_{k}^{\mu}\right)$ for $L_{k}+\mathfrak{g}_{k}^{\mu} \in T_{\mu}\left(\mathcal{L}_{k}\right)$, with $k \geq \ell$. As before, if $k \leq n$, we can identify $L_{k}+\mathfrak{g}_{k}^{\mu}$ with its pushforward in $T_{\mu}\left(\mathcal{L}_{n}\right)$. This lets us reduce to the case where $k \geq n$. Identifying ξ with its image $d \iota_{n k}(\xi)=\xi_{n}+\mathfrak{g}_{k}^{\mu} \in T_{\mu}\left(\mathcal{L}_{k}\right)$, we have

$$
\begin{aligned}
\left(\omega_{\infty}\right)_{\mu}\left(\xi, L_{k}+\mathfrak{g}_{k}^{\mu}\right) & =\left(\omega_{k}\right)_{\mu_{k}}\left(d p_{k}\left(\xi_{n}+\mathfrak{g}_{k}^{\mu}\right), d p_{k}\left(L_{k}+\mathfrak{g}_{k}^{\mu}\right)\right) \\
& =\left(\omega_{k}\right)_{\mu_{k}}\left(\xi_{n}+\mathfrak{g}_{k}^{\mu_{k}}, L_{k}+\mathfrak{g}_{k}^{\mu_{k}}\right) .
\end{aligned}
$$

But $d p_{k} T_{\mu}\left(\mathcal{L}_{k}\right)=T_{\mu_{k}}\left(\tilde{\mathcal{L}}_{k}\right)$ by (2), and $\tilde{\mathcal{L}}_{k}$ is Lagrangian in $G_{k} \cdot \lambda_{k}=G_{k} \cdot \mu_{k}$. Thus, $T_{\mu_{k}}\left(\tilde{\mathcal{L}}_{k}\right) \subseteq T_{\mu_{k}}\left(\tilde{\mathcal{L}}_{k}\right)^{\perp}$, so $\left(\omega_{\infty}\right)_{\mu}\left(\xi, L_{k}+\mathfrak{g}_{k}^{\mu}\right)=0$. Since $k \geq \ell$ is arbitrary, we have $T_{\mu}(\mathcal{L}) \subseteq T_{\mu}(\mathcal{L})^{\perp}$, and \mathcal{L} is Lagrangian.

5. Gelfand-Zeitlin integrable system on $M(\infty)$

5.1. The group $A(\infty)$

In this section, we study the analogue of the Gelfand-Zeitlin ${ }^{2}$ collection of functions for the Poisson provariety $M(\infty)$ defined in Example 2.27. We show that the corresponding Lie algebra of Hamiltonian vector fields integrates to the action of a direct limit group $A(\infty)$ on $M(\infty)$ whose generic orbits form Lagrangian ind-subvarieties of the corresponding adjoint orbit. We begin by recalling some facts about the Gelfand-Zeitlin integrable system on $\mathfrak{g}_{n}=\mathfrak{g l}(n, \mathbb{C})$ constructed by Kostant and Wallach in [19].

We denote by $\mathbb{C}\left[\mathfrak{g}_{n}\right]$ the polynomial functions on \mathfrak{g}_{n}. For $i=1, \ldots, n$ and $j=1, \ldots, i$, we let $f_{i j} \in \mathbb{C}\left[\mathfrak{g}_{n}\right]$ be the polynomial $f_{i j}(X)=\operatorname{tr}\left(X_{i}^{j}\right)$, where X_{i} is the $i \times i$ submatrix in the upper left-hand corner of $X \in \mathfrak{g}_{n}$, and $\operatorname{tr}(\cdot)$ denotes the trace function on \mathfrak{g}_{n}. If $\mathbb{C}\left[\mathfrak{g}_{n}\right]^{G_{n}}$ denotes the $\operatorname{Ad}\left(G_{n}\right)$-invariant polynomials on \mathfrak{g}_{n}, then $\mathbb{C}\left[\mathfrak{g}_{n}\right]^{G_{n}}$ is the polynomial ring $\mathbb{C}\left[f_{n 1}, \ldots, f_{n n}\right]$. Consider the Hamiltonian vector field $\xi_{f_{i j}}$ on \mathfrak{g}_{n}. For $X \in \mathfrak{g}_{n}$, $\left(d f_{i j}\right)_{X} \in T_{X}^{*}\left(\mathfrak{g}_{n}\right)=\mathfrak{g}_{n}^{*}$. We can use the trace form $\ll X, Z \gg=\operatorname{tr}(X Z)$ on \mathfrak{g}_{n} to identify the differential $\left(d f_{i j}\right)_{X}$ with an element $\nabla f_{i j}(X) \in \mathfrak{g}_{n}$. The element $\nabla f_{i j}(X)$ is determined by its pairing against $Z \in \mathfrak{g}_{n}$ by the formula

$$
\ll \nabla f_{i j}(X), Z \gg=\left.\frac{d}{d t}\right|_{t=0} f_{i j}(X+t Z)=\left(d f_{i j}\right)_{X}(Z) .
$$

