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Abstract. In recent work, we related the structure of subvarieties of n × n complex
matrices defined by eigenvalue coincidences to GL(n− 1, C)-orbits on the flag variety of
gl(n, C). In the first part of this paper, we extend these results to the complex orthogonal
Lie algebra g = so(n, C). In the second part of the paper, we use these results to study
the geometry and invariant theory of the K-action on g, in the cases where (g, K) is
(gl(n, C), GL(n − 1, C)) or (so(n, C), SO(n − 1, C)). We study the geometric quotient
g→ g//K and describe the closed K-orbits on g and the structure of the zero fibre. We
also prove that for x ∈ g, the K-orbit Ad(K) ·x has maximal dimension if and only if the
algebraically independent generators of the invariant ring C[g]K are linearly independent
at x, which extends a theorem of Kostant. We give applications of our results to the
Gelfand-Zeitlin system.

1. Introduction

This paper studies two related questions. Let x ∈ gl(n,C) be an n×n complex matrix,
and let xk ∈ gl(n−1,C) be the (n−1)×(n−1) submatrix in the upper left corner of x. In
[CE15], we studied the subvariety of gl(n,C) consisting of matrices x such that x and xk
have a specified number of eigenvalues in common. In the first part of the paper, we extend
these results from gl(n,C) to so(n,C). In the second part of the paper, we use the results
from [CE15] and the first part of the paper to study the action of K on g by conjugation in
the two cases (K = GL(n−1,C), g = gl(n,C)) and (K = SO(n−1,C), g = so(n,C)). By
a theorem of Knop [Kno94], the algebra C[g]K = C[g]G ⊗ C[k]K is a polynomial algebra.
It follows that the quotient morphism g → g//K can be identified with a morphism Φn

from g to affine space, which is a partial version of a morphism considered by Kostant and
Wallach [KW06a, KW06b]. We study this morphism, and as a consequence, we determine
explicitly the closed K-orbits on g and the structure of the zero fibre. We also prove a
variant of Kostant’s theorem using linear independence of differentials to characterize
regular elements [Kos63]. This variant of Kostant’s theorem allows us to give a simpler
definition of the strongly regular elements of g, which were introduced by Kostant and
Wallach to construct the Gelfand-Zeitlin integrable system on g ([KW06a], [Col09]). We
use this simpler definition to establish new results about the Gelfand-Zeitlin system on
so(n,C).
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In more detail, let g = so(n,C) and let k ⊂ g be the symmetric subalgebra k =
so(n − 1,C) fixed by an involution θ of g. Let rn and rn−1 be the ranks of g and k
respectively. Recall that if a is an eigenvalue of x ∈ so(n,C), then −a is also an eigenvalue
of x, and if n is odd, then the eigenvalue 0 of x occurs an odd number of times. Let

(1.1) σ(x) = {±b1, . . . ,±brn}
be the eigenvalues of x, listed with multiplicity, except that if n is odd, we only list the
eigenvalue 0 2j times if it appears with multiplicity 2j+1. We call σ(x) the spectrum of x.
For x ∈ g, let x = xk + xp where x ∈ k and xp ∈ g−θ, and let σ(xk) = {±a1, . . . ,±arn−1}
be the spectrum of xk, regarded as an element of so(n−1,C). We consider the eigenvalue
coincidence varieties g(≥ i) consisting of x ∈ g such that σ(x) and σ(xk) share at least 2i
elements, counting multiplicity. More precisely, for i = 0, . . . , rn−1,

(1.2) g(≥ i) := {x ∈ g : bjm = ±akm , m = 1, . . . , i with jr 6= js and kr 6= ks for r 6= s}.
For g = gl(n,C) and k = gl(n− 1,C) thought of as the (n− 1)× (n− 1) upper left corner
of g, the analogous varieties were studied in [CE15]. We let σ(x) denote the eigenvalues
of x, and let σ(xk) denote the eigenvalues of xk regarded as an element of gl(n − 1,C).
In this case, the variety g(≥ i) consists of elements x such that σ(x) and σ(xk) share at
least i elements, counted with multiplicity.

We make use of the following notation throughout. We denote the flag variety of a
reductive Lie algebra g by Bg, or by B when g is understood. For a Borel subalgebra b
of g, we denote its K-orbit in B by Q = K · b. We denote the K-saturation of b in g by
YQ := Ad(K)b = {Ad(k)x : k ∈ K, x ∈ b}. Note that the variety YQ depends only on the
K-orbit Q in B. We prove the following result.

Theorem 1.1. The irreducible component decomposition of the variety g(≥ i) is given by

(1.3) g(≥ i) =
⋃

codim(Q)=i

YQ.

In particular, if g = so(2l,C) is type D then the varieties g(≥ i) are all irreducible. If
g = so(2l + 1,C) is type B then g(≥ i) is irreducible for i = 0, . . . , l − 1 and has exactly
two irreducible components when i = l.

Although this statement is similar to Theorem 1.1 of [CE15], the proof requires some
significant new ideas, because computations analogous to those performed in [CE15] for
gl(n,C) are intractable for so(n,C).

In the second part of the paper, we consider the pairs (G,K) given by G = GL(n,C),
K = GL(n− 1,C) and G = SO(n,C), K = SO(n− 1,C), which are essentially the only
symmetric pairs for which the branching rule for finite dimensional representations from
G to K is multiplicity free. Let g and k be the corresponding Lie algebras. For each pair,
let G̃ = G×K and let K∆ be the diagonal embedding of K in G̃. It is standard that K∆

is a spherical subgroup of G̃ (Proposition 4.6). We consider the coisotropy representation
of K∆ on g̃/k∆, which coincides with the adjoint action of K on g. We say that x ∈ g is
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n-strongly regular if x is in a K-orbit of maximal dimension. We write the generators of
C[g]K as {fn−1,1, . . . , fn−1,rn−1 ; fn,1, . . . , fn,rn} (for gl(i,C), ri = i). The following theorem
extends a basic result of Kostant [Kos63].

Theorem 1.2. [Theorem 4.8] An element x ∈ g is n-strongly regular if and only if

(1.4) dfn−1,1(x) ∧ · · · ∧ dfn−1,rn−1(x) ∧ dfn,1(x) ∧ · · · ∧ dfn,rn(x) 6= 0.

Using Theorem 1.2, we show that the Zariski open set g(0) = {x ∈ g : σ(x)∩σ(xk) = ∅}
consists entirely of n-strongly regular elements (Theorem 4.16) and use it to show that
for x ∈ g(0), the fibre Φ−1

n (Φn(x)) is a single K-orbit (Corollary 4.17). Using this result
along with Theorem 1.1 and Theorem 3.7 of [CE15], we give explicit representatives for all
closed K-orbits on g (Theorem 4.20) and determine the nilfibre Φ−1

n (0) (Theorem 4.23).
In contrast to the case of gl(n,C), we show that for so(n,C) the fibre Φ−1

n (0) contains no
n-strongly regular elements (Proposition 4.24 and Corollary 4.25).

This work is motivated by our interest in the Gelfand-Zeitlin system, which is a maximal
Poisson commutative family JGZ in C[g] defined using a family of subalgebras g1 ⊂ g2 ⊂
· · · ⊂ gn−1 ⊂ gn, where gi = gl(i,C) in the general linear case, and gi = so(i,C) in
the orthogonal case. Elements of g for which the differentials {x ∈ g : df(x), f ∈ JGZ}
are linearly independent are called strongly regular. In [KW06a], Kostant and Wallach
show that any regular adjoint orbit in gl(n,C) contains strongly regular elements which
implies that the Gelfand-Zeitlin system is completely integrable on any regular adjoint
orbit. Using different techniques, the first author produced strongly regular elements in
certain regular semisimple orbits of so(n,C) and proved the integrability of the Gelfand-
Zeitlin system on these orbits [Col09]. The case of gl(n,C) is much better understood
than the case of so(n,C), because the so(n,C) Gelfand-Zeitlin system is less amenable to
computation. We hope that our methods will make the Gelfand-Zeitlin system for so(n,C)
more tractable to understand and will improve our understanding of the Gelfand-Zeitlin
system for g = gl(n,C). As a step in this direction, we observe that Theorem 1.2 can be
used to simplify the criterion for an element of gl(n,C) and so(n,C) to be strongly regular
from [KW06a, Col09] (Proposition 4.12). This allows us to identify a previously unknown
set of strongly regular elements of so(n,C) (Proposition 4.18), and in later work, we
will show that every regular adjoint of so(n,C) orbit contains strongly regular elements,
implying the integrability of the Gelfand-Zeitlin system on all regular adjoint orbits of
so(n,C). We can also show that in contrast to the case of gl(n,C) there are no strongly
regular elements x ∈ so(n,C) with the property that f(x) = 0 for all f ∈ JGZ (Remark
4.28). These observations were previously inaccessible using the more computational
methods of [Col09, Col11].

