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We study the variety g(l) consisting of matrices x ∈ gl(n, C)
such that x and its n − 1 by n − 1 cutoff xn−1 share ex-
actly l eigenvalues, counted with multiplicity. We determine 
the irreducible components of g(l) by using the orbits of 
GL(n − 1, C) on the flag variety B of gl(n, C). More pre-
cisely, let b ∈ B be a Borel subalgebra such that the orbit 
GL(n −1, C) ·b in B has codimension l. Then we show that the 
set Yb := {Ad(g)(x) : x ∈ b ∩ g(l), g ∈ GL(n − 1, C)} is an ir-
reducible component of g(l), and every irreducible component 
of g(l) is of the form Yb, where b lies in a GL(n − 1, C)-orbit 
of codimension l. An important ingredient in our proof is the 
flatness of a variant of a morphism considered by Kostant 
and Wallach, and we prove this flatness assertion using an 
analogue of the Steinberg variety.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let x be an n × n complex matrix, and let xn−1 be the n − 1 × n − 1 submatrix 
in the upper left corner of x. The relationship between the eigenvalues x and xn−1 has 
been an area of interest for both linear algebraists and Lie theorists for a long time. For 
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example, if x is Hermitian, then it is well-known that the necessarily real eigenvalues of 
x must interlace those of xn−1 (Theorem 4.3.8 of [20].) Interlacing of eigenvalues also 
appears in branching rules for restrictions of irreducible representations of the unitary 
group U(n, C) to its subgroup U(n − 1, C) (Theorem 8.1.1 of [17]).

These two perspectives meet in the study of the Gelfand–Zeitlin integrable system 
on the n × n Hermitian matrices, which can be identified with the dual space of the 
Lie algebra of the group U(n, C). This integrable system was constructed by Guillemin 
and Sternberg in [16] and is the geometric version of the classical Gelfand–Zeitlin basis 
for irreducible U(n, C)-representations [14]. In [16], the geometric construction of the 
Gelfand–Zeitlin basis makes use of the fact that both the branching rule for irreducible 
representations of U(n, C) to U(n − 1, C) and the eigenvalue coincidences of x and xn−1
with x Hermitian satisfy the same interlacing property.

In a series of recent papers, [24,25], Kostant and Wallach have developed a complex 
version of the Gelfand–Zeitlin integrable system studied by Guillemin and Sternberg for 
the Lie algebra g := gl(n, C) of n × n complex matrices. Their work has produced new 
directions in both Lie theory and linear algebra. In [24], the authors show that for an 
arbitrary n × n complex matrix x, the eigenvalues of xn−1 are independent of those 
of x. This observation has prompted recent work by Parlett and Strang on eigenvalue 
coincidences of complex matrices [31].

In this paper, we study the geometry of eigenvalue coincidences for arbitrary complex 
matrices using the theory of orbits of the group K := GL(n − 1, C) × GL(1, C) on the 
flag variety B of g. In particular, we consider the subset g(l) consisting of elements 
x ∈ g such that x and xn−1 share exactly l eigenvalues, counted with multiplicity, 
where 0 ≤ l ≤ n − 1. We study the algebraic geometry of the set g(l) and determine 
the irreducible components of g(l). This allows us to describe elements of g(l) up to 
K-conjugacy. The proof relies on the flatness of a variant of the moment map for the 
Gelfand–Zeitlin system, which in turn depends on a dimension estimate proved using a 
variant of the Steinberg variety.

In more detail, let G = GL(n, C) and let θ : G → G be the involution θ(x) = dxd−1, 
where d = diag[1, . . . , 1, −1]. Then K = Gθ. It is well-known that K has exactly n closed 
orbits on the flag variety B, and each of these closed orbits is isomorphic to the flag variety 
Bn−1 of Borel subalgebras of gl(n −1, C). Further, there are finitely many K-orbits on B, 
and for each of these K-orbits Q, we consider its length l(Q) = dim(Q) −dim(Bn−1). For 
Q = K · bQ, we consider the K-saturation YQ := Ad(K)bQ of bQ, which is independent 
of the choice of bQ ∈ Q.

Theorem 1.1. The irreducible component decomposition of g(l) is

g(l) =
⋃

l(Q)=n−1−l

YQ ∩ g(l). (1.1)

A key ingredient in the proof is the observation that the variety g(l) is equidimensional. 
To see this, we study the morphism Φn = (χn−1, χn) : g → C

n−1 ×C
n, where for x ∈ g, 
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χn(x) is an adjoint quotient of x, and χn−1(x) is an adjoint quotient of xn−1 in gl(n −1, C)
(see (2.2) for a precise definition). The morphism Φn is a variant of the moment map 
for the Gelfand–Zeitlin system studied by Kostant and Wallach in [24], and we refer to 
it as the partial Kostant–Wallach map. We denote its nilfiber by SNn, i.e.,

SNn := Φ−1
n (0) = {x ∈ g : x, xn−1 are nilpotent}. (1.2)

To study SNn, we consider the variant of the Steinberg variety given by

Z =
{(

x, b, b′
)

: b ∈ B, b′ ∈ Bn−1 and x ∈ [b, b], xn−1 ∈
[
b′, b′

]}
together with the diagram

Z

↙ ↘
g B × Bn−1

where the maps are projections to the appropriate factors. We identify Z with a union 
of conormal bundles to diagonal K-orbits in B×Bn−1, and it follows that all irreducible 
components of Z have dimension equal to dim(B) +dim(Bn−1) = n2−2n +1. We observe 
that SNn is the image of Z under projection to g. By elementary considerations, the 
dimension of each irreducible component of SNn is at least n2−2n +1, and it follows that 
SNn is equidimensional of dimension n2−2n +1. We then use homogeneity of Φn to prove 
flatness of Φn, from which it follows that g(l) is equidimensional. We remark that flatness 
of Φn also follows from results of Ovsienko and Futorny [29,11], or of Knop [22], or of 
Panyushev [30]. In the case we are considering, the argument outlined above is simpler 
and quite different than the existing arguments in the literature. Our approach may 
also provide interesting applications to geometric representation theory; in particular to 
the construction of certain generalized Harish-Chandra modules closely related to the 
Gelfand–Zeitlin modules studied by Drozd, Futorny, and Ovsienko [9,13,12]. It would also 
be interesting to relate our methods to results of Baruch on construction of invariant 
distributions on g [1].

Theorem 1.1 then follows from considering the interactions of K-orbits on B with g
using the Grothendieck resolution:

g̃ = {(x, b) : b ∈ B, x ∈ b}
↙ μ ↘ π

g B

where μ and π are the projections onto the first and second factor respectively. We use 
the observation that YQ = μ(π−1(Q)) to study the geometry of the subsets YQ using 
properties of the geometry of K-orbits on B and of the morphisms π and μ. We show if 
l(Q) = n − 1 − l, then dimYQ ∩ g(l) = dim g(l), and YQ ∩ g(l) is closed in g(l). Since g(l)
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is equidimensional, it follows that YQ∩g(l) is an irreducible component of g(l). We show 
that the varieties YQ ∩ g(l) with l(Q) = n − 1 − l exhaust the irreducible components of 
g(l) by using results from [8] and [6].