We compute

$$
\begin{equation*}
\nabla f_{i j}(X)=j X_{i}^{j-1} \in \mathfrak{g}_{i} \hookrightarrow \mathfrak{g}_{n} \tag{5.1}
\end{equation*}
$$

where \mathfrak{g}_{i} is embedded in the top left-hand corner of \mathfrak{g}_{n} (see Example 2.27). It follows that

$$
\begin{equation*}
\left(\xi_{f_{i j}}\right)_{X}=-\left[j X_{i}^{j-1}, X\right] \tag{5.2}
\end{equation*}
$$

(cf. Equation (2.40)). Note that if $i=n$, then $\xi_{f_{n j}}=0$ for all $j=1, \ldots, n$, since $f_{n j} \in \mathbb{C}\left[\mathfrak{g}_{n}\right]^{G_{n}}$ is a Casimir function for the Lie-Poisson structure on \mathfrak{g}_{n}. The Gelfand-Zeitlin collection of functions on \mathfrak{g}_{n} is $J_{G Z}:=\left\{f_{i j}: 1 \leq j \leq i \leq n\right\}$. The functions $J_{G Z}$ are Poisson commutative and their restriction to a regular adjoint orbit of G_{n} on \mathfrak{g}_{n} forms an integrable system [19].

We let

$$
\mathfrak{a}(n):=\operatorname{span}\left\{\xi_{f_{i j}}: 1 \leq j \leq i \leq n-1\right\}
$$

[^2]be the corresponding Lie algebra of Gelfand-Zeitlin vector fields on \mathfrak{g}_{n}. Then $\mathfrak{a}(n)$ is an abelian Lie algebra of dimension $\binom{n}{2}$. Moreover, the Lie algebra $\mathfrak{a}(n)$ integrates to an analytic action of $\left.A(n):=\mathbb{C}^{(n} \begin{array}{l}n \\ 2\end{array}\right)$ on \mathfrak{g}_{n} (see [19, Section 3]). This action can be described as follows. We take $\underline{t}=\left(\underline{t}_{1}, \ldots, \underline{t}_{n-1}\right) \in \mathbb{C}^{1} \times \cdots \times \mathbb{C}^{n-1}=\mathbb{C}_{\binom{n}{2}}$ as coordinates on $A(n)$, where $\underline{t}_{i}=\left(t_{i 1}, \ldots, t_{i i}\right) \in \mathbb{C}^{i}$ for $1 \leq i \leq n-1$. In these coordinates, the action of $A(n)$ on \mathfrak{g}_{n} is given by

$$
\begin{equation*}
a \cdot X=\operatorname{Ad}\left(\exp \left(t_{1,1}\right)\right) \cdot \ldots \cdot \operatorname{Ad}\left(\exp \left(j t_{i, j} X_{i}^{j-1}\right)\right) \cdot \ldots \cdot \operatorname{Ad}\left(\exp \left((n-1) t_{n-1, n-1} X_{n-1}^{n-2}\right)\right) \cdot X, \tag{5.3}
\end{equation*}
$$

for all $1 \leq j \leq i \leq n-1$ and $X \in \mathfrak{g}_{n}$. Since the Gelfand-Zeitlin functions Poisson commute, $A(n) \cdot X \subset G_{n} \cdot X$ is an isotropic submanifold. For each $X \in \mathfrak{g}_{n}$, it follows from Equation (5.2) that

$$
\begin{equation*}
T_{X}(A(n) \cdot X)=\mathfrak{a}(n)_{X}=\operatorname{span}\left\{\left[X_{i}^{j-1}, X\right]: 1 \leq j \leq i \leq n-1\right\} . \tag{5.4}
\end{equation*}
$$

We now define an infinite dimensional Gelfand-Zeitlin system J_{∞} for the provariety $M(\infty)$ by pulling back the Gelfand-Zeitlin functions $f_{i j}$ to $M(\infty)$. We recall from Example 2.27 that $M(\infty)$ can be identified with the space of sequences:

$$
M(\infty)=\left\{X=(X(1), X(2), \ldots, X(n), X(n+1), \ldots,): X(n) \in \mathfrak{g}_{n} \text { and } X(n+1)_{n}=X(n)\right\}
$$