We also plan to apply results of this paper to study the Gelfand-Zeitlin modules intro-
duced by Drozd, Futorny, and Ovsienko [DFO94], which are quantum analogues of the
Gelfand-Zeitlin integrable systems. Our results in this paper develop parts of a Kostant-
Rallis theory [KR71] for the spherical pair (g̃, K∆), and we expect it to play an important
role in understanding a category of Harish-Chandra modules for these spherical pairs,
especially through the study of associated varieties. Using an equivalence of categories
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analogous to the equivalence between category O and certain Harish-Chandra modules
([BB85], Section 3.4), we plan to use (g̃, K∆)-modules in our future work to produce
examples of Gelfand-Zeitlin modules and other closely related modules.

This paper is organized as follows. The first part of the paper comprises Sections 2
and 3. In Section 2, we establish a number of preliminary results. In Section 3, we prove
Theorem 1.1. The second part of the paper consists of Section 4, in which we prove
Theorem 1.2, determine the closed K-orbits on g, and discuss applications to strongly
regular elements. In the appendix, we give an alternative, simpler proof of a theorem of
Knop in a special case.

We would like to thank Bertram Kostant, Nolan Wallach, and Jeb Willenbring for
useful discussions relevant to the subject of this paper.

2. Preliminaries

We recall basic facts concerning orthogonal Lie algebras, and develop some basic frame-
work for the study of eigenvalue coincidence varieties. We also classify the K = SO(n−
1,C)-orbits on the flag variety B of so(n,C) and give explicit representatives for each
orbit.

2.1. Realization of Orthogonal Lie algebras. We give explicit descriptions of stan-
dard Cartan subalgebras and corresponding root systems of so(n,C). Our exposition
follows Chapters 1 and 2 of [GW98].

Let β be the non-degenerate, symmetric bilinear form on Cn given by

(2.1) β(x, y) = xTSny,

where x, y are n× 1 column vectors and Sn is the n× n matrix:

(2.2) Sn =



0 . . . . . . 0 1
... 1 0
... . .

. ...

0 1 . . . 0
...

1 0 . . . . . . 0


with ones down the skew diagonal and zeroes elsewhere. The special orthogonal group is

SO(n,C) := {g ∈ SL(n,C) : β(gx, gy) = β(x, y) ∀x, y ∈ Cn}.
Its Lie algebra is

so(n,C) = {Z ∈ gl(n,C) : β(Zx, y) = −β(x, Zy)∀ x, y ∈ Cn}.
For our purposes, it will be convenient to have explicit matrix descriptions of so(n,C).
We consider the cases where n is odd and even separately. Throughout, we denote the
standard basis of Cn by {e1, . . . , en}.
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2.1.1. Realization of so(2l,C). Let g = so(2l,C) be of type D. The subalgebra of di-
agonal matrices h := diag[a1, . . . , al,−al, . . . ,−a1], ai ∈ C is a Cartan subalgebra of g.
We refer to h as the standard Cartan subalgebra. Let εi ∈ h∗ be the linear functional
εi(diag[a1, . . . , al,−al, . . . ,−a1]) = ai, and let Φ(g, h) be the roots of g with respect to h.
It is well-known that

(2.3) Φ(g, h) = {εi − εj, ±(εi + εj) : 1 ≤ i 6= j ≤ l}.
We take as our standard positive roots the set:

(2.4) Φ+(g, h) := {εi − εj, εi + εj : 1 ≤ i < j ≤ l}.
with corresponding simple roots

(2.5) Π := {α1, . . . , αl−1, αl} where αi = εi − εi+1, i = 1, . . . , l − 1, αl = εl−1 + εl.

The standard Borel subalgebra b+ :=
⊕

α∈Φ+(g,h)

gα is easily seen to be the set of upper

triangular matrices in g.

For the purposes of computations with so(2l,C), it is convenient to relabel part of the
standard basis of Cn as e−j := e2l+1−j for j = 1, . . . , l.

2.1.2. Realization of so(2l + 1,C). Let g = so(2l + 1,C) be of type B. The subalgebra
of diagonal matrices h := diag[a1, . . . , al, 0,−al, . . . ,−a1], ai ∈ C is a Cartan subalgebra
of g. We again refer to h as the standard Cartan subalgebra. Let εi ∈ h∗ be the linear
functional εi(diag[a1, . . . , al, 0,−al, . . . ,−a1]) = ai. In this case, we have

(2.6) Φ(g, h) = {εi − εj, ±(εi + εj) : 1 ≤ i 6= j ≤ l} ∪ {±εk : 1 ≤ k ≤ l}.
We take as our standard positive roots the set:

(2.7) Φ+(g, h) := {εi − εj, εi + εj : 1 ≤ i < j ≤ l} ∪ {εk : 1 ≤ k ≤ l}.
with corresponding simple roots

(2.8) Π := {α1, . . . , αl−1, αl} where αi = εi − εi+1, i = 1, . . . , l − 1, αl = εl.

The standard Borel subalgebra b+ :=
⊕

α∈Φ+(g,h)

gα is easily seen to be the set of upper

triangular matrices in g.

As for so(2l + 1,C), we relabel the standard basis of Cn by letting e−j := e2l+2−j for
j = 1, . . . , l and e0 := el+1.

2.2. Real Rank 1 symmetric subalgebras. For later use, recall the realization of
so(n − 1,C) as a symmetric subalgebra of so(n,C). For g = so(2l + 1,C), let t be an
element of the Cartan subgroup with Lie algebra h with the property that Ad(t)|gαi = id

for i = 1, . . . , l − 1 and Ad(t)|gαl = −id. Consider the involution θ2l+1 := Ad(t). Then

k = so(2l,C) = gθ2l+1 (see [Kna02], p. 700). Note that h ⊂ k. In the case g = so(2l,C),
k = so(2l−1,C) = gθ2l , where θ2l is the involution induced by the diagram automorphism
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interchanging the simple roots αl−1 and αl (see [Kna02], p. 703). Note that in this case,
θ2l(εl) = −εl and θ2l(εi) = εi for i = 1, . . . , l − 1. We will omit the subscripts 2l + 1 and
2l from θ when g is understood.

We also denote the corresponding involution of G = SO(n,C) by θ. The group Gθ =
S(O(n− 1,C)× O(1,C)) is disconnected. We let K := (Gθ)0 be the identity component
of Gθ. Then K = SO(n− 1,C), and Lie(K) = k = gθ.

2.3. Notation. We now lay out some of the notation that we will use throughout Sections
2 and 3.

Notation 2.1. (1) We let g = so(n,C) and k = so(n− 1,C) be the symmetric subal-
gebra given in Section 2.2, unless otherwise mentioned. It will also be convenient
at times to denote the Lie algebra so(i,C) by gi.

(2) We let ri be the rank of gi.
(3) For x ∈ so(n,C), we let xk the projection of x onto k off g−θ, the −1- eigenspace

of θ.
(4) For any Lie algebra g, we denote by C[g], the ring of polynomial functions on g

and by C[g]G the ring of adjoint invariant polynomial functions on g.

2.4. The partial Kostant-Wallach map. For i = n − 1, n, let χi : gi → Cri be the
adjoint quotient. We define the partial Kostant-Wallach map to be
(2.9)

Φn : g→ Crn−1 ⊕ Crn ,

Φn(x) = (χn−1(xk), χn(x)) = (fn−1,1(xk), . . . , fn−1,rn−1(xk), fn,1(x), . . . , fn,rn(x)),

where C[gi]
Gi = C[fi,1, . . . , fi,ri ].

Proposition 2.2. (1) C[g]K = C[g]G ⊗ C[k]K.
(2) Φn coincides with the invariant theory quotient morphism g→ g//K. In particular,

Φn is surjective.
(3) The morphism Φn is flat. In particular, its fibres are equidimensional varieties of

dimension dim g− rn − rn−1.