Theorem 1.1 has the following consequence. Let b+ denote the Borel subalgebra con-
sisting of upper triangular matrices. For i = 1, . . . , n, let (in) be the permutation matrix 
corresponding to the transposition interchanging i and n, and let bi := Ad(in)b+.

Corollary 1.2. If x ∈ g(l), then x is K-conjugate to an element in one of l + 1 explic-
itly determined θ-stable parabolic subalgebras. In particular, if x ∈ g(n − 1), then x is 
K-conjugate to an element of bi, where i = 1, . . . , n.

Using Corollary 1.2 and the geometry of the Springer resolution, we obtain an explicit 
description of the irreducible components of the variety SNn introduced in Eq. (1.2). If 
ni is the nilradical of bi, then the geometry of the Springer resolution and the equidi-
mensionality of SNn imply that Ad(K)ni is an irreducible component of SNn. We then 
use Corollary 1.2 to show that every irreducible component of SNn is of this form (see 
Proposition 3.10).

This paper is part of a series of papers on K-orbits on B and the Gelfand–Zeitlin 
system on g. In [6], we used K-orbits to give a conceptual description of the so-called 
strongly regular elements in the nilfiber of the moment map of the Gelfand–Zeitlin sys-
tem. These are matrices x ∈ g such that xi is nilpotent for all i = 1, . . . , n with the added 
condition that the differentials of the Gelfand–Zeitlin functions are linearly independent 
at x. The strongly regular elements were first studied extensively in [24], and the first au-
thor determined the strongly regular moment map fibers by explicit computation in [8]. 
This paper may be regarded as a step towards understanding all fibers of the Gelfand–
Zeitlin moment map using the theory of K-orbits on B. In a second paper, we will refine 
Corollary 1.2 to provide a standard form for all elements of g(l). This uses K-orbits and 
a finer study of the algebraic geometry of the varieties g(l). In a third paper, we will 
iterate the constructions in this paper to describe the subvarieties g(l1, . . . , ln−1) con-
sisting of elements x ∈ g such that xi and xi+1 share li eigenvalues in common counting 
repetition, where 0 ≤ li ≤ i. In particular, we will give a more conceptual proof of the 
main result from [8] and use K-orbits to describe the geometry of arbitrary fibers of the 
moment map for the Gelfand–Zeitlin system.

This paper is organized as follows. In Section 2, we show that the variety SNn is 
equidimensional and prove that the partial Kostant–Wallach map Φn is flat (see Theo-
rem 2.3 and Proposition 2.4). We also study the geometry of the subsets YQ, computing 
their dimensions and closures (see Lemma 2.13 and Proposition 2.15). Section 3 contains 
the main results of the paper, where we deduce the equidimensionality of the varieties 
g(l) and prove Theorem 1.1 (see Proposition 3.5 and Theorems 3.6 and 3.7).

The work by the second author was partially supported by NSA grant H98230-11-1-
0151. We would like to thank Adam Boocher and Claudia Polini for useful discussions. 
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We would also like to thank the referees for useful suggestions and for alerting us to the 
references [22,30].

2. Preliminaries

We show flatness of the partial Kostant–Wallach morphism and recall needed results 
concerning K-orbits on B.

2.1. The partial Kostant–Wallach map

For x ∈ g and i = 1, . . . n, let xi ∈ gl(i, C) denote the upper left i × i corner of 
the matrix x. For any y ∈ gl(i, C), let tr(y) denote the trace of y. For j = 1, . . . , i, let 
fi,j(x) = tr((xi)j), which is a homogeneous function of degree j on g. The Gelfand–Zeitlin 
collection of functions is the set JGZ := {fi,j(x) : i = 1, . . . , n, j = 1, . . . , i}. The 
restriction of these functions to any regular adjoint orbit in g produces an integrable 
system on the orbit [24]. Let χi,j : gl(i, C) → C be the function χi,j(y) = tr(yj), so 
that fi,j(x) = χi,j(xi) and χi := (χi,1, . . . , χi,i) is the adjoint quotient for gl(i, C). The 
Kostant–Wallach map is the morphism given by

Φ : g → C
1 × C

2 × · · · × C
n; Φ(x) =

(
χ1(x1), . . . , χn(x)

)
. (2.1)

We will also consider the partial Kostant–Wallach map given by the morphism

Φn : g → C
n−1 × C

n; Φn(x) =
(
χn−1(xn−1), χn(x)

)
. (2.2)

Note that

Φn = pr ◦ Φ, (2.3)

where pr : C1 × C
2 × · · · × C

n → C
n−1 × C

n is the projection on the last two factors.

Remark 2.1. By Theorem 0.1 of [24], the map Φ is surjective, and therefore Φn is sur-
jective.

Notation 2.2. Throughout the paper, we use the following notation. Let C[g] denote the 
ring of regular functions on g. Let I := ({fij}i=1,...,n;j=1,...,i) denote the ideal of C[g]
generated by the Gelfand–Zeitlin functions JGZ . The vanishing set V (I) of I is called 
the variety of strongly nilpotent matrices and is denoted by SN :

SN = {x ∈ g : xi is nilpotent for i = 1, . . . , n}.

Let Γ := C[{fij}i=1,...,n;j=1,...,i] be the subring of C[g] generated by JGZ .
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Much of the paper is devoted to the study of the analogous objects obtained from 
the partial Gelfand–Zeitlin functions JGZ,n := {fi,j : i = n − 1, n; j = 1, . . . , i}. We 
let In = ({fij}i=n−1,n;j=1,...,i) denote the ideal of C[g] generated by JGZ,n. We call the 
vanishing set V (In) the variety of partially strongly nilpotent matrices and denote it 
by SNn. Thus,

SNn := {x ∈ g : x, xn−1 are nilpotent}. (2.4)

Finally, we let Γn := C[{fij}i=n−1,n;j=1,...,i] be the subring of C[g] generated by JGZ,n.

Recall that if Y ⊂ C
m is a closed equidimensional subvariety of dimension m − d, 

then Y is called a complete intersection if Y = V (f1, . . . , fd) is the vanishing set of d
functions.

Theorem 2.3. The variety of partially strongly nilpotent matrices SNn is a complete 
intersection of dimension

dn := n2 − 2n + 1. (2.5)

Before proving Theorem 2.3, we show how it implies the flatness of the partial Kostant–
Wallach map Φn.

Proposition 2.4.

(1) For all c ∈ C
n−1 × C

n, dim(Φ−1
n (c)) = n2 − 2n + 1. Thus, Φ−1

n (c) is a complete 
intersection.

(2) The partial Kostant–Wallach map Φn : g → C
2n−1 is a flat morphism. Thus, C[g] is 

flat over Γn.