We have a natural morphism of locally ringed spaces $p_{n}: M(\infty) \rightarrow \mathfrak{g}_{n}$, given by $p_{n}(X)=X(n)$. Also, the morphism p_{n} is Poisson with respect to the Poisson provariety structure on $M(\infty)$ given in Example 2.38 and the Lie-Poisson structure on \mathfrak{g}_{n}. Let

$$
J_{\infty}:=\left\{p_{n}^{*} f_{n j}: n \in \mathbb{N}, j=1, \ldots, n\right\} .
$$

Proposition 5.5. The set J_{∞} of Gelfand-Zeitlin functions on $M(\infty)$ is Poisson commutative.
Proof. For the purposes of this proof, we will denote the Poisson bracket on $M(\infty)$ by $\{\cdot, \cdot\}_{\infty}$ and the Poisson bracket on \mathfrak{g}_{n} by $\{\cdot, \cdot\}_{n}$. Consider $p_{n}^{*} f_{n j} \in J_{\infty}$ for $n \in \mathbb{N}$. Note that for any $m \leq n$, and any $1 \leq k \leq m$, we have $\left\{p_{n}^{*} f_{n j}, p_{m}^{*} f_{m k}\right\}_{\infty}=0$. Indeed, $p_{m}^{*} f_{m k}=p_{n}^{*} p_{n m}^{*} f_{m k}$ so that $\left\{p_{n}^{*} f_{n j}, p_{m}^{*} f_{m k}\right\}_{\infty}=$ $\left\{p_{n}^{*} f_{n j}, p_{n}^{*} p_{n m}^{*} f_{m k}\right\}_{\infty}=p_{n}^{*}\left\{f_{n j}, p_{n m}^{*} f_{m k}\right\}_{n}$. But $\left\{f_{n j}, p_{n m}^{*} f_{m k}\right\}_{n}=0$, since elements of $\mathbb{C}\left[\mathfrak{g}_{n}\right]^{G_{n}}$ are Casimir functions for the Lie-Poisson structure on \mathfrak{g}_{n}. A completely analogous argument shows that if $m>n$, $\left\{p_{m}^{*} f_{m k}, p_{n}^{*} f_{n j}\right\}_{\infty}=0$.

Remark 5.6. In fact, it can be shown that the functions J_{∞} generate a maximal Poisson commutative subalgebra of $\mathbb{C}[M(\infty)]:=\underline{\lim } \mathbb{C}\left[\mathfrak{g}_{n}\right]$.

We consider the abelian Lie algebra of Hamiltonian vector fields on $M(\infty)$,

$$
\begin{equation*}
\mathfrak{a}(\infty):=\operatorname{span}\left\{\xi_{f}: f \in J_{\infty}\right\} . \tag{5.7}
\end{equation*}
$$

Let $f=p_{n}^{*} f_{n, j}$, we compute ξ_{f}. It follows from definitions that $\left(\xi_{f}\right)_{X}=\widetilde{\pi}_{\infty, X}\left(d p_{n}^{*} f_{n, j}\right)$, where $\widetilde{\pi}_{\infty, X}$ is the anchor map for the Poisson structure π_{∞} on $M(\infty)$ evaluated at $X=\left(X_{1}, \ldots, X_{n}, \ldots, X_{k}, \ldots,\right) \in M(\infty)$. Equation (2.41) implies that

$$
\begin{equation*}
\left(\xi_{f}\right)_{X}=(0, \ldots, 0, \underbrace{-\left[j X_{n}^{j-1}, X_{n+1}\right]}_{n+1}, \ldots,-\left[j X_{n}^{j-1}, X_{k}\right], \ldots) . \tag{5.8}
\end{equation*}
$$

We now construct an action of a direct limit group $A(\infty):=\mathbb{C}^{\infty}$ on $M(\infty)$ whose generic orbits on $M(\infty)$ are tangent to the Lie algebra of Hamiltonian vector fields $\mathfrak{a}(\infty)$.

For each $n \in \mathbb{N}$, we have a natural homomorphism

$$
\phi_{n, n+1}: A(n) \hookrightarrow A(n+1) \text { given by } \phi_{n, n+1}\left(\underline{t}_{1}, \ldots, \underline{t}_{n-1}\right)=\left(\underline{t}_{1}, \ldots, \underline{t}_{n-1},(0, \ldots, 0)\right) .
$$

The maps $\phi_{n, n+1}$ are clearly closed embeddings, and thus the direct limit

$$
A(\infty):=\underline{\longrightarrow} A(n)=\bigcup_{n \geq 1} A(n)
$$

naturally has the structure of a direct limit group. For each $n \geq 1$, it follows from Equation (5.3) that $A(n)$ acts on $M(\infty)$ via:

$$
\begin{align*}
a \cdot X= & \left(X_{1}, t_{11} \cdot X_{2}, \ldots,\left(t_{11}, \ldots, t_{n-2, n-2}\right) \cdot X_{n-1},\left(t_{11}, \ldots, t_{n-1, n-1}\right) \cdot X_{n}, \ldots,\right. \\
& \left.\left(t_{11}, \ldots, t_{n-1, n-1}\right) \cdot X_{k}, \ldots\right) . \tag{5.9}
\end{align*}
$$