Proof. Recall the well-known fact that the fixed point algebra U(g)K of K in the en-
veloping algebra U(g) is commutative [Joh01]. Hence, U(g)K coincides with its centre,
Z(U(g)K). In Theorem 10.1 of [Kno94], Knop shows that Z(U(g)K) ∼= U(g)G⊗C U(g)K .
The first assertion now follows by taking the associated graded algebra with respect to
the usual filtration of U(g). By the first assertion, Φn coincides with the invariant theory
quotient g→ g//K, which gives the second assertion. Note that if we embed k diagonally
in g × k, then k⊥ ∼= g, and this isomorphism is K-equivariant. Then the flatness of Φn

follows by Korollar 7.2 of [Kno90b], which gives a criterion for flatness of invariant theory
quotients in the setting of spherical homogeneous spaces (see also [Pan90]).

Q.E.D.
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Remark 2.3. For g = gl(n,C) and k = gl(n − 1,C) thought of as the subalgebra of
(n− 1)× (n− 1) matrices in the left hand corner of g, Proposition 2.2 is also true by the
same proof. Here K = GL(n− 1,C) is the algebraic subgroup of GL(n,C) corresponding
to k. In this case, we proved Proposition 2.2 (3) by more elementary means in [CE15]. In
the appendix, we use conormal geometry to give a more elementary proof of Korollar 7.2
of [Kno90b] for a class of spherical varieties, which applies to our setting.

Corollary 2.4. C[g] is a free C[g]K-module.

Proof. This follows by Lemma 2.5 of [CE15] and the above Proposition 2.2 (3).

Q.E.D.

We proved the analogous result for gl(n,C) in Proposition 2.6 of [CE15], and noted
that it follows from a result of Futorny and Ovsienko, which states that U(gl(n,C)) is
free over the Gelfand-Zeitlin subalgebra [Ovs03, FO05]. It is not known whether the
corresponding statement is true in the orthogonal case. Our result that C[so(n,C)] is free

over C[so(n,C)]SO(n−1,C) is a natural first step towards extending the result of Futorny
and Ovsienko to the orthogonal setting and will be important in studying Gelfand-Zeitlin
modules for the so(n,C).

2.5. General Properties of eigenvalue coincidence varieties g(≥ i). In this section,
we develop some fundamental facts about the eigenvalue coincidence varieties discussed
in the introduction (see (1.2)).

Let h be the Cartan subalgebra of diagonal matrices in g, and let hk ⊂ k be the Cartan
subalgebra of diagonal matrices in k. We denote elements of hk × h by (a, b), where
a = (a1, . . . , arn−1) and b = (b1, . . . , brn) represent the diagonal coordinates of a ∈ hk
and b ∈ h as in Section 2.1 above. Let W = W (g, h) be the Weyl group of g, and let
WK = W (k, hk) be the Weyl group of k. For i = 1, . . . , rn−1 define:

(hk × h)(≥ i) := {(a, b) : ∃ v ∈ WK , u ∈ W such that (v · a)j = (u · b)j, j = 1, . . . , i}.
We note that (hk × h)(≥ i) is a WK × W -invariant closed subvariety of hk × h and is
equidimensional of codimension i. Let pG : h → h/W and pK : hk → hk/WK be the
invariant theory quotients. Consider the finite morphism p := pK × pG : (hk × h) →
(hk × h)/(WK ×W ). Let FG : h/W → Crn and FK : hk/WK → Crn−1 be the Chevalley
isomorphisms, and let V rn−1,rn := Crn−1 ×Crn , so that FK × FG : (hk × h)/(WK ×W )→
V rn−1,rn is an isomorphism. The following varieties play a major role in our study of
orthogonal eigenvalue coincidences.

Definition 2.5. For i = 0, . . . , rn−1, we let

(2.10) V rn−1,rn(≥ i) := (FK × FG)((hk × h)(≥ i)/(WK ×W )),

(2.11) V rn−1,rn(i) := V rn−1,rn(≥ i) \ V rn−1,rn(≥ i+ 1).

For convenience, we let V rn−1,rn(rn−1 + 1) = ∅.
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Lemma 2.6. The set V rn−1,rn(≥ i) is an irreducible closed subvariety of V rn−1,rn of di-
mension rn + rn−1 − i. Further, V rn−1,rn(i) is open and dense in V rn−1,rn(≥ i).

Proof. Indeed, the set

(2.12) Y := {(a, b) ∈ hk × h : aj = bj for j = 1, . . . , i}
is closed and irreducible of dimension rn + rn−1 − i. The first assertion follows since
(FK × FG) ◦ p is a finite morphism and (FK × FG) ◦ p(Y ) = V rn−1,rn(≥ i). The last
assertion of the lemma now follows from Equation (2.11).

Q.E.D.

We define

(2.13) g(≥ i) := Φ−1
n (V rn−1,rn(≥ i)),

(recall Equation (2.9) for the definition Φn).

For i = 0, . . . , rn−1, we define

(2.14) g(i) := g(≥ i) \ g(≥ i+ 1) = Φ−1
n (V rn−1,rn(i)).

Note that we have a partition of g into disjoint locally closed sets:

(2.15) g =

rn−1⋃
i=0

g(i).

Remark 2.7. We show that the definition of g(≥ i) in (2.13) agrees with the one
we gave in (1.2). We recall that Φn = (χn−1, χn), where χi : so(i,C) → Cri is the
adjoint quotient. Let g = so(2l,C) and let x ∈ g satisfy the property of Equation
(1.2). Then there is g ∈ G and k ∈ K such that Ad(g)x and Ad(k)xk are upper
triangular, Ad(g)x has diagonal part diag[b1, . . . , bl,−bl, . . . ,−b1], Ad(k)x has diagonal
part diag[a1, . . . , al−1, 0, 0,−al−1, . . . ,−a1], and bj1 = ±ak1 , . . . , bji = ±aki . We claim
Φn(x) ∈ V rn−1,rn(≥ i). Note that Φn(x) = (FK ×FG) ◦ p((a1, . . . , al−1), (b1, . . . , bl)). Since
W contains the subgroup Sl, and WK contains the subgroup Sl−1, we have

p((a1, . . . , al−1), (b1, . . . , bl)) = p((a1, . . . , al−1), (±a1, . . . ,±ai, bi+1, . . . , bl)).

Since WK contains all sign changes of the coordinates of hk, it follows that that

p((a1, . . . , ai, . . . , al−1), (±a1, . . . ,±ai, bi+1, . . . , bl)) =

p((±a1, . . . ,±ai, . . . , al−1), (±a1, . . . ,±ai, bi+1, . . . , bl)).

It now follows that Φn(x) ∈ (FK × FG) ◦ p(Y ) = V rn−1,rn(≥ i), where Y is the variety
defined in (2.12). Thus, x ∈ g(≥ i). We leave the converse to the reader. The case of
g = so(2l + 1,C) follows by similar reasoning.

We now use the flatness of the Kostant-Wallach morphism asserted in Proposition 2.2
to study the varieties g(≥ i).

Proposition 2.8. (1) The variety g(≥ i) is equidimensional of dimension dim g− i.
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(2) g(i) = g(≥ i) =
⋃
k≥i

g(k).

Proof. By Proposition 2.2, the morphism Φn is flat. By Proposition III.9.5 and Corollary
III.9.6 of [Har77], the variety g(≥ i) is equidimensional of dimension dim(V rn−1,rn(≥
i)) + dim g − rn − rn−1, which gives the first assertion by Lemma 2.6. For the second
assertion, by the flatness of Φn, Theorem VIII.4.1 of [Gro03], and Lemma 2.6,

(2.16) g(i) = Φ−1
n (V rn−1,rn(i)) = Φ−1

n (V rn−1,rn(i)) = Φ−1
n (V rn−1,rn(≥ i)) = g(≥ i).

The remaining equality follows since V rn−1,rn(≥ i) = ∪k≥iV rn−1,rn(k).

Q.E.D.

2.6. The varieties YQ. We now study the geometry of the varieties YQ = Ad(K)b for a
K-orbit Q = K · b in B. We begin by studying more general objects YQr , where Qr is a
K-orbit in a partial flag variety.

For a parabolic subgroup P ⊂ G with Lie algebra p ⊂ g, consider the partial Grothendieck
resolution g̃p = {(x, r) ∈ g×G/P | x ∈ r}, as well as the morphisms µ : g̃p → g, µ(x, r) =

x, and π : g̃p → G/P, π(x, r) = r. For r ∈ G/P , let Qr = K · r ⊂ G/P . It is well-known
that π is a smooth morphism of relative dimension dim p, and µ is proper with generi-
cally finite restriction to π−1(Qr) (see p. 622 of [CE15]). Thus, π−1(Qr) has dimension
dim(Qr) + dim(r).