Proof. For x ∈ g, we let dx be the maximum of the dimensions of irreducible components 
of Φ−1

n (Φn(x)). For c ∈ C
n−1 ×C

n, each irreducible component of Φ−1
n (c) has dimension 

at least dn since Φ−1
n (c) is defined by 2n − 1 equations in g. Hence, dx ≥ dn. Since 

the functions fi,j are homogeneous, it follows that scalar multiplication by λ ∈ C
×

induces an isomorphism Φ−1
n (Φn(x)) → Φ−1

n (Φn(λx)). It follows that dx = dλx. By upper 
semi-continuity of dimension (see for example, Proposition 4.4 of [21]), the set of y ∈ g

such that dy ≥ d is closed for each integer d. It follows that d0 ≥ dx. By Theorem 2.3, 
d0 = dn. The first assertion follows easily. The second assertion now follows by the 
corollary to Theorem 23.1 of [27]. �
Proof of Theorem 2.3. Let X be an irreducible component of SNn. We observed in 
the proof of Proposition 2.4 that dimX ≥ dn. To show dimX ≤ dn, we consider a 
generalization of the Steinberg variety (see Section 3.3 of [7]). We first recall a few facts 
about the cotangent bundle to the flag variety.
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For the purposes of this proof, we denote the flag variety of gl(n, C) by Bn. We consider 
the form 〈 〈·, ·〉 〉 on g given by 〈 〈x, y〉 〉 = tr(xy) for x, y ∈ g. If b ∈ Bn, the annihilator b⊥
of b with respect to the form 〈 〈·, ·〉 〉 is n = [b, b]. We can then identify T ∗(Bn) with the 
closed subset of g × Bn given by:

T ∗(Bn) =
{
(x, b) : b ∈ Bn, x ∈ n

}
.

We let gn−1 = gl(n − 1, C) and view gn−1 as a subalgebra of g by embedding gn−1 in 
the top lefthand corner of g. Since g is the direct sum g = gn−1 ⊕ g⊥n−1, the restriction 
of 〈 〈·, ·〉 〉 to gn−1 is non-degenerate. For a Borel subalgebra b′ ∈ Bn−1, we let n′ = [b′, b′]. 
We consider a closed subvariety Z ⊂ g × Bn × Bn−1 defined as follows:

Z =
{(

x, b, b′
)

: b ∈ Bn, b
′ ∈ Bn−1 and x ∈ n, xn−1 ∈ n′

}
. (2.6)

Consider the morphism μ : Z → g, where μ(x, b, b′) = x. Since the varieties Bn and 
Bn−1 are projective, the morphism μ is proper.

We consider the closed embedding Z ↪→ T ∗(Bn) × T ∗(Bn−1) ∼= T ∗(Bn × Bn−1) given 
by (x, b, b′) → (x, −xn−1, b, b′). We denote the image of Z under this embedding by 
Z̃ ⊂ T ∗(Bn × Bn−1). Let Gn−1 be the closed subgroup of GL(n, C) corresponding to 
gn−1. Then Gn−1 acts diagonally on Bn×Bn−1 via k · (b, b′) = (k ·b, k ·b′) for k ∈ Gn−1. 
We claim Z̃ ⊂ T ∗(Bn × Bn−1) is the union of conormal bundles to the Gn−1-diagonal 
orbits in Bn × Bn−1. Indeed, let (b, b′) ∈ Bn × Bn−1, and let Q be its Gn−1-orbit. Then

T(b,b′)(Q) = span
{(

Y mod b, Y mod b′
)

: Y ∈ gn−1
}
.

Now let (λ1, λ2) ∈ (n, n′) with (λ1, λ2) ∈ (T ∗
Q)(Bn×Bn−1)(b,b′), the fiber of the conormal 

bundle to Q in Bn × Bn−1 at the point (b, b′). Then

〈〈λ1, Y 〉〉 + 〈〈λ2, Y 〉〉 = 0 for all Y ∈ gn−1.

Thus, λ1 + λ2 ∈ g⊥n−1. But since λ2 ∈ n′ ⊂ gn−1, it follows that λ2 = −(λ1)n−1. Thus,

T ∗
Q(Bn × Bn−1) =

{(
μ1, b1,−(μ1)n−1, b2

)
, μ1 ∈ n1, (μ1)n−1 ∈ n2, where (b1, b2) ∈ Q

}
.

We recall the well-known fact that there are only finitely many Gn−1-diagonal orbits 
in Bn × Bn−1, which follows from [35,4], or in a more explicit form is proved in [19]. 
Therefore, the irreducible component decomposition of Z̃ is:

Z̃ =
⋃
i

T ∗
Qi

(Bn × Bn−1) ⊂ T ∗(Bn × Bn−1),

where i runs over the distinct Gn−1-diagonal orbits in Bn × Bn−1. Thus, Z ∼= Z̃ is a 
closed, equidimensional subvariety of dimension

dimZ = 1(dimT ∗(Bn × Bn−1)
)

= dn.
2
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Note that μ : Z → SNn is surjective. Since μ is proper, for every irreducible component 
X ⊂ SNn of SNn, we see that

X = μ(Zi) (2.7)

for some irreducible component Zi ⊂ Z. Since dimZi = dn and dimX ≥ dn, we conclude 
that dimX = dn. �

In Proposition 3.10, we will determine the irreducible components of SNn explicitly.

Lemma 2.5. Let A =
⊕

n≥0 An be a graded ring with A0 = k a field, and let M =⊕
n≥n0

Mn0 be a graded A-module which vanishes below some index. If M is flat over A, 
then M is free over A.

Proof. This result is well-known, but we include a sketch of the proof for lack of a 
reference. Let I =

⊕
n>0 An. An easy graded version of Nakayama’s lemma asserts that 

if M is a graded A-module as in the statement of the lemma and I · M = M , then 
M = 0. The remainder of the proof follows by the proof of the analogous assertion for 
modules over a local ring (see [34], Proposition 20, page 73), with the graded version 
of Nakayama’s Lemma playing the role of Nakayama’s Lemma for local rings in the 
proof. �
Proposition 2.6. (See [11].) C[g] is free over Γn.

Proof. Apply Lemma 2.5 and Proposition 2.4 (2). �
A stronger version of this proposition is proved by much more elaborate methods in 

[29] and [11]. Ovsienko proves in [29] that SN is a complete intersection, and results of 
Futorny and Ovsienko from [11] show that Ovsienko’s theorem implies that C[g] is free 
over Γ (see Notation 2.2). It then follows easily that C[g] is flat over Γn, and hence that 
Φn is flat.

Remark 2.7. We briefly discuss the connection between the result of Proposition 2.4 and 
the work of Knop in [22]. For the purposes of this remark only, we let G = GL(n, C) ×
GL(n − 1, C), and we let H = GL(n − 1, C)Δ be the diagonal copy of GL(n − 1, C)
embedded in G. (Here we view GL(n − 1, C) as a subgroup of GL(n, C) by embedding it 
in the top lefthand corner.) Then the homogeneous space G/H is spherical, i.e., a Borel 
subgroup of G has an open orbit on G/H. Let g = Lie(G) = gl(n, C) ⊕ gl(n − 1, C). 
We identify g with g∗ using the difference of the trace forms on gl(n, C) and gl(n −
1, C). Let h⊥ ⊂ g∗ ∼= g denote the annihilator of h = Lie(H). Then h⊥ is identified 
with the subspace {(x, xn−1) : x ∈ gl(n, C)} of g, and hence h⊥ ∼= gl(n, C). Note also 
the identification g//G ∼= C

2n−1 given by taking unordered eigenvalues of each factor 
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of g. The cotangent bundle to G/H is T ∗(G/H) = G ×H h⊥. In [22], Knop studies the 
morphism:

Ψ̃ : G×H h⊥ → g//G,

which is the composition of the moment map μ : G ×H h⊥ → g and the adjoint quotient 
χ : g → g//G. Using the above identifications, it follows from definitions that the 
restriction of Ψ̃ to h⊥ is the morphism Φn. By Remark 2.1, Φn is surjective, whence 
Ψ̃ is surjective. By the proof of Satz 6.6 of [22], it follows that the fibers of Ψ̃ are 
equidimensional (and Ψ̃ is flat). By the identity

Ψ̃−1(c) = G×H Φ−1
n (c), (2.8)

where c ∈ g//G ∼= C
2n−1, it follows that the fibers of Φn are equidimensional varieties 

of dimension (n − 1)2. The flatness of Φn now follows as in the proof of part (2) of 
Proposition 2.4.