Observe that the diagram

is commutative, where the horizontal maps are given by (5.9). We therefore obtain an action of $A(\infty)$ on $M(\infty)$. Note that $A(\infty) \cdot X \subseteq i(G L(\infty) \cdot X) \subseteq M(\infty)$. However, this is not an algebraic action of $A(\infty)=\mathbb{C}^{\infty}$ on $M(\infty)$.

5.2. Strongly regular orbits

We now show that the generic $A(\infty)$-orbits on $M(\infty)$ form Lagrangian subvarieties of the corresponding $G L(\infty)$-adjoint orbit with respect to the symplectic form ω_{∞} constructed in Section 4. We first recall the conditions for an $A(n)$-orbit on $\mathfrak{g l}(n, \mathbb{C})$ to be generic. An element $X \in \mathfrak{g}_{n}$ is said to be strongly regular if the differentials $\left\{\left(d f_{i j}\right)_{X}: 1 \leq j \leq i \leq n\right\}$ are linearly independent (see [19, Theorem 2.7]). We denote the set of strongly regular elements of \mathfrak{g}_{n} by $\left(\mathfrak{g}_{n}\right)_{\text {sreg }}$.

Strongly regular elements may be characterized as follows:
Proposition 5.10. (See [19, Proposition 2.7 and Theorem 2.14].) The following statements are equivalent.
(1) $X \in \mathfrak{g}_{n}$ is strongly regular.
(2) The tangent vectors $\left\{\left(\xi_{f_{i j}}\right)_{X} ; i=1, \ldots, n-1, j=1, \ldots, i\right\}$ are linearly independent.
(3) The elements $X_{i} \in \mathfrak{g}_{i}$ are regular for all $i=1, \ldots, n$ and $\mathfrak{z}_{\mathfrak{g}_{i}}\left(X_{i}\right) \cap \mathfrak{z}_{\mathfrak{g}_{i+1}}\left(X_{i+1}\right)=0$ for $i=1, \ldots, n-1$, where $\mathfrak{z}_{\mathfrak{g}_{i}}\left(X_{i}\right)$ denotes the centralizer of X_{i} in \mathfrak{g}_{i}.
(4) The $A(n)$-orbit of $X, A(n) \cdot X$ is a Lagrangian subvariety of the adjoint orbit $G_{n} \cdot X$. In particular, $\operatorname{dim} A(n) \cdot X=\binom{n}{2}$.

Remark 5.11. For $i=1, \ldots, n$, let $Z_{G_{i}}\left(X_{i}\right)$ denote the centralizer in G_{i} of X_{i}, so that $\operatorname{Lie}\left(Z_{G_{i}}\left(X_{i}\right)\right)=\mathfrak{z}_{\mathfrak{g}_{i}}\left(X_{i}\right)$. For any $i=1, \ldots, n-1$, it is easy to see that $\mathfrak{z}_{\mathfrak{g}_{i}}\left(X_{i}\right) \cap \mathfrak{z}_{\mathfrak{g}_{i+1}}\left(X_{i+1}\right)=0$ if and only if $Z_{G_{i}}\left(X_{i}\right) \cap Z_{G_{i+1}}\left(X_{i+1}\right)=$ $I d_{i+1}$, where $I d_{i+1}$ denotes the $(i+1) \times(i+1)$ identity matrix (see [4, Lemma 5.12]).

The notion of strong regularity generalizes naturally to the action of $A(\infty)$ on $M(\infty)$.

Definition 5.12. We say that $X \in M(\infty)$ is strongly regular if the differentials $\left\{(d f)_{X}: f \in J_{\infty}\right\}$ are linearly independent at X. We denote the set of strongly regular elements in $M(\infty)$ by $M(\infty)_{\text {sreg }}$.

It is easy to see that $X=\left(X_{1}, \ldots, X_{n}, \ldots\right) \in M(\infty)_{\text {sreg }}$ if and only if $X_{n} \in\left(\mathfrak{g}_{n}\right)_{\text {sreg }}$ for all n. So that we have

$$
\begin{equation*}
M(\infty)_{\text {sreg }}=\varliminf_{亡}\left(\mathfrak{g}_{n}\right)_{\text {sreg }} . \tag{5.13}
\end{equation*}
$$

Remark 5.14. One can show that $M(\infty)_{\text {sreg }}$ is a dense subset of $M(\infty)$ with empty interior.