Notation 2.9. For a parabolic subalgebra r with K-orbit Qr ⊂ G/P , we consider the
irreducible subset

(2.17) Yr := µ(π−1(Qr)) = Ad(K)r.

Yr depends only on Qr, and we will also denote this set as

(2.18) YQr := Yr.

It follows from generic finiteness of µ that YQr contains an open subset of dimension

(2.19) dim(YQr) := dim π−1(Qr) = dim r + dim(Qr) = dim r + dim(k/k ∩ r).

Remark 2.10. Since µ is proper, the set YQr is closed when Qr = K · r is closed in G/P .

Remark 2.11. Note that
g =

⋃
Q⊂G/P

YQ,

where the union is taken over the finitely many K-orbits in G/P .

Lemma 2.12. Let Q ⊂ G/P be a K-orbit. Then

(2.20) YQ =
⋃
Q′⊂Q

YQ′ .
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Proof. Since π is a smooth morphism, it is flat by Theorem III.10.2 of [Har77]. Thus, by

Theorem VIII.4.1 of [Gro03], π−1(Q) = π−1(Q). The result follows since µ is proper.

Q.E.D.

Proposition 2.13. Let Q = K · b be a K-orbit in B with codim(Q) = i. Then

(2.21) dimYQ = dim g(≥ i).

Proof. By Equation (2.19), it follows that

dimYQ = dimQ+ dim b = dim(B)− i+ dim(b) = dim(g)− i.
The assertion follows by part (1) of Proposition 2.8.

Q.E.D.

Let codim(Q) = i. To see that YQ is an irreducible component of g(≥ i), it remains to
show that YQ ⊂ g(≥ i). For this, it is convenient to replace the K-orbit Q in B with a
K-orbit Qr of a θ-stable parabolic subalgebra r ⊃ b in a partial flag variety G/P . We will
show that r ∈ G/P can be chosen so that YQ = YQr , and YQr ⊂ g(≥ i). The first step
is to relate the geometry of Q and Qr for a general θ-stable r with r ⊃ b and develop a
necessary condition for YQ = YQr . Let R be the parabolic subgroup of G with Lie algebra
r. Consider the canonical fibre bundle:

R/B → B p→ G/R,

which induces a bundle

(2.22) Q ∩ p−1(Qr)→ Q→ Qr

over the K-orbit Qr. To study the fibre bundle (2.22), we consider the θ-stable parabolic
subalgebra r in more detail. It follows from Theorem 2 of [BH00] that r has a θ-stable
Levi decomposition r = l ⊕ u. The Levi subalgebra decomposes as l = z ⊕ lss, with the
centre z and the semisimple part lss = [l, l] both θ-stable. Further, k ∩ r is a parabolic
subalgebra of k with Levi decomposition

k ∩ r = k ∩ l⊕ k ∩ u = k ∩ z⊕ k ∩ lss ⊕ k ∩ u.

The corresponding parabolic subgroupR is also θ-stable, andK∩R is a parabolic subgroup
of K with Levi decomposition (K ∩ Z) · (K ∩ Lss) ·K ∩ U (see Theorem 2, [BH00]). In
particular, Qr ∼= K/(K ∩ R) is closed. Recall that R/B ∼= Blss . Thus, the fibre bundle

(2.22) gives the K-orbit Q on B the structure of a K-homogeneous fibre bundle over the
closed K-orbit Qr = K · r in G/R with fibre the K ∩ Lss-orbit of b in R/B ∼= Blss , i.e.:

(2.23) Q ∼= K ×K∩R (K ∩ Lss) · b.

Proposition 2.14. Suppose that the orbit (K ∩Lss) · b in (2.23) is open in R/B ∼= Blss.
Then dimYb = dimYr. Further, Yr is a closed, irreducible subvariety of g, so that

Yb = Yr.
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Proof. Indeed,

dimYr = dimQr + dim r (by (2.19))

= dimQ− dimBlss + dim r (by (2.23))

= dimQ− dimBlss + dimBlss + dim b

= dimQ+ dim b

= dimYb (by (2.19)).

(2.24)

It follows from definitions that Yb ⊂ Yr. Since Qr is closed, Yr is closed by Remark 2.10.

Thus, Yb = Yr since Yr is irreducible.

Q.E.D.

In Theorems 3.1 and 3.2, we show that for any Borel subalgebra b ∈ B whose orbit
K · b has codimension i, there is a θ-stable parabolic subalgebra r with b ⊂ r such that
the hypothesis of Proposition 2.14 is satisfied, and YQr ⊂ g(≥ i). To do this, we need
to classify the K-orbits on B and develop explicit descriptions of representatives of the
K-orbits on B.

Remark 2.15. When g = gl(n,C) and k = gl(n − 1,C) ⊕ gl(1,C) is the symmetric
subalgebra of block diagonal matrices, we have shown that for any Borel subalgebra
b ⊂ g, there is a θ-stable parabolic subalgebra r with b ⊂ r so that (K ∩ Lss) · b is open
in Blss . This is implicit in Lemma 3.5 of [CE12] and in the computations of Proposition

2.15 of [CE15].

2.7. Description of K-orbits on B in the orthogonal case. We classify the K-orbits
on B for g = so(n,C) and k = so(n− 1,C). In particular, we explain how to recover the
orbit diagrams from Figure 4.3 of [Col85], but also give explicit representatives of each
orbit for later use.

We begin by recalling some generalities regarding an involution θ of a semisimple Lie
algebra g and orbits of K = Gθ on the flag variety B of g (see [Mat79, RS90, Vog83, CE]
for more details). Each Borel subalgebra b of g contains a θ-stable Cartan subalgebra t.
Let Φ(g, t) denote the roots of t in g, let Φ+

b
denote the roots of t in b, which we take

to be the positive roots. Let gα denote the root space for a root α. Then the θ-action
on t induces an action on Φ(g, t). Using this action, we define the type of a root α ∈ Φ+

b
as follows. A root α is called real if θ(α) = −α, imaginary if θ(α) = α, and complex
if θ(α) 6= ±α. If α is imaginary, then α is called compact if θ|gα = id and noncompact
if θ|gα = −id. If α is complex, then α is called complex θ-stable if θ(α) is positive, and
otherwise is called complex θ-unstable. These notions do not depend on the choice of
θ-stable Cartan subalgebra t ⊂ b, nor on the choice of b in the K-orbit K · b.

Example 2.16. Let g = so(2l + 1,C) and k = so(2l,C), and let θ = Ad(t) be as
in Section 2.2. Let Φ(g, h) be the set of standard roots of g as in (2.6). The roots
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{±(εi − εj), ±(εi + εj), 1 ≤ i < j ≤ l} are compact imaginary, and the roots {±εi i =
1, . . . , l} are non-compact imaginary.

Now let g = so(2l,C) and k = so(2l − 1,C) and θ is as in Section 2.2. Then the
simple roots αl−1 = εl−1 − εl and αl = εl−1 + εl are complex θ-stable with θ(αl−1) = αl.
Note that we can choose as a representative for θ a nontrivial element in the Weyl group
of GL(Cel + Ce−l). Therefore, the roots {±(εi + εj), ±(εi − εj), 1 ≤ i < j ≤ l − 1}
are compact imaginary, whereas the roots {±(εi + εl),±(εi − εl), 1 ≤ i ≤ l − 1} are
complex θ-stable with θ(εi± εl) = εi∓ εl. The θ-stable subspace gα⊕ gθ(α) decomposes as

gα ⊕ gθ(α) = ((gα ⊕ gθ(α)) ∩ k)⊕ ((gα ⊕ gθ(α)) ∩ g−θ).

We make use of the following notation throughout the paper.

Notation 2.17. Let T be the maximal torus with Lie algebra t, and let W be the Weyl
group with respect to T . For an element w ∈ W , let ẇ ∈ NG(T ) be a representative of
w. If t ⊂ b, with b ∈ B, then Ad(ẇ)b is independent of the choice of representative ẇ of
w, and we denote it by w(b).