Remark 2.8. We note that the morphism Φn : gl(n, C) → C
2n−1 is the quotient mor-

phism by the action of GL(n − 1, C) on gl(n, C) by conjugation where GL(n − 1, C) is 
embedded in GL(n, C) as the upper left hand corner. Indeed, this follows from Korol-
lar 7.2 of [22]. We also note the closely related Theorem 6 of [30], which implies that 
gl(n, C)//GL(n − 1, C) ∼= C

2n−1. The fact that Φn is a quotient morphism also fol-
lows from our results. Indeed, we can show that each fiber of Φn has a unique closed 
GL(n − 1, C)-orbit, which implies that Φn induces a bijection gl(n, C)//GL(n − 1, C) →
C

2n−1, which is an isomorphism by Zariski’s Main Theorem.

Although we could have simply cited the results of Futorny and Ovsienko or Knop to 
prove flatness of Φn, we prefer our approach because of its links with geometric represen-
tation theory. In later work, we plan to use the Beilinson–Bernstein correspondence to 
construct generalized Harish-Chandra modules for (gl(n, C) ⊕ gl(n − 1, C), K), by using 
the geometry of K-orbits on the product of flag varieties B × Bn−1. In representation 
theory, this would involve using both Zuckerman functors (as in [32]) and an equivalence 
of categories analogous to the equivalence between category O and certain categories of 
Harish-Chandra modules ([2], 3.4). This process would produce gl(n, C)-modules with a 
locally finite Γn-action, and we hope this project will be shed new light on our larger 
program of the quantizing the Gelfand–Zeitlin integrable system and geometrically con-
structing the Gelfand–Zeitlin modules studied by Drozd, Futorny, and Ovsienko [9].

2.2. K-orbits

We recall some basic facts about K-orbits on generalized flag varieties G/P (see [26,
33,28,36,5] for more details).
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By the general theory of orbits of symmetric subgroups on generalized flag varieties, 
K has finitely many orbits on B. For this paper, it is useful to parametrize the orbits. To 
do this, we let B+ be the upper triangular Borel subgroup of G, and identify B ∼= G/B+
with the variety of flags in Cn. We use the following notation for flags in Cn. Let

F =
(
V0 = {0} ⊂ V1 ⊂ · · · ⊂ Vi ⊂ · · · ⊂ Vn = C

n
)

be a flag in Cn, with dimVi = i and Vi = span{v1, . . . , vi}, with each vj ∈ C
n. We will 

denote the flag F as follows:

v1 ⊂ v2 ⊂ · · · ⊂ vi ⊂ vi+1 ⊂ · · · ⊂ vn.

We denote the standard ordered basis of Cn by {e1, . . . , en}, and let Ei,j ∈ g be the 
matrix with 1 in the (i, j)-entry and 0 elsewhere.

There are n closed K-orbits on B (see Example 4.16 of [5]), Qi,i = K · bi,i for i =
1, . . . , n, where the Borel subalgebra bi,i is the stabilizer of the following flag in Cn:

Fi,i = (e1 ⊂ · · · ⊂ ei−1 ⊂ en︸︷︷︸
i

⊂ ei ⊂ · · · ⊂ en−1). (2.9)

Note that if i = n, then the flag Fi,i is the standard flag F+:

F+ = (e1 ⊂ · · · ⊂ en), (2.10)

and bn,n = b+ is the standard Borel subalgebra of n ×n upper triangular matrices. It is 
not difficult to check that K · bi,i = K ·Ad(in)b+. If i = 1, then K · b1,1 = K · b−, where 
b− is the Borel subalgebra of lower triangular matrices in g.

The non-closed K-orbits in B are the orbits Qi,j = K · bi,j for 1 ≤ i < j ≤ n, where 
bi,j is the stabilizer of the flag in Cn:

Fi,j = (e1 ⊂ · · · ⊂ ei + en︸ ︷︷ ︸
i

⊂ ei+1 ⊂ · · · ⊂ ej−1 ⊂ ei︸︷︷︸
j

⊂ ej ⊂ · · · ⊂ en−1). (2.11)

There are 
(
n
2
)

such orbits (see Notation 4.23 and Example 4.31 of [5]).
Let w and σ be the permutation matrices corresponding respectively to the cycles 

(n n −1 · · · i) and (i +1 i +2 . . . j), and let uαi
be the Cayley transform matrix such that

uαi
(ei) = ei + ei+1, uαi

(ei+1) = −ei + ei+1, uαi
(ek) = ek, k �= i, i + 1.

For 1 ≤ i ≤ j ≤ n, we define:

vi,j :=
{

w if i = j

wuα σ if i �= j

}
(2.12)
i
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It is easy to verify that vi,j(F+) = Fi,j , and thus Ad(vi,j)b+ = bi,j (see Example 4.30 
of [5]).

Proposition 2.9. The length of the K-orbit Qi,j is l(Qi,j) = j − i for any 1 ≤ i ≤ j ≤ n. 
In particular, a K-orbit Qi,j is closed if and only if Q = Qi,i for some i. The n − l orbits 
of length l are Qi,i+l, i = 1, . . . , n − l.

Proof. The proposition follows from the calculations in Example 4.30 of [5]. �
For a parabolic subgroup P of G with Lie algebra p, we consider the generalized flag 

variety G/P , which we identify with parabolic subalgebras of type p and with partial 
flags of type p. We will make use of the following notation for partial flags. Let

P =
(
V0 = {0} ⊂ V1 ⊂ · · · ⊂ Vi ⊂ · · · ⊂ Vk = C

n
)

denote a k-step partial flag with dimVj = ij and Vj = span{v1, . . . , vij} for j = 1, . . . , k. 
Then we denote P as

v1, . . . , vi1 ⊂ vi1+1, . . . , vi2 ⊂ · · · ⊂ vik−1+1, . . . , vik .