Using results of the first author, we can easily create examples of strongly regular elements.
Example 5.15. Let $M(\infty)_{\theta} \subseteq M(\infty)$ be the set

$$
\begin{equation*}
M(\infty)_{\theta}=\left\{X \in M(\infty): \sigma\left(X_{i}\right) \cap \sigma\left(X_{i+1}\right)=\emptyset \text { for each } i \in \mathbb{N}\right\}, \tag{5.16}
\end{equation*}
$$

where $\sigma\left(X_{i}\right)$ denotes the spectrum of X_{i}. It follows from [6, Theorem 5.5] that $M(\infty)_{\theta} \subseteq M(\infty)_{\text {sreg }}$.

We also have the following characterization of strongly regular elements of $M(\infty)$.
Proposition 5.17. Let $X=\left(X_{1}, \ldots, X_{n}, \ldots, X_{k}, \ldots\right) \in M(\infty)$. Then the following conditions are equivalent:
(1) X is strongly regular.
(2) For all $i \in \mathbb{N}, X_{i}$ is regular and $Z_{G_{i}}\left(X_{i}\right) \cap Z_{G_{i+1}}\left(X_{i+1}\right)=I d_{i+1}$.
(3) The tangent vectors $\mathfrak{a}(\infty)_{X}:=\left\{\left(\xi_{f}\right)_{X}: f \in J_{\infty}\right\}$ are linearly independent.

Proof. The equivalence of statements (1) and (2) follows from Equation (5.13) and Part (3) of Proposition 5.10 along with Remark 5.11. We now see that (1) is equivalent to (3). If $X \in M(\infty)_{\text {sreg }}$, then for any $n \in \mathbb{N}$, we have $\bigcap_{k \geq n} \mathfrak{z}_{\mathfrak{g}_{k}}\left(X_{k}\right)=0$ by Part (3) of Proposition 5.10. Thus, by Proposition 2.42, we have that $\left(\widetilde{\pi_{\infty}}\right)_{X}$ is injective, which implies (3). That (3) implies (1) is trivial.

Proposition 5.17 and the existence of strongly regular elements immediately imply that the Lie algebra $\mathfrak{a}(\infty)$ is infinite dimensional.

The main result of this section is the following theorem.
Theorem 5.18. Let $X \in M(\infty)_{\text {sreg. }}$. Let $i: G L(\infty) \cdot X \hookrightarrow M(\infty)$ be the inclusion morphism in (4.10). Then
(1) The set $i^{-1}(A(\infty) \cdot X)$ naturally has the structure of an irreducible ind-subvariety of $G L(\infty) \cdot X$. Thus, $A(\infty) \cdot X \subset M(\infty)$ is an immersed irreducible ind-subvariety.
(2) The ind-subvariety $i^{-1}(A(\infty) \cdot X) \subseteq G L(\infty) \cdot X$ is Lagrangian with respect to the weak symplectic form ω_{∞} on $G L(\infty) \cdot X$.
(3) For any $Y \in A(\infty) \cdot X$, we have

$$
\begin{equation*}
T_{Y}(A(\infty) \cdot Y)=\mathfrak{a}(\infty)_{Y}, \tag{5.19}
\end{equation*}
$$

so that the strongly regular $A(\infty)$-orbits in $M(\infty)$ are tangent to the Lie algebra $\mathfrak{a}(\infty)$ of Hamiltonian vector fields defined in Equation (5.7).

Proof. Let $X \in M(\infty)_{\text {sreg }}$. It follows from Part (2) of Proposition 5.17 that for each $n \in \mathbb{N}$, we have $G_{n}^{X}=\bigcap_{k \geq n} Z_{G_{n}}\left(X_{k}\right)=I d_{n}$, where $I d_{n}$ denotes the $n \times n$ identity matrix. Thus,

$$
G L(\infty) \cdot X=\underset{\longrightarrow}{\lim } G_{n} / G_{n}^{X}=\underline{\lim } G_{n}=G L(\infty) .
$$

We claim

$$
\begin{equation*}
i^{-1}(A(\infty) \cdot X) \cap G_{n}=i_{n}^{-1}(A(\infty) \cdot X)=Z_{G_{1}}\left(X_{1}\right) \cdots Z_{G_{n}}\left(X_{n}\right), \tag{5.20}
\end{equation*}
$$

where $i_{n}: G_{n} \rightarrow M(\infty)$ is the morphism in Equation (4.11), and

$$
Z_{G_{1}}\left(X_{1}\right) \cdots Z_{G_{n}}\left(X_{n}\right)=\left\{g \in G_{n}: g=z_{1} \cdots z_{n} \text { with } z_{i} \in Z_{G_{i}}\left(X_{i}\right)\right\} .
$$