Let Q = K · b and suppose that α ∈ Φ+

b
is a simple root for b. Let Pα be the variety of

parabolic subalgebras of type α, and consider the projection πα : B → Pα. Let m(sα) ·Q
be the unique K-orbit of maximal dimension in π−1

α (πα(Q)). For each simple root α,
choose root vectors eα ∈ gα, fα ∈ g−α, and hα = [eα, fα] such that span{eα, fα, hα}
forms a subalgebra of g isomorphic to sl(2,C). Choose a Lie algebra homomorphism
φα : sl(2,C)→ g such that:

(2.25) φα :

[
0 1
0 0

]
→ eα, φα :

[
0 0
1 0

]
→ fα, φα :

[
1 0
0 −1

]
→ hα

Also denote by φα : SL(2,C)→ G the induced Lie group homomorphism, and let

(2.26) uα = φα

(
1√
2

[
1 ı
ı 1

])
.

Lemma 2.18. [[RS90], 4.3]
Let Q = K · b be a K-orbit on B.

(1) m(sα) · Q = Q unless α is either noncompact or complex θ-stable, and when
m(sα) ·Q 6= Q, then dim(m(sα) ·Q) = dim(Q) + 1.

(2) If α is noncompact for Q, then m(sα) · Q = K · Ad(uα)b and the K-orbits in
π−1
α (πα(Q)) are Q,m(sα) ·Q, and K ·sα(b). Further, m(sα) ·K ·sα(b) = m(sα) ·Q.

(3) If α is complex θ-stable for Q, then m(sα) ·b = K · sα(b), and π−1
α (πα(Q)) consists

of Q and m(sα) ·Q.

The action by operators m(sα) on K-orbits is called the monoidal action [RS90].

Lemma 2.19. [[RS90], Theorem 4.6]
Every K-orbit on B is of the form m(sβ1) · · ·m(sβk) · b1, where K · b1 is a closed K-orbit
on B, k ≥ 0, and β1, . . . , βk are simple roots.
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We now briefly recall the classification of closed K-orbits on B from Section 4.3 of
[CE]. Let K · b0 be a closed K-orbit with b0 containing a θ-stable Cartan subalgebra t
corresponding to a maximal torus T . Since T is θ-stable, θ acts naturally on the Weyl
group W = NG(T )/T . Further, the subgroup T ∩K is a Cartan subgroup of K and the
Weyl group WK = NK(T ∩K)/(T ∩K) embeds into W (Lemmas 5.1 and 5.3, [Ric82]),
and is contained in W θ, the fixed points of θ on W .

Lemma 2.20. [[CE], Theorem 4.10] The map W θ/WK → K\B given by wWK 7→ K ·
w−1 · (b0) is a bijection to the closed K-orbits on B.

Remark 2.21. If the K-orbit Q = K · b is closed, then b ∩ k is a Borel subalgebra in k
(see Lemma 5.1 of [Ric82]). Thus, dim(Q) = dim(Bk).

We now return to the case where g = so(n,C) and k = so(n−1,C) and use Lemma 2.20
to determine the closed K-orbits on B. Before doing that, we state a result on the relation
between W and WK , which we will also need later. Recall that when g = so(2l + 1,C),
W = Sl o Ul, where Ul is the group generated by sign changes τi, 1 ≤ i ≤ l in the root
system, with τi(εi) = −εi and τi(εj) = εj for j 6= i. When g = so(2l,C), W = Sl o Tl,
where Tl is the subgroup of Ul generated by products τiτj, 1 ≤ i < j ≤ l.

Proposition 2.22. (1) Let g = so(2l + 1,C) and let k = so(2l,C). Then W = W θ

and W/WK = {eWK , sαlWK}, where e denotes the identity element in W . In
particular, WK has index 2 in W . Further, WK is the subgroup Sl o Tl of W .

(2) Let g = so(2l,C) and k = so(2l − 1,C). Then W θ is the subgroup of W generated
by the elements sα1 , . . . , sαl−2

, sαl−1
· sαl , and W θ = WK .

Proof. For (1), since θ is inner, we know W θ = W , and the Cartan subalgebra h of g is
also a Cartan subalgebra of k. By Example 2.16, the roots εi ± εj are exactly the roots
of k with respect to h. The assertion about W/WK now follows by the above remarks on
Weyl groups, and the observation that sαl = τl 6∈ WK . The rest of (1) follows easily.

For (2), the first statement follows from 1.32(b) in [Ste68]. The second statement can
be deduced from the proof of (5) in Theorem 8.2 of [Ste68], but we provide a more direct
proof. An easy calculation shows that for σ ∈ Sl, θσθ

−1 = σ · τσ−1(l) · τl. Note that
Tl is commutative and θ acts trivially on Tl. It follows that W θ is identified with the
semi-direct product of Sl−1 with Tl. Since WK ⊂ W θ, the second statement follows.

Q.E.D.

Now it remains to describe the monoidal action. To determine the type of a root for a
K-orbit Q = K · b, it is convenient to replace the involution θ by another involution θQ,
which preserves the standard Cartan subalgebra of diagonal matrices h and thus acts on
the standard root system Φ(g, h). Suppose that b = Ad(v)b+, where b+ is the standard
Borel subalgebra of upper triangular matrices. Then

θQ := Ad(v−1) ◦ θ ◦ Ad(v).
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It is easy to check that the type of a standard positive root α ∈ Φ+(g, h) with respect
to θQ is the same as the type of the positive root Ad(v)α := α ◦ Ad(v−1) for b with
respect to θ (see Definition 4.6 and Proposition 4.7 of [CE]). In Section 4.4 of [CE], we
give an inductive method of constructing the involution θm(sα)·Q from the involution θQ
(Propositions 4.27 and 4.28).

Proposition 2.23. Let g = so(2l + 1,C) and k = so(2l,C).

(1) There are exactly l + 2 K-orbits on the flag variety B of g.
(2) We let b+ be the upper triangular matrices in g, and let b− := sαl(b+). Exactly

two K-orbits on B are closed, and they are Q+ := K · b+ and Q− := K · b−.
Further, m(sαl) ·Q+ = m(sαl) ·Q− = K · Ad(uαl)b+.

(3) The non-closed orbits are of the form

Qi := m(sαi+1
) ·m(sαi+2

) · · ·m(sαl−1
) ·m(sαl) ·Q+

for i = 0, . . . , l − 1. Moreover, the codimension of Qi in B is i. Further,

bi := Ad(uαl)sαl−1
sαl−2

. . . sαi+1
(b+) ∈ Qi.

In particular, the unique open K-orbit contains the Borel subalgebra

(2.27) b0 = Ad(uαl)sαl−1
sαl−2

. . . sα1(b+).

Proof. For (2), since b+ is θ-stable, K ·b+ is closed by Proposition 4.12 of [CE]. By Lemma
2.20 and part (1) of Proposition 2.22, there are two closed orbits, and they are b+ and
b−. The assertion that bl−1 = Ad(uαl)b+ ∈ Ql−1 follows from part (2) of Lemma 2.18 and
Example 2.16. The second statement of part (2) of Lemma 2.18 implies that m(sαl)·Q− =
m(sαl) ·Q+ = Ql−1. By Remark 2.21, codim(Q+) = codim(Q−) = dim(B)− dim(Bk) = l.
Thus, codim(Ql−1) = l − 1 by part (1) of Lemma 2.18.

For (3), first recall that by Proposition 4.27 of [CE], the involution θQl−1
associated to

Ql−1 = K·bl−1 is Ad(ṡ−1
αl

)◦θ, so the involution on the standard root system is sαl , which is a
sign change in the last variable. Since θ = Ad(t), it follows from a calculation in SO(3,C)
that we can choose the representative ṡαl so that θQl−1

∈ GL(Cel+Ce−l). It follows easily
that α1, . . . , αl−2 are compact for θQl−1

, while αl−1 is complex θQl−1
-stable, and αl is real.

Hence, the only monoidal action which gives us a new orbit is m(sαl−1
) · Ql−1 = Ql−2.