In particular for i ≤ j, we let ri,j ⊂ g denote the parabolic subalgebra which is the 
stabilizer of the n − (j − i)-step partial flag in Cn

Ri,j = (e1 ⊂ e2 ⊂ · · · ⊂ ei−1 ⊂ ei, . . . , ej ⊂ ej+1 ⊂ · · · ⊂ en). (2.13)

It is easy to see that ri,j is the standard parabolic subalgebra generated by the Borel 
subalgebra b+ and the negative simple root spaces g−αi

, g−αi+1 , . . . , g−αj−1 . We note that 
ri,j has Levi decomposition ri,j = m + n, with m consisting of block diagonal matrices of 
the form

m = gl(1,C) ⊕ · · · ⊕ gl(1,C)︸ ︷︷ ︸
i−1 factors

⊕ gl(j + 1 − i,C) ⊕ gl(1,C) ⊕ · · · ⊕ gl(1,C)︸ ︷︷ ︸
n−j factors

. (2.14)

Let Ri,j be the parabolic subgroup of G with Lie algebra ri,j . Let pi,j := Ad(vi,j)ri,j ∈
G/Ri,j , where vi,j is defined in (2.12). Then pi,j is the stabilizer of the partial flag

Pi,j = (e1 ⊂ e2 ⊂ · · · ⊂ ei−1 ⊂ ei, . . . , ej−1, en ⊂ ej ⊂ · · · ⊂ en−1), (2.15)

and pi,j ∈ G/Ri,j is a θ-stable parabolic subalgebra of g. Indeed, recall that θ is given 
by conjugation by the diagonal matrix d = diag[1, . . . , 1, −1]. Clearly d(Pi,j) = Pi,j , 
whence pi,j is θ-stable. Moreover, the parabolic subalgebra pi,j has Levi decomposition 
pi,j = l ⊕ u where both l and u are θ-stable and l is isomorphic to the Levi subalgebra 
in Eq. (2.14). Since pi,j is θ-stable, it follows from Theorem 2 of [3] that the K-orbit 
Qpi,j

= K · pi,j is closed in G/Ri,j .
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For a parabolic subgroup P ⊂ G with Lie algebra p ⊂ g, consider the partial 
Grothendieck resolution g̃p = {(x, r) ∈ g × G/P | x ∈ r}, as well as the morphisms 
μ : g̃p → g, μ(x, r) = x, and π : g̃p → G/P, π(x, r) = r. Then π is a smooth morphism 
of relative dimension dim p (for G/B, see Section 3.1 of [7] and Proposition III.10.4 
of [18], and the general case of G/P follows by the same argument). For r ∈ G/P , let 
Qr = K · r ⊂ G/P . Then π−1(Qr) has dimension dim(Qr) +dim(r). It is well-known that 
μ is proper and its restriction to π−1(Qr) generically has finite fibers (Proposition 3.1.34 
and Example 3.1.35 of [7] for the case of G/B, and again the general case has a similar 
proof).

Notation 2.10. For a parabolic subalgebra r with K-orbit Qr ⊂ G/P , we consider the 
irreducible subset

Yr := μ
(
π−1(Qr)

)
= Ad(K)r. (2.16)

To emphasize the orbit Qr, we will also denote this set as

YQr
:= Yr. (2.17)

It follows from generic finiteness of μ that YQr
contains an open subset of dimension

dim(YQr
) := dim π−1(Qr) = dim r + dim(Qr) = dim r + dim(k/k ∩ r), (2.18)

where k = Lie(K) = gl(n − 1, C) ⊕ gl(1, C).

Remark 2.11. Since μ is proper, when Qr = K · r is closed in G/P , then YQr
is closed.

Remark 2.12. Note that

g =
⋃

Q⊂G/P

YQ,

is a partition of g, where the union is taken over the finitely many K-orbits in G/P .

Lemma 2.13. Let Q ⊂ G/P be a K-orbit. Then

YQ =
⋃

Q′⊂Q

YQ′ . (2.19)

Proof. Since π is a smooth morphism, it is flat by Theorem III.10.2 of [18]. Thus, by 
Theorem VIII.4.1 of [15], π−1(Q) = π−1(Q). The result follows since μ is proper. �
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2.3. Comparison of K · bi,j and K · pi,j

We prove a technical result that will be needed to prove our main theorem.

Remark 2.14. Note that bi,j ⊂ pi,j and when i = j, pi,i is the Borel subalge-
bra bi,i. To check the first assertion, note that b+ ⊂ ri,j so that bi,j = Ad(vi,j)b+ ⊂
Ad(vi,j)ri,j = pi,j . The second assertion is verified by noting that when i = j, the partial 
flag Pi,j is the full flag Fi,i.

Proposition 2.15. Consider the K-orbits Qi,j = K ·bi,j ⊂ B and Qpi,j
= K ·pi,j ⊂ G/Pi,j, 

with 1 ≤ i ≤ j ≤ n. Then dim(Ybi,j
) = dim(Ypi,j

) and Ybi,j
= Ypi,j

.

Proof. By definitions and Remark 2.14, Ybi,j
is a constructible subset of Ypi,j

. Since 
Ypi,j

is closed by Remark 2.11, and irreducible by construction, it suffices to show that 
dim(Ybi,j

) = dim(Ypi,j
).

We compute the dimension of Ybi,j
using Eq. (2.18). Since l(Qi,j) = j − i, it follows 

that dimQi,j = dimBn−1 + j − i. Since dim(Bn−1) =
(
n−1

2
)
, Eq. (2.18) then implies:

dimYbi,j
= dim bi,j + dimBn−1 + l(Qi,j) =

(
n + 1

2

)
+

(
n− 1

2

)
+ l(Qi,j)

= n2 − n + 1 + j − i. (2.20)

We now compute the dimension of Ypi,j
. By Eq. (2.18), it follows that

dimYpi,j
= dim pi,j + dim k− dim(k ∩ pi,j). (2.21)

Since both l and u are θ-stable, it follows that dim k ∩ pi,j = dim k ∩ l + dim k ∩ u. To 
compute these dimensions, it is convenient to use the following explicit matrix description 
of the parabolic subalgebra pi,j , which follows from Eq. (2.15).

pi,j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 · · · · · · a1i−1 a1i · · · a1j−1 · · · · · · a1n−1 a1n

0
. . .

...
... ∗

... ∗ ∗
...

...
... ai−1i−1

... ∗
... ∗ ∗ ai−1n−1 ai−1n

0 aii · · · aij−1 ∗ ∗ ain−1 ain
...

...
. . .

... ∗ ∗
...

...
... aij−1 · · · aj−1j−1 · · · · · · aj−1n−1 aj−1n
0 0 · · · 0 ajj · · · ajn−1 0
...

...
... 0

. . .
...

...
...

... 0 0 0 0 an−1n−1 0
0 · · · · · · 0 a · · · a a · · · a a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.22)
ni nj−1 nj nn−1 nn
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Using (2.22), we observe that k ∩ l ∼= gl(1, C)n−j+i ⊕ gl(j − i, C), so that dim k ∩ l =
n − j+ i +(j− i)2. Now u = u ∩ k ⊕u−θ, where u−θ := {x ∈ u : θ(x) = −x}. Using (2.22), 
we see that u−θ has basis {En,j , . . . , En,n−1, E1,n, . . . , Ei−1,n}, so dim u−θ = n −j+i −1. 
Thus, dim u ∩ k = dim u − (n − j + i − 1). Putting these observations together, we obtain

dim k ∩ pi,j = (j − i)2 + dim u + 1. (2.23)

Now

dim pi,j = dim l + dim u = (j − i + 1)2 + n− j + i− 1 + dim u

(see Eq. (2.14)). Thus, Eq. (2.21) implies that

dimYpi,j
= dim k + (j − i + 1)2 + n− j + i− 1 − (j − i)2 − 1 = n2 − n + 1 + j − i,

which agrees with (2.20), and hence completes the proof. �
Remark 2.16. It follows from Eq. (2.22) that (pi,j)n−1 := πn−1,n(pi,j) is a parabolic 
subalgebra, where πn,n−1 : g → gl(n − 1, C) is the projection x �→ xn−1. Further, 
with l = j − i, (pi,j)n−1 has Levi decomposition (pi,j)n−1 = ln−1 ⊕ un−1 with ln−1 =
gl(1, C)n−1−l ⊕ gl(l, C).