For ease of notation, we denote $Z_{G_{1}}\left(X_{1}\right) \cdots Z_{G_{n}}\left(X_{n}\right)$ by \mathcal{Z}_{n}. Indeed, suppose that $g_{n} \in i_{n}^{-1}(A(\infty) \cdot X)$. Then

$$
\left(\left(\operatorname{Ad}\left(g_{n}\right) X_{n}\right)_{1}, \ldots,\left(\operatorname{Ad}\left(g_{n}\right) X_{n}\right)_{n-1}, \operatorname{Ad}\left(g_{n}\right) X_{n}, \ldots, \operatorname{Ad}\left(g_{n}\right) X_{k}, \ldots,\right)=a_{m} \cdot X \text { for some } a_{m} \in A(m),
$$

with $m \geq 1$. Let $a_{m}=\left(\underline{t}_{1}, \ldots, \underline{t}_{m-1}\right) \in \mathbb{C}_{\binom{m}{2}}$. By Equation (5.3), $A(m)$ acts on \mathfrak{g}_{m} via

$$
\begin{aligned}
& a_{m} \cdot X_{m}=\operatorname{Ad}\left(h_{m-1}\right) X_{m}, \text { where } h_{m-1}=z_{1} \cdots z_{m-1} \in G_{m-1} \text {, with } \\
& z_{i}=\exp \left(t_{i 1} I d_{i}\right) \cdots \exp \left(i t_{i i} X_{i}^{i-1}\right) \in Z_{G_{i}}\left(X_{i}\right) \subset G_{i} .
\end{aligned}
$$

First, suppose that $m>n$, and consider $\left(\operatorname{Ad}\left(h_{m-1}\right) X_{m}\right)_{n+1}$. Since $z_{i} \in Z_{G_{i}}\left(X_{i}\right)$ for $i=1, \ldots, m-1$, it follows that

$$
\left(\operatorname{Ad}\left(h_{m-1}\right) X_{m}\right)_{n+1}=\operatorname{Ad}\left(z_{1} \ldots z_{n}\right) X_{n+1}=\operatorname{Ad}\left(g_{n}\right) X_{n+1}
$$

Since $X \in M(\infty)_{\text {sreg }}$, we have $g_{n}=z_{1} \ldots z_{n}$. The case where $m<n$ is analogous. Thus, $i_{n}^{-1}(A(\infty) \cdot X) \subseteq \mathcal{Z}_{n}$.
We now show that $\mathcal{Z}_{n} \subset i_{n}^{-1}(A(\infty) \cdot X)$. Since $X \in M(\infty)_{\text {sreg }}, X_{i}$ is regular for all i by Proposition 5.17. Whence, $Z_{G_{i}}\left(X_{i}\right)$ is an abelian, connected algebraic group (Proposition 14, [16]). Therefore, the exponential map, exp : $\mathfrak{z}_{\mathfrak{g}_{i}}\left(X_{i}\right) \rightarrow Z_{G_{i}}\left(X_{i}\right)$ is a surjective homomorphism of algebraic groups. It is well-known that $\mathfrak{z g}_{\mathfrak{g}_{i}}\left(X_{i}\right)=\operatorname{span}\left\{I d_{i}, \ldots, X_{i}^{i-1}\right\}$ for $X_{i} \in \mathfrak{g}_{i}$ regular. It follows that any $z \in Z_{G_{i}}\left(X_{i}\right)$ can be written as $z=\exp \left(t_{i 1} I d_{i}\right) \ldots \exp \left(t_{i i} X_{i}^{i-1}\right)$, for some $t_{i j} \in \mathbb{C}$. The inclusion $\mathcal{Z}_{n} \subseteq i_{n}^{-1}(A(\infty) \cdot X)$ now follows from Equations (5.3) and (5.9).

Now we claim that \mathcal{Z}_{n} is a smooth subvariety of G_{n} of dimension $\binom{n+1}{2}$. It follows from our discussion above that $\operatorname{Ad}\left(Z_{G_{1}}\left(X_{1}\right) \cdots Z_{G_{n-1}}\left(X_{n-1}\right)\right) X_{n} \subseteq G_{n} \cdot X_{n}$ coincides with the $A(n)$-orbit of X_{n}. Moreover, Theorem 3.12, [19] implies that $A(n) \cdot X_{n}$ is an irreducible, non-singular variety of dimension $\binom{n}{2}$. If p_{n} : $G_{n} \rightarrow G_{n} \cdot X_{n}$ denotes the orbit map, then Proposition III 10.4, [14] implies that p_{n} is a smooth morphism of relative dimension $\operatorname{dim} Z_{G_{n}}\left(X_{n}\right)=n$. Since the diagram

is Cartesian, it follows from Proposition III 10.1 (b), [14] that \mathcal{Z}_{n} is a non-singular variety of dimension $\binom{n+1}{2}$. Thus, $i^{-1}(A(\infty) \cdot X)=\bigcup_{n=1}^{\infty} \mathcal{Z}_{n}$ is an irreducible ind-subvariety of $G L(\infty) \cong G L(\infty) \cdot X$, and $A(\infty) \cdot X=i\left(\bigcup_{n=1}^{\infty} \mathcal{Z}_{n}\right)$ is an irreducible, immersed ind-subvariety of $M(\infty)$.