By part (3) of Lemma 2.18, the Borel subalgebra bl−2 = Ad(˜̇sαl−1
)(bl−1), where ˜̇sαl−1

is
a representative of the simple reflection sαl−1

defined with respect to bl−1. Since bl−1 =

Ad(uαl)b+, it follows that ˜̇sαl−1
= uαl ṡαl−1

u−1
αl

. Hence, bl−2 = Ad(uαl ṡαlu
−1
αl
uαl)(b+),

which verifies the last part of (3) for i = l−2. By Proposition 4.28 of [CE], the involution
θQl−2

associated to Ql−2 is Ad(ṡαl−1
)−1 ◦ θQl−1

◦ Ad(ṡαl−1
). We can choose ṡαl−1

, so that
θQl−2

∈ GL(Cel−1 + Ce−(l−1)). Thus, α1, . . . , αl−3, and αl are compact, while αl−2 is
complex θQl−2

-stable and αl−1 is complex θQl−2
-unstable. Now an inductive argument,

which we leave to the reader, shows that if we define bi as in assertion (3), and let θQi
be the involution relative to Qi, the roots α1, . . . , αi−1 are compact for θQi , αi is θQi-
stable, αi+1 is θQi-unstable, and αi+2, . . . , αl are compact for θQi . Hence, from Qi, the
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only monoidal action which gives a new orbit is m(sαi) ·Qi = Qi−1 and Qi−1 = K · bi−1,
by using the same argument as in the case i = l − 2. As a consequence, the codimension
of Qi−1 in B is i− 1. It now follows that Q0, . . . , Ql−1 are distinct orbits. The induction
argument implies that no monoidal actions change Q0, and it follows by Lemma 2.19 that
Q+, Q−, Ql−1, . . . , Q0 are all the K-orbits. This completes the proof of (3), and (1) is an
easy consequence.

Q.E.D.

Proposition 2.24. Let g = so(2l,C) and k = so(2l − 1,C).

(1) There are exactly l K-orbits in the flag variety B of g.
(2) Let b+ be the set of upper triangular matrices in g. Then Q+ := K · b+ is the only

closed K-orbit.
(3) Let

Qi := m(sαi) . . .m(sαl−1
) ·Q+

and let

bi := sαl−1
sαl−2

. . . sαi(b+) for i = 1, . . . , l − 1

Then Qi = K·bi has codimension i−1 in B. The distinct K-orbits are Q+, Ql−1, . . . , Q1.
In particular, the unique open orbit is Q1 and contains the Borel subalgebra

(2.28) b1 = sαl−1
sαl−2

. . . sα1(b+).

Proof. For (2), since b+ is preserved by θ, Q+ = K · b+ is closed by Proposition 4.12 of
[CE]. Thus, Q+ is the unique closed K-orbit by part (2) of Proposition 2.22 and Lemma
2.20. By Remark 2.21, we have codim(Q+) = dim(B)− dim(Bk) = l − 1.

For (3), we saw in Example 2.16 that αl−1 and αl are complex θ-stable, and that all other
simple roots are compact. Hence, m(sαl)·Q+ and m(sαl−1

)·Q+ are the orbits of dimension
dimQ++1. We claim that they coincide. Indeed, by part (3) of Lemma 2.18, m(sαl)·Q+ =
K ·sαl(b+) and m(sαl−1

) ·Q+ = K ·sαl−1
(b+). We may choose the representatives for sαl−1

and sαl in W so that θ(ṡαl−1
) = ṡαl , and since αl−1 and αl are perpendicular, we may

assume ṡαl−1
and ṡαl commute. Note that sαl(b+) = sαlsαl−1

sαl−1
(b+). It follows that

θ(ṡαl ṡαl−1
) = ṡαl−1

ṡαl = ṡαl ṡαl−1
.

Thus, ṡαl ṡαl−1
∈ K, and hence K · sαl−1

(b+) = K · sαl(b+), which establishes the claim.
The orbit Ql−1 = m(sαl−1

) · Q+ has involution θQl−1
= Ad(ṡ−1

αl−1
) ◦ θ ◦ Ad(ṡαl−1

), which
changes the sign of the l−1 coordinate of h, and no other coordinates. It now follows that
αl−2 is complex θQl−1

-stable, while α1, . . . , αl−3 are compact, and αl−1 and αl are complex
θQl−1

-unstable. The remainder of the argument follows by an easy induction similar to
the proof of part (3) of Proposition 2.23. Part (1) is an easy consequence of (2) and (3).

Q.E.D.
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3. Orthogonal Eigenvalue coincidence varieties and K-orbits

We prove Theorem 1.1 in this section.

3.1. The varieties YQ as irreducible components of g(≥ i). Using our work in
Sections 2.6 and 2.7, we show that the Zariski closure of the varieties YQ with codim(Q) = i
are irreducible components of the eigenvalue coincidence varieties g(≥ i). We consider the
case where g is type D and type B separately. We first consider YQ, where the K-orbit
Q not closed.

Case I: g = so(2l + 1,C), k = so(2l,C)

Theorem 3.1. Let g(≥ i), i = 0, . . . , l−1 be the orthogonal eigenvalue coincidence variety
defined in (2.13). Let Q = K · b ⊂ B be a K-orbit with codim(Q) = i.

(1) There exists a θ-stable parabolic subalgebra r with b ⊂ r such that the hypothe-
sis of Proposition 2.14 is satisfied. The parabolic subalgebra r has θ-stable Levi
decomposition

(3.1) r = l⊕ u with lss ∼= so(2(l − i) + 1,C) and z ∼= (gl(1,C))i.

Let Lss ∼= SO(2(l − i) + 1,C) ⊂ G be the connected algebraic subgroup with Lie
algebra lss. The restriction θ|lss = θ2(l−i)+1 is the involution on so(2(l − i) + 1,C)

defining so(2(l − i),C), so that

(3.2) lθss = lss ∩ k ∼= so(2(l − i),C) and thus (Lθss)
0 = K ∩ Lss ∼= SO(2(l − i),C).

Furthermore, SO(2(l − i),C) · (b ∩ lss) is open in B
so(2(l−i)+1,C)

.

(2) We have YQ = YQr, and the variety YQr is an irreducible component of g(≥ i).

Proof. We first prove (1). By K-equivariance, it suffices to prove the statement for any
representative b of the K-orbit Q of codimension i. By part (3) of Proposition 2.23,
we can take b = bi = Ad(uαl)sαl−1

. . . sαi+1
(b+). Let r ⊂ g be the standard parabolic

subalgebra generated by b+ and the negative simple root spaces g−αl , g−αl−1
, . . . , g−αi+1

.

Note that r is θ-stable with Levi decomposition (3.1) and also θ|lss = θ2(l−i)+1. Equation

(3.2) follows. To see that bi ⊂ r, note that we can choose the representative ṡαj of sαj so
that ṡαj ∈ Lss for j = i+ 1, . . . , l, and uαl ∈ Lss by Equation (2.26). Thus, the element

(3.3) v := uαl ṡαl−1
. . . ṡαi+1

∈ Lss ⊂ R.

Hence, bi = Ad(v)b+ ⊂ Ad(v)r = r.

It remains to show that (K∩Lss)·(b∩lss) can be identified with the open SO(2(l−i),C)-
orbit in the flag variety B

so(2(l−i)+1,C)
. Note that b+∩lss can be identified with the standard

Borel subalgebra b
+,so(2(l−i)+1,C)

of upper triangular matrices in so(2(l− i) + 1,C). Since

the element v in Equation (3.3) is in Lss, we have:

b ∩ lss = (Ad(v)b+) ∩ lss = Ad(v)(b+ ∩ lss) = Ad(v)b
+,so(2(l−i)+1,C)

.
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It follows from Equations (2.27) and (3.3) that Ad(v)b
+,so(2(l−i)+1,C)

⊂ B
so(2(l−i)+1,C)

is a

representative of the open SO(2(l − i),C)-orbit on b
so(2(l−i)+1,C)

.

We now prove (2). The first statement of (2) follows immediately from part (1) and
Proposition 2.14. By Proposition 2.13, to see that Yr is an irreducible component of g(≥ i),
it suffices to show that Yr ⊂ g(≥ i). Consider the partial Kostant-Wallach map Φn defined
in Equation (2.9). Let q be a parabolic subalgebra of g with q ∈ Qr, and let y ∈ q. We
need to show that Φn(y) ∈ V rn−1,rn(≥ i). Since the map Φn is K-invariant, it is enough
to show that Φn(x) ∈ V rn−1,rn(≥ i) for x ∈ r. Recall that Φn(x) = (χn−1(xk), χn(x)),
where χi : so(i,C) → so(i,C)//SO(i,C) is the adjoint quotient. For x ∈ r, let xl be
the projection of x onto l off of u. It is well-known that χn(x) = χn(xl). Using the
decomposition in (3.1), we can write xl as xl = xz ⊕ xlss with xz ∈ z ∼= (gl(1,C))i

and xlss ∈ lss = so(2(l − i) + 1,C). It is easy to see that the coordinates of xz are in
the spectrum of x. Since r is θ-stable, k ∩ r is a parabolic subalgebra of k with Levi
decomposition:

k ∩ r = k ∩ l⊕ k ∩ u and k ∩ l = k ∩ z⊕ k ∩ lss ∼= z⊕ so(2(l − i),C),

where the isomorphism follows from (3.2) and the observation that z ⊂ h ⊂ k (see Section
2.2). Since xk ∈ k∩r, we know χn−1(xk) = χn−1((xk)l∩k). Now, (xk)l∩k = xz+x

so(2(l−i),C)
,

and the coordinates of xz are in the spectrum of (xk)l∩k. Thus, Remark 2.7 implies that
Φn(x) = (χn−1(xk), χn(x)) ∈ V rn−1,rn(≥ i), and it follows that Yr ⊂ g(≥ i).