3. The varieties g(l)

In this section, we prove our main results.
For x ∈ g, let σ(x) = {λ1, . . . , λn} denote its eigenvalues, where an eigenvalue λ is 

listed k times if it appears with multiplicity k. Similarly, let σ(xn−1) = {μ1, . . . , μn−1}
be the eigenvalues of xn−1 ∈ gl(n − 1, C), again listed with multiplicity. For i = n − 1, n, 
let hi ⊂ gi := gl(i, C) be the standard Cartan subalgebra of diagonal matrices. We 
denote elements of hn−1 × hn by (x, y), with x = (x1, . . . , xn−1) ∈ C

n−1 and y =
(y1, . . . , yn) ∈ C

n the diagonal coordinates of x and y. For l = 0, . . . , n − 1, we define

(hn−1 × hn)(≥ l) =
{
(x, y) : ∃ 1 ≤ i1 < · · · < il ≤ n− 1 with xij = ykj

for some 1 ≤ k1, . . . , kl ≤ n with kj �= km
}
.

Thus, (hn−1 × hn)(≥ l) consists of elements of hn−1 × hn with at least l coincidences in 
the spectrum of x and y counting repetitions. Note that (hn−1 × hn)(≥ l) is a closed 
subvariety of hn−1 × hn and is equidimensional of codimension l.

Let Wi = Wi(gi, hi) be the Weyl group of gi. Then Wn−1×Wn acts on (hn−1×hn)(≥ l). 
Consider the finite morphism p : hn−1 × hn → (hn−1 × hn)/(Wn−1 × Wn). Let Fi :
hi/Wi → C

i be the Chevalley isomorphism, and let

V n−1,n := C
n−1 × C

n, so that Fn−1 × Fn : (hn−1 × hn)/(Wn−1 ×Wn) → V n−1,n
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is an isomorphism. The following varieties play a major role in our study of eigenvalue 
coincidences.

Definition 3.1. For l = 0, . . . , n − 1, we let

V n−1,n(≥ l) := (Fn−1 × Fn)
(
(hn−1 × hn)(≥ l)/(Wn−1 ×Wn)

)
, (3.1)

V n−1,n(l) := V n−1,n(≥ l) \ V n−1,n(≥ l + 1). (3.2)

For convenience, we let V n−1,n(n) = ∅.

Lemma 3.2. The set V n−1,n(≥ l) is an irreducible closed subvariety of V n−1,n of dimen-
sion 2n − 1 − l. Further, V n−1,n(l) is open and dense in V n−1,n(≥ l).

Proof. Indeed, the set Y := {(x, y) ∈ hn−1 × hn : xi = yi for i = 1, . . . , l} is closed and 
irreducible of dimension 2n − 1 − l. The first assertion follows since (Fn−1 × Fn) ◦ p is a 
finite morphism and (Fn−1 ×Fn) ◦ p(Y ) = V n−1,n(≥ l). The last assertion of the lemma 
now follows from Eq. (3.2). �
Notation 3.3. We let

g(≥ l) := Φ−1
n

(
V n−1,n(≥ l)

)
.

Remark 3.4. Recall that the quotient morphism pi : gi → gi//GL(i, C) ∼= hi/Wi as-
sociates to y ∈ gi its spectrum σ(y), and (Fn−1 × Fn) ◦ (pn−1 × pn) = Φn. It follows 
that g(≥ l) consists of elements of x with at least l coincidences in the spectrum of x
and xn−1, counted with multiplicity.

It is routine to check that

g(l) := g(≥ l) \ g(≥ l + 1) = Φ−1
n

(
V n−1,n(l)

)
(3.3)

consists of elements of g with exactly l coincidences in the spectrum of x and xn−1, 
counted with multiplicity.

Proposition 3.5.

(1) The variety g(≥ l) is equidimensional of dimension n2 − l.
(2) g(l) = g(≥ l) =

⋃
k≥l g(k).

Proof. By Proposition 2.4, the morphism Φn is flat. By Proposition III.9.5 and Corollary 
III.9.6 of [18], the variety g(≥ l) is equidimensional of dimension dim(V n−1,n(≥ l)) +
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(n − 1)2, which gives the first assertion by Lemma 3.2. For the second assertion, by the 
flatness of Φn, Theorem VIII.4.1 of [15], and Lemma 3.2,

g(l) = Φ−1
n

(
V n−1,n(l)

)
= Φ−1

n

(
V n−1,n(l)

)
= Φ−1

n

(
V n−1,n(≥ l)

)
= g(≥ l). (3.4)

The remaining equality follows since V n−1,n(≥ l) =
⋃

k≥l V
n−1,n(k). �

We now relate the partitions g =
⋃

g(l) and g =
⋃

Q⊂B YQ (see Remark 2.12).

Theorem 3.6.

(1) Consider the closed subvarieties Ypi,j
for 1 ≤ i ≤ j ≤ n, and let l = j − i. Then 

Ypi,j
⊂ g(≥ n − 1 − l).

(2) In particular, if Q ⊂ B is a K-orbit with l(Q) = l, then YQ ⊂ g(≥ n − 1 − l).

Proof. The second statement of the theorem follows from the first statement using Propo-
sitions 2.9 and 2.15.

To prove the first statement of the theorem, let q be a parabolic subalgebra of g with 
q ∈ Qpi,j

, and let y ∈ q. We need to show that Φn(y) ∈ V n−1,n(≥ n − 1 − l). Since 
the map Φn is K-invariant, it is enough to show that Φn(x) ∈ V n−1,n(≥ n − 1 − l) for 
x ∈ pi,j .

We recall that Φn(x) = (χn−1(xn−1), χn(x)) where χi : gl(i, C) → C
i is the adjoint 

quotient for i = n − 1, n. For x ∈ pi,j , let xl be the projection of x onto l off of u. It is 
well-known that χn(x) = χn(xl). Using the identification l ∼= gl(1, C)n−1−l⊕gl(l+1, C), 
we decompose xl as xl = xgl(1)n−1−l + xgl(l+1), where xgl(1)n−1−l ∈ gl(1, C)n−1−l and 
xgl(l+1) ∈ gl(l + 1, C). It follows that the coordinates of xgl(1)n−1−l are in the spectrum 
of x (see (2.22)).

Recall the projection πn,n−1 : g → gn−1, πn,n−1(x) = xn−1. Recall the Levi decom-
position (pi,j)n−1 = ln−1 ⊕ un−1 of the parabolic subalgebra (pi,j)n−1 of gl(n − 1, C)
from Remark 2.16, and recall that ln−1 = gl(1, C)n−1−l ⊕ gl(l, C). Thus, χn−1(xn−1) =
χn−1((xn−1)ln−1). We use the decomposition (xn−1)ln−1 = xgl(1)n−1−l + πl+1,l(xgl(l+1)), 
where πl+1,l : gl(l + 1, C) → gl(l, C) is the usual projection. It now follows easily from 
Remark 3.4 that Φn(x) ∈ V n−1,n(≥ n − 1 − l), since the coordinates of xgl(1)n−1−l are 
eigenvalues both for x and xn−1. �

We now recall and prove our main theorem.