We now compute the tangent space $T_{z}\left(\mathcal{Z}_{n}\right)$ for $z \in \mathcal{Z}_{n}$ and show that $i^{-1}(A(\infty) \cdot X) \subset G L(\infty) \cdot X$ is Lagrangian. Represent $z=z_{1} \ldots z_{n}$ with $z_{i} \in Z_{G_{i}}\left(X_{i}\right)$ for $i=1, \ldots, n$. Let $Y \in M(\infty)$ be given by $Y=\operatorname{Ad}(z) X$, so that $Y_{n}=\operatorname{Ad}\left(z_{1} \ldots z_{n-1}\right) X_{n}$. Then $Y \in A(\infty) \cdot X$ and $Y_{n} \in A(n) \cdot X_{n}$. It follows from Equation (5.4) that

$$
\left(d p_{n}^{-1}\right)_{z}\left(T_{Y_{n}}\left(A(n) \cdot Y_{n}\right)\right)=\operatorname{span}\left\{Y_{i}^{j}: 1 \leq j \leq i \leq n\right\}=\operatorname{span}\left\{\left(d f_{i j}\right)_{Y_{n}}: 1 \leq j \leq i \leq n\right\} .
$$

It follows from the definition of strong regularity that $\operatorname{dim} \operatorname{span}\left\{Y_{i}^{j}: 1 \leq j \leq i \leq n\right\}=\binom{n+1}{2}$. Since $\operatorname{dim} \mathcal{Z}_{n}=\binom{n+1}{2}$ and \mathcal{Z}_{n} is non-singular, we have

$$
\begin{equation*}
T_{z}\left(\mathcal{Z}_{n}\right)=\operatorname{span}\left\{Y_{i}^{j}: 1 \leq j \leq i \leq n\right\} . \tag{5.21}
\end{equation*}
$$

Part (2) of the theorem now follows immediately from Proposition 4.19 and Part (4) of Proposition 5.10. Part (3) of the theorem follows from Equation (5.21) along with Equations (5.8) and (4.17).

Acknowledgements

We would like to thank Ivan Dimitrov, Sam Evens, Shrawan Kumar, Karl-Hermann Neeb, and Ivan Penkov for many useful discussions during this project.