Q.E.D.

Case II: g = so(2l,C), k = so(2l − 1,C).

Theorem 3.2. Let g(≥ i−1) for i = 1, . . . , l−1 be the orthogonal eigenvalue coincidence
variety defined in (2.13). Let Q = K · b ⊂ B be a K-orbit with codim(Q) = i− 1.

(1) There exists a θ-stable parabolic subalgebra r with b ⊂ r, and r satisfies the hypoth-
esis of Proposition 2.14. The parabolic subalgebra r has θ-stable Levi decomposition

(3.4) r = l⊕ u with lss ∼= so(2(l − i) + 2,C) and z ∼= (gl(1,C))i−1.

Let Lss ∼= SO(2(l − i) + 2,C) ⊂ G be the connected algebraic subgroup with Lie
algebra lss. Then θ|lss = θ2l−2i+2, so that

lθss = lss ∩ k ∼= so(2(l − i) + 1,C) and thus (Lθss)
0 = K ∩ Lss ∼= SO(2(l − i) + 1,C).

Furthermore, SO(2(l − i) + 1,C) · (b ∩ lss) is open in B
so(2(l−i)+2,C)

.

(2) We have YQ = YQr, and the variety YQr is an irreducible component of g(≥ i−1).

Proof. The proof is very similar to the proof of Theorem 3.1. We begin with the proof
of part (1). Again, by K-equivariance, it suffices to prove the statement for any repre-
sentative b of the K-orbit Q of codimension i − 1. By part (3) of Proposition 2.24, we
can take b = bi = sαl−1

sαl−2
. . . sαi(b+). Let r ⊂ g be the standard parabolic subalgebra
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generated by b+ and the negative simple root spaces g−αl , g−αl−1
, . . . , g−αi . We claim that

r is θ-stable. Indeed, we saw in Example 2.16 that the roots αi are compact imaginary
for i = 1, . . . , l − 2 and that αl−1 and αl are complex θ-stable with θ(αl−1) = αl. It
then follows easily that r has Levi decomposition (3.4) and that θ|lss = θ2(l−i)+2, whence

lθss = k ∩ lss ∼= so(2(l − i) + 1,C), and (Lθss)
0 = K ∩ Lss ∼= SO(2(l − i) + 1,C). The

remainder of the proof proceeds exactly as in the proof of part (1) of Theorem 3.1, using
Equation (2.28) instead of Equation (2.27).

The proof of (2) is also analogous to the proof of part (2) of Theorem 3.1. The key
observation is that for x ∈ r with xl = xz ⊕ xlss the coordinates of xz ∈ z ∼= (gl(1,C))i−1

are in the spectrum of both x ∈ g and xk ∈ k. To show this, one observes that z ⊂ k,
which follows since θ permutes the simple roots of l. We leave the remaining details to
the reader.

Q.E.D.

Remark 3.3. Note that z ⊂ k, where z is the centre of the Levi subalgebras l in Theorems
3.1 and 3.2.

We now consider the case where Q is a closed K-orbit.

Theorem 3.4. Let Q be a closed K-orbit on B. Then YQ is an irreducible component of
g(≥ rn−1) = g(rn−1).

Proof. We show that for a closed K-orbit Q = K · b, the subvariety YQ ⊂ g(rn−1). It
then follows from Proposition 2.13 that YQ is an irreducible component of g(rn−1). By
K-equivariance, it suffices to show that b ⊂ g(rn−1). If g is of type B, then part (2)
of Proposition 2.23 implies that b = b+ or b = sαl(b+). In either case, b contains the
standard diagonal Cartan subalgebra h of g. Now by Remark 2.21, b ∩ k is a Borel
subalgebra of k with Levi decomposition

b ∩ k = h⊕ (n ∩ k),

where n = [b, b] is the nilradical of b. Thus, for x ∈ b with x = xh + xn, with xh ∈ h

and xn ∈ n, the coordinates of xh are in the spectrum of both x and xk. It follows that

b ⊂ g(rn−1).

If g is of type D, then part (2) of Proposition 2.24 states that Q+ = K · b+ is the only
closed K-orbit. We recall that θ(εrn) = −εrn , and θ(εi) = εi for all i 6= rn (see Section 2.2).
Therefore, h ∩ k = diag[b1, . . . , brn−1 , 0, 0,−brn−1 , . . . ,−b1], and b ∩ k is a Borel subalgebra
of k with Levi decomposition b∩ k = h∩ k⊕ n∩ k. Thus, for any x ∈ b, x = xh + xn, and

xh = xh∩k + xh∩g−θ , with xk = xh∩k + xn∩k ∈ k ∩ b. Thus, xh∩k ∈ h is in the spectrum

of both x and xk. It follows that b+ ⊂ g(rn−1).

Q.E.D.
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Remark 3.5. As we noted in Remark 2.15, the hypothesis of Proposition 2.14 is true for
the real rank one symmetric pair (g = gl(n,C), k = gl(n − 1,C) ⊕ gl(1,C)) and for any
K-orbit Q. The analogue of part (2) of Theorems 3.1 and 3.2 also holds in this setting
(see Theorems 3.6 and 3.7, [CE15]).

Let (g, k) be a symmetric pair, and let Q = K ·b ⊂ B be an arbitrary K-orbit in the flag
variety B of g. Then if r ⊂ g is a θ-stable parabolic subalgebra with b ⊂ r, the K-orbit
Q has the structure of a fibre bundle as in (2.23). However, (K ∩ Lss) · (b ∩ lss) need not
be the open K-orbit in Blss .

The hypothesis of Proposition 2.14 does not hold for the real rank one symmetric pair
with g = sp(2n,C) and k = sp(2n− 2,C)⊕ sp(2,C). Further, one can show that for this
case, the varieties YQ are not irreducible components of the natural eigenvalue coincidence
varieties. It would be interesting to further analyze objects analogous to those studied in
this paper in that example.

3.2. Every irreducible component of g(≥ i) is of the form YQ. In this section,
we complete the last step of the proof of Theorem 1.1. Consider the regular semisimple
elements krs of k, and let hreg

k
= krs ∩ hk. For x in g, consider the spectrum σ(xk) =

{±a1, . . . ,±arn−1} of xk. If k is type D, xk ∈ krs if and only if ai 6= ±aj for i 6= j. If k is
type B, xk ∈ krs if and only if ai 6= ±aj for i 6= j, and all ai 6= 0.

Theorem 3.6. Every irreducible component of the variety g(≥ i), i = 0, . . . , rn−1 is of
the form YQ for some K-orbit Q on B with codim(Q) = i.

Proof. Consider the set:

(3.5) U := {x ∈ g : xk ∈ krs and 0 /∈ σ(xk)}.

Let U(≥ i) := U ∩ g(≥ i). Note that h ∩ U(≥ i) 6= ∅, so that U and U(≥ i) are
non-empty Zariski open subsets of g and g(≥ i) respectively. By Proposition 2.2 and
Exercise III.9.1 of [Har77], Φn(U) ⊂ V rn−1,rn is open. Thus, V rn−1,rn(≥ i) \ Φn(U) is
a proper, closed subvariety of V rn−1,rn(≥ i) and therefore has positive codimension by
Lemma 2.6. It follows by Propositions 2.2 and 2.8 and Corollary III.9.6 of [Har77] that
g(≥ i) \ U(≥ i) = Φ−1

n (V rn−1,rn(≥ i) \ Φn(U)) is a proper, closed subvariety of g(≥ i)
of positive codimension. Since g(≥ i) is equidimensional, it follows that Z ∩ U(≥ i) is
nonempty for any irreducible component Z of g(≥ i). Thus, it suffices to show that

(3.6) U(≥ i) ⊂
⋃

codim(Q)=i

YQ.