Theorem 3.7. Consider the locally closed subvariety g(n − 1 − l) for l = 0, . . . , n − 1. 
Then the decomposition

g(n− 1 − l) =
⋃

YQ ∩ g(n− 1 − l), (3.5)

l(Q)=l
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is the irreducible component decomposition of the variety g(n − 1 − l), where the union 
is taken over all K-orbits Q of length l in B (cf. Theorem (1.1)).

In fact, for 1 ≤ i ≤ j ≤ n with j − i = l, we have

Ybi,j
∩ g(n− 1 − l) = Ypi,j

∩ g(n− 1 − l),

so that

g(n− 1 − l) =
⋃

j−i=l

Ypi,j
∩ g(n− 1 − l). (3.6)

Proof. We first claim that if l(Q) = l, then YQ∩g(n −1 −l) is non-empty. By Theorem 3.6, 
YQ ⊂ g(≥ n −1 −l). Thus, if YQ∩g(n −1 −l) were empty, then YQ ⊂ g(≥ n −l). Hence, by 
part (1) of Proposition 3.5, dim(YQ) ≤ n2−n +l. By Eq. (2.20), dim(YQ) = n2−n +l+1. 
This contradiction verifies the claim.

It follows from Eq. (3.3) that g(n −1 −l) is open in g(≥ n −1 −l). Thus, YQ∩g(n −1 −l)
is a non-empty Zariski open subset of YQ, which is irreducible since YQ is irreducible.

Now we claim that

YQ ∩ g(n− 1 − l) = YQ ∩ g(n− 1 − l), (3.7)

so that YQ∩g(n −1 −l) is closed in g(n −1 −l). By Lemma 2.13, YQ =
⋃

Q′⊂Q YQ′ . Hence, 
if (3.7) were not an equality, there would be Q′ with l(Q′) < l(Q) and YQ′ ∩ g(n − 1 − l)
nonempty. This contradicts Theorem 3.6, which asserts that YQ′ ⊂ g(≥ n − l), and hence 
verifies the claim. It follows that YQ ∩ g(n − 1 − l) is an irreducible, closed subvariety 
of g(n − 1 − l) of dimension dimYQ = dim g(n − 1 − l). Thus, YQ ∩ g(n − 1 − l) is an 
irreducible component of g(n − 1 − l).

Since l(Q) = l, Proposition 2.9 implies that Q = Qi,j for some i ≤ j with j − i = l. 
Then by Proposition 2.15 and Eq. (3.7),

Ybi,j
∩ g(n− 1 − l) = Ypi,j

∩ g(n− 1 − l). (3.8)

Let Z be an irreducible component of g(n − 1 − l). The proof will be complete once 
we show that Z = Ypi,j

∩ g(n − 1 − l) for some i, j with j − i = l. To do this, consider 
the nonempty open set

U := {x ∈ g : xn−1 is regular semisimple}.

Let Ũ(n − 1 − l) := g(n − 1 − l) ∩ U .
Since Φn : g → V n−1,n is surjective (by Remark 2.1), it follows that Ũ(n − 1 − l)

is a nonempty Zariski open set of g(n − 1 − l). By part (2) of Proposition 2.4 and 
Exercise III.9.1 of [18], Φn(U) ⊂ V n−1,n is open. Thus, V n−1,n(n − 1 − l) \ Φn(U) is a 
proper, closed subvariety of V n−1,n(n − 1 − l) and therefore has positive codimension 
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by Lemma 3.2. It follows by part (2) of Proposition 2.4 and Corollary III.9.6 of [18] that 
g(n −1 − l) \ Ũ(n −1 − l) = Φ−1

n (V n−1,n(n −1 − l) \Φn(U)) is a proper, closed subvariety 
of g(n − 1 − l) of positive codimension. Since g(n − 1 − l) is equidimensional, it follows 
that Z ∩ Ũ(n − 1 − l) is nonempty. Thus, it suffices to show that

Ũ(n− 1 − l) ⊂
⋃

j−i=l

Ypi,j
∩ g(n− 1 − l). (3.9)

To prove Eq. (3.9), we consider the following subvariety of Ũ(n − 1 − l):

Ξ =
{
x ∈ Ũ(n− 1 − l) : xn−1 = diag[h1, . . . , hn−1], and

σ(xn−1) ∩ σ(x) = {h1, . . . , hn−1−l}
}
. (3.10)

It is easy to check that any element of Ũ(n − 1 − l) is K-conjugate to an element in Ξ. 
By a linear algebra calculation from Proposition 5.9 of [8] (see Eqs. (5-11) and (5-12) 
in [8]), elements of Ξ are matrices of the form⎡⎢⎢⎢⎢⎢⎢⎢⎣

h1 0 · · · 0

0 h2
. . .

...
...

. . . 0
0 · · · · · · hn−1

y1
...
...

yn−1

z1 · · · · · · zn−1 w

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.11)

with hi �= hj for i �= j and satisfying the equations:

ziyi = 0 for 1 ≤ i ≤ n− 1 − l

ziyi ∈ C
× for n− l ≤ i ≤ n− 1. (3.12)

Since the varieties Ypi,j
∩ g(n − 1 − l) are K-stable, it suffices to prove

Ξ ⊂
⋃

j−i=l

Ypi,j
∩ g(n− 1 − l). (3.13)

To prove (3.13), we need to understand the irreducible components of Ξ. For i =
1, . . . , n − 1 − l, we define an index ji which takes on two values ji = U (U for upper) or 
ji = L (L for lower). Consider the subvariety Ξj1,...,jn−1−l

⊂ Ξ defined by:

Ξj1,...,jn−1−l
:= {x ∈ Ξ : zi = 0 if ji = U, yi = 0 if ji = L}. (3.14)

Then

Ξ =
⋃

ji=U, L

Ξj1,...,jn−1−l
(3.15)

is the irreducible component decomposition of Ξ.
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We now consider the irreducible variety Ξj1,...,jn−1−l
. Suppose that for the subsequence 

1 ≤ i1 < · · · < ik−1 ≤ n − 1 − l we have ji1 = ji2 = · · · = jik−1 = U and that for the 
complementary subsequence ik < · · · < in−1−l we have jik = jik+1 = · · · = jin−1−l

= L. 
Then a simple computation with flags shows that elements of the variety Ξj1,...,jn−1−l

stabilize the n − l-step partial flag in Cn

ei1 ⊂ ei2 ⊂ · · · ⊂ eik−1 ⊂ en−l, . . . , en−1, en︸ ︷︷ ︸
k

⊂ eik ⊂ eik+1 ⊂ · · · ⊂ ein−1−l
. (3.16)

(If l = 0 the partial flag in (3.16) is a full flag with en in the k-th position.) It is easy to 
see that there is an element of K that maps the partial flag in Eq. (3.16) to the partial 
flag Pk,k+l in Eq. (2.15):

Pk,k+l = (e1 ⊂ e2 ⊂ · · · ⊂ ek−1 ⊂ ek, . . . , ek+l−1, en︸ ︷︷ ︸
k

⊂ ek+l ⊂ · · · ⊂ en−1). (3.17)

(If l = 0 the partial flag Pk,k+l is the full flag Fk,k (see Eq. (2.9)).) Thus, Ξj1,...,jn−1−l
⊂

Ypk,k+l
∩ g(n − 1 − l). Eq. (3.15) then implies that Ξ ⊂

⋃
j−i=l Ypi,j

∩ g(n − 1 − l). �
Using Theorem 3.7, we can obtain the irreducible component decomposition of the 

variety g(≥ n − 1 − l) for any l = 0, . . . , n − 1.