References

[1] Yuri Bahturin, Georgia Benkart, Highest weight modules for locally finite Lie algebras, in: Modular Interfaces, Riverside, CA, 1995, in: AMS/IP Stud. Adv. Math., vol. 4, Amer. Math. Soc., Providence, RI, 1997, pp. 1-31, MR 1483900 (98m:17009).
[2] Jonathan Brundan, Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra $\mathfrak{g l}(m \mid n)$, J. Am. Math. Soc. 16 (1) (2003) 185-231.
[3] Yuri Bahturin, Helmut Strade, Locally finite-dimensional simple Lie algebras, Mat. Sb. 185 (2) (1994) 3-32, MR 1264772 (95a:17025).
[4] Mark Colarusso, Sam Evens, On algebraic integrability of Gelfand-Zeitlin fields, Transform. Groups 15 (1) (2010) 46-71, MR 2600695.
[5] Neil Chriss, Victor Ginzburg, Representation Theory and Complex Geometry, Birkhäuser Boston Inc., Boston, MA, 1997, MR MR1433132 (98i:22021).
[6] Mark Colarusso, The orbit structure of the Gelfand-Zeitlin group on $n \times n$ matrices, Pac. J. Math. 250 (1) (2011) 109-138, MR 2780390.
[7] Ivan Dimitrov, Ivan Penkov, Weight modules of direct limit Lie algebras, Int. Math. Res. Not. (5) (1999) 223-249, MR 1675979 (2000a:17005).
[8] Ivan Dimitrov, Ivan Penkov, A Bott-Borel-Weil theorem for diagonal ind-groups, Can. J. Math. 63 (6) (2011) 1307-1327, MR 2894440 (2012j:20135).
[9] Ivan Dimitrov, Ivan Penkov, Joseph A. Wolf, A Bott-Borel-Weil theory for direct limits of algebraic groups, Am. J. Math. 124 (5) (2002) 955-998, MR 1925340 (2003k:20064).
[10] Yu.A. Drozd, V.M. Futorny, S.A. Ovsienko, Harish-Chandra subalgebras and Gel'fand-Zetlin modules, in: FiniteDimensional Algebras and Related Topics, Ottawa, ON, 1992, in: NATO Adv. Stud. Inst. Ser., Ser. C, Math. Phys. Sci., vol. 424, Kluwer Acad. Publ., Dordrecht, 1994, pp. 79-93, MR MR1308982 (95k:17016).
[11] David Eisenbud, Joe Harris, The Geometry of Schemes, Grad. Texts Math., Springer-Verlag, New York, 2000.
[12] Helge Glöckner, Fundamentals of direct limit Lie theory, Compos. Math. 141 (6) (2005) 1551-1577, MR 2188449 (2007e:22012).
[13] Victor Guillemin, Schlomo Sternberg, The Gel'fand-Cetlin system and quantization of the complex flag manifolds, J. Funct. Anal. 52 (1) (1983) 106-128, MR MR705993 (85e:58069).
[14] Robin Hartshorne, Algebraic Geometry, Grad. Texts Math., vol. 52, Springer-Verlag, New York, 1977, MR MR0463157 (57 \#3116).
[15] James E. Humphreys, Linear Algebraic Groups, Grad. Texts Math., vol. 21, Springer-Verlag, New York, 1975, MR MR0396773 (53 \#633).
[16] Bertram Kostant, Lie group representations on polynomial rings, Am. J. Math. 85 (1963) 327-404, MR MR0158024 (28 \#1252).
[17] Victor Kac, A.K. Raina, Bombay Lectures on Highest Weight Representations of Infinite-dimensional Lie Algebras, Adv. Ser. Math. Phys., vol. 2, World Scientific Publishing Co. Inc., Teaneck, NJ, 1987, MR 1021978 (90k:17013).
[18] Shrawan Kumar, Kac-Moody Groups, Their Flag Varieties and Representation Theory, Prog. Math., vol. 204, Birkhäuser Boston Inc., Boston, MA, 2002, MR 1923198 (2003k:22022).
[19] Bertram Kostant, Nolan Wallach, Gelfand-Zeitlin theory from the perspective of classical mechanics. I, in: Studies in Lie Theory, in: Prog. Math., vol. 243, Birkhäuser Boston, Boston, MA, 2006, pp. 319-364, MR MR2214253 (2007e:14072).
[20] Bertram Kostant, Nolan Wallach, Gelfand-Zeitlin theory from the perspective of classical mechanics. II, in: The Unity of Mathematics, in: Prog. Math., vol. 244, Birkhäuser Boston, Boston, MA, 2006, pp. 387-420, MR MR2181811 (2007e:14073).
[21] Ottmar Loos, Erhard Neher, Locally finite root systems, Mem. Am. Math. Soc. 171 (811) (2004) x+214, MR 2073220 (2005c:17016).
[22] Andy R. Magid, Nazih Nahlus, Provarieties and observable subgroups of pro-affine algebraic groups, J. Group Theory 5 (1) (2002) 59-74, MR 1879517 (2002j:20087).
[23] Karl-Hermann Neeb, Holomorphic highest weight representations of infinite-dimensional complex classical groups, J. Reine Angew. Math. 497 (1998) 171-222, MR 1617431 (99h:22027).
[24] Anatol Odzijewicz, Tudor S. Ratiu, Banach Lie-Poisson spaces and reduction, Commun. Math. Phys. 243 (1) (2003) 1-54, MR 2020219 (2005b:53132).
[25] Ivan Penkov, Vera Serganova, Categories of integrable $s l(\infty)-, o(\infty)-, s p(\infty)$-modules, in: Representation Theory and Mathematical Physics, in: Contemp. Math., vol. 557, Amer. Math. Soc., Providence, RI, 2011, pp. 335-357, MR 2848932.
[26] Izu Vaisman, Lectures on the Geometry of Poisson Manifolds, Prog. Math., vol. 118, Birkhäuser Verlag, Basel, 1994, MR MR1269545 (95h:58057).

[^0]: Funding from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

 * Corresponding author.

 E-mail addresses: colaruss@uwm.edu (M. Colarusso), Michael.Lau@mat.ulaval.ca (M. Lau).

[^1]: ${ }^{1}$ The traditional definition of an ind-variety stipulates that the embeddings $i_{n m}: X_{n} \rightarrow X_{m}$ are closed (see for example [18,9]). We require a slightly more general notion for the objects we consider.

[^2]: 2 Alternate spellings of Zeitlin include Cetlin, Tsetlin, Tzetlin, and Zetlin. In this paper, we follow the convention from the earlier work of the first author.