To prove Equation (3.6), we consider the following subvariety of U(≥ i):
(3.7)
Ξ := {x ∈ U(≥ i) : xk = (a1, . . . , arn−1) ∈ hreg

k
, and σ(xk)∩σ(x) ⊃ {±a1, . . . ,±ai}, aj 6= 0∀j}.
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It is easy to check that any element of U(≥ i) is K-conjugate to an element in Ξ. Thus,
by the K-equivariance of the varieties YQ, it is enough to show that

(3.8) Ξ ⊂
⋃

codim(Q)=i

YQ.

We consider the cases where g is type B and type D separately. First, we assume that
g = so(2l + 1,C). By Theorem 3.1, it suffices to show that

(3.9) Ξ ⊂ YQr for i < l,

where r is the parabolic subalgebra generated by b+ and the negative simple root spaces
g−αi+1

, . . . , g−αl . For i = l we need to show that

(3.10) Ξ ⊂ YQ+ ∪ YQ− ,

where Q+ = K ·b+ and Q− = K ·b− are the distinct closed K-orbits on B (see part (2) of
Proposition 2.23). To prove Equations (3.9) and (3.10), we need to describe the variety
Ξ in more detail. Recall from Example 2.16 that

g−θ =
l⊕

j=1

gεj ⊕ g−εj .

Let e±εj ∈ g±εj be a nonzero root vector. Consider elements of the form:

(3.11) a⊕lj=1 ujeεj ⊕lj=1 vje−εj ,

where a = diag[a1, . . . , al, 0,−al, . . . ,−a1] ∈ h, ai 6= ±aj if i 6= j, and each ai 6= 0. We
choose the root vectors e±εj so that Ξ consists of matrices of the form:

(3.12) X :=



a1 . . . 0 u1 0 . . . 0
...

. . .
...

...
...

...
0 . . . al ul 0 . . . 0
v1 . . . vl 0 −ul . . . −u1

0 . . . 0 −vl −al . . . 0
...

...
...

...
. . .

...
0 . . . 0 −v1 0 . . . −a1


with ak 6= ±aj for k 6= j, aj 6= 0 for j = 1, . . . , l, and ±aj is an eigenvalue of X for
j = 1, . . . , i. It is easy to see that the elements ±aj for j = 1, . . . , i are eigenvalues of X
if and only if

(3.13) ujvj = 0 for j = 1, . . . , i.

This follows easily from the fact that aj is an eigenvalue of X if and only if the matrix
X − ajId2l+1 is singular, where Id2l+1 denotes the (2l + 1)× (2l + 1) identity matrix.
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We can now describe the irreducible components of Ξ using (3.13). For k = 1, . . . , i, we
define an index jk equal to either jk = U (U for upper) or jk = L (L for lower). Consider
the subvariety Ξj1,...,ji ⊂ Ξ defined by:

(3.14) Ξj1,...,ji := {x ∈ Ξ : vk = 0 if jk = U, uk = 0 if jk = L}.

Then

(3.15) Ξ =
⋃

jk=U,L

Ξj1,...,ji

is the irreducible component decomposition of Ξ. Notice that in the case jk = U for all
k = 1, . . . , i, then

(3.16) ΞU,...,U ⊂ r.

This follows from the observation that εj = αj + · · · + αl for any j = 1, . . . , l. Thus, for
j = i+ 1, . . . , l, g±εj ⊂ lss ⊂ r, where lss is the semisimple part of the Levi factor of r, and

gεj ⊂ u for j = 1, . . . , i (see (3.1)). Observe also that if jk = L for some k = 1, . . . , i, then

(3.17) Ad(ṡεk)Ξj1,...,jk−1,L,...,ji = Ξj1,...,jk−1,U,...,ji .

This follows immediately from the fact that Ad(ṡεi)gεj = gεj for j 6= i, and Ad(ṡεi)g±εi =
g∓εi .

We now analyze the irreducible variety Ξj1,...,ji . Suppose that for the subsequence
1 ≤ k1 < · · · < km−1 ≤ i we have jk1 = jk2 = · · · = jkm−1 = L and that for the
complementary subsequence km < · · · < ki we have jkm = jkm+1 = · · · = jki = U . First,
suppose that i < l. Consider the element

(3.18) σ := sεk1sεk2 . . . sεkm−1
∈ W.

It follows from Equations (3.16) and (3.17) that

(3.19) Ad(σ̇)Ξj1,...,ji ⊂ r.

Note that sεj acts on the coordinates of h by sign change in the j-th coordinate. Thus, if
m−1 is even, it follows from part (1) of Proposition 2.22 that σ ∈ WK , and we can choose
its representative σ̇ ∈ K. If m − 1 is odd, then replace σ by τ := sεlsεk1sεk2 . . . sεkm−1

.

Then we can choose τ̇ ∈ K, and since we can choose ṡεl ∈ Lss, Equation (3.19) implies

Ad(τ̇)Ξj1,...,ji ⊂ r.

In either case, the component Ξj1,...,ji is WK-conjugate to a subvariety of r, and Equation
(3.9) follows from (3.15). Now consider the case where i = l. Choose σ as in (3.18). Then
it follows from (3.16) that Ad(σ̇)Ξj1,...,jl ⊂ b+. Now if m−1 is even, then Ξj1,...,jl ⊂ YQ+ =
Ad(K)b+. However, if m−1 is odd, then Ad(τ̇)Ξj1,...,jl ⊂ sεl(b+), whence Ξj1,...,jl ⊂ YQ− =
Ad(K)sεl(b+). Thus, Equation (3.10) is proven.

We now prove (3.8) when g = so(2l,C). By Theorem 3.2, it suffices to prove

(3.20) Ξ ⊂ YQr ,
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where r is the parabolic subalgebra generated by b+ and the negative simple root spaces
g−αi+1

, . . . , g−αl for i < l − 1, and r = b+ for i = l − 1. Recall from Example 2.16 that

g−θ =
l−1⊕
j=1

(gεj−εl ⊕ gεj+εl)
−θ ⊕ (g−(εj−εl) ⊕ g−(εj+εl)

)−θ.

Let e±j be a basis for (g±(εj−εl) ⊕ g±(εj+εl)
)−θ respectively. Consider elements of the form

(3.21) a⊕l−1
j=1 ujej ⊕l−1

j=1 vje−j,

where a = diag[a1, . . . , al,−al, . . . ,−a1], ai 6= ±aj, ai 6= 0 for i, j ≤ l − 1, and uj, vj ∈ C.
Arguing as in the previous case, we see Ξ consists of elements of the form (3.21) satisfying

(3.22) ujvj = 0 for j = 1, . . . , i.

We define the varieties Ξj1,...,ji with jk = L, U analogously to (3.14). We have Ξ =⋃
jk=L,U Ξj1,...,ji (cf. (3.15)). Now we observe that if jk = U for all k, then

(3.23) ΞU,...,U ⊂ r.

This follows from the observation that εj − εl = αj + · · · + αl−1 and εj + εl = αj + · · · +
αl−2 + αl. Thus, for j = i + 1, . . . , l, the root spaces g±(εj−εl) and g±(εj+εl)

are in lss ⊂ r.

Further, for j = 1, . . . i, the root spaces gεj−εl and gεj+εl ⊂ u ⊂ r (see (3.4)). We now

show that any Ξj1,...,ji ⊂ YQr . Recall from part (2) of Proposition 2.22 that

W θ = WK = 〈sα1 , . . . , sαl−2
, sαl−1

· sαl〉.
For j = 1, . . . , i, define wj := sεj−εl−1

sαl−1
sαlsεj−εl−1

. Then wj ∈ WK , and wj has order 2.
In fact, wj acts on h via

(3.24) wj : (a1, . . . , aj, . . . , al)→ (a1, . . . ,−aj, . . . ,−al).
We claim that

(3.25) Ad(ẇj)Ξj1,...,jk−1,L,...,ji ⊂ Ξj1,...,U,...,ji .

Indeed, (3.24) implies that

wj · (εj + εl) = −(εj + εl), wj · (εj − εl) = −(εj − εl), and wj · (εk + εl) = εk − εl for k 6= j.

Further, since wj ∈ WK ,

Ad(ẇj) : (g±(εj−εl) ⊕ g±(εj+εl)
)−θ 7→ (g∓(εj−εl) ⊕ g∓(εj+εl)

)−θ

and Ad(ẇj) stabilizes the space (g±(εk−εl) ⊕ g±(εk+εl)
)−θ for k 6= j. Equation (3.25) now

follows from the definition of the varieties Ξj1,...,ji . Thus, if we are given a variety Ξj1,...,ji

with jk1 = jk2 = · · · = jkm