Corollary 3.8. The irreducible component decomposition of the variety g(≥ n − 1 − l) is

g(≥ n− 1 − l) =
⋃

j−i=l

Ypi,j
=

⋃
l(Q)=l

YQ. (3.18)

Proof. Taking Zariski closures in Eq. (3.6), we obtain

g(n− 1 − l) =
⋃

j−i=l

Ypi,j
∩ g(n− 1 − l) (3.19)

is the irreducible component decomposition of the variety g(n− 1 − l). By Proposi-
tion 3.5, g(n− 1 − l) = g(≥ n −1 − l), and by Theorem 3.6, Ypi,j

⊂ g(≥ n −1 − l). Hence 
Ypi,j

∩g(n −1 −l) is Zariski open in the irreducible variety Ypi,j
, and is nonempty by The-

orem 3.7. Therefore Ypi,j
∩ g(n− 1 − l) = Ypi,j

. Eq. (3.18) now follows from Eq. (3.19)
and Proposition 2.15. �

Theorem 3.7 says something of particular interest to linear algebraists in the case 
where l = 0. It states that the variety g(n − 1) consisting of elements x ∈ g where 
the number of coincidences in the spectrum between xn−1 and x is maximal can be 
described in terms of closed K-orbits on B, which are the K-orbits Q with l(Q) = 0. It 
thus connects the most degenerate case of spectral coincidences to the simplest K-orbits 
on B. More precisely, we have:
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Corollary 3.9. The irreducible component decomposition of the variety g(n − 1) is

g(n− 1) =
⋃

l(Q)=0

YQ.

Using Corollary 3.9 and Theorem 2.3, we obtain a precise description of the irreducible 
components of the variety SNn introduced in Eq. (2.4).

Proposition 3.10. Let ni,i = [bi,i, bi,i] be the nilradical of the Borel subalgebra bi,i (see 
Eq. 2.9). The irreducible component decomposition of SNn is given by:

SNn =
n⋃

i=1
Ad(K)ni,i, (3.20)

where Ad(K)ni,i ⊂ g denotes the K-saturation of ni,i in g.

Proof. We first show that Ad(K)ni,i is an irreducible component of SNn for i = 1, . . . , n. 
A simple computation using the flag Fi,i in Eq. (2.9) shows that ni,i ⊂ SNn. Since SNn

is K-stable, it follows that Ad(K)ni,i ⊂ SNn.
Recall the Grothendieck resolution g̃ = {(x, b) : x ∈ b} ⊂ g × B and the morphisms 

π : g̃ → B, π(x, b) = b and μ : g̃ → g, μ(x, b) = x. Let Qi,i = K · bi,i ⊂ B be the K-orbit 
through bi,i. Corollary 3.1.33 of [7] gives a G-equivariant isomorphism g̃ ∼= G ×Bi,i

bi,i. 
Under this isomorphism π−1(Qi,i) is identified with the closed subvariety K×K∩Bi,i

bi,i ⊂
G ×Bi,i

bi,i. The closed subvariety K×K∩Bi,i
ni,i ⊂ K×K∩Bi,i

bi,i maps surjectively under 
μ to Ad(K)ni,i. Since μ is proper, Ad(K)ni,i is closed and irreducible. We also note that 
the restriction of μ to K ×K∩Bi,i

ni,i generically has finite fibers (Proposition 3.2.14 
of [7]). Thus, the same reasoning that we used in Eq. (2.20) shows that

dim Ad(K)ni,i = dim(K ×K∩Bi,i
ni,i) = dim(YQi,i

) − rk(g) = dn, (3.21)

where rk(g) denotes the rank of g. Thus, by Theorem 2.3, Ad(K)ni,i is an irreducible 
component of SNn.

We now show that every irreducible component of SNn is of the form Ad(K)ni,i for 
some i = 1, . . . , n. It follows from definitions that SNn ⊂ g(n −1) ∩N , where N ⊂ g is the 
nilpotent cone in g. Thus, if X is an irreducible component of SNn, then X ⊂ Ad(K)ni,i
by Corollary 3.9. But then X = Ad(K)ni,i by Eq. (3.21) and Theorem 2.3. �

We say that an element x ∈ g is n-strongly regular if the set

dJGZ,n(x) :=
{
dfi,j(x) : i = n− 1, n; j = 1, . . . , i

}
is linearly independent in the cotangent space T ∗

x (g) of g at x. We can use Proposition 3.10
and n-strongly regular elements to further study the ideal In (see Notation 2.2).
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Proposition 3.11. The ideal In is radical if and only if n ≤ 2.

Proof. The assertion is clear for n = 1, and we assume n ≥ 2 in the sequel. By The-
orem 18.15(a) of [10], the ideal In is radical if and only if the set dJGZ,n is linearly 
independent on a dense open set of each irreducible component of SNn = V (In). It 
follows that In is radical if and only if each irreducible component of SNn contains 
n-strongly regular elements. Let n+ = [b+, b+] and n− = [b−, b−] be the strictly upper 
and lower triangular matrices, respectively. By Proposition 3.10 above, SNn has exactly 
n irreducible components. It follows from the discussion after Eq. (2.9) that two of them 
are Ad(K)n+ and Ad(K)n−. We claim that Ad(K)n+ and Ad(K)n− are the only irre-
ducible components of SNn which contain n-strongly regular elements. To see this, we 
view gn−1 as the top lefthand corner of g. It follows from a well-known result of Kostant 
(Theorem 9 of [23]) that xi ∈ gi is regular if and only if the set {dfi,j(x) : j = 1, . . . , i} is 
linearly independent. If xi ∈ gi is regular, and we identify T ∗

x (g) = g∗ with g using the 
trace form 〈 〈x, y〉 〉 = tr(xy), then

span
{
dfi,j(x) : j = 1, . . . , i

}
= zgi

(xi),

where zgi
(xi) denotes the centralizer of xi in gi. Thus, it follows that x ∈ g is n-strongly 

regular if and only if x satisfies the following two conditions:

(1) x ∈ g and xn−1 ∈ gn−1 are regular; and

(2) zgn−1(xn−1) ∩ zg(x) = 0. (3.22)

Propositions 3.10 and 3.11 of [6] imply that the only components of SNn which contain 
elements satisfying the conditions in (3.22) are Ad(K)n+ and Ad(K)n−. The assertion 
follows. �

See Remark 1.1 of [29] for a related observation, which follows also from the analysis 
proving our claim.
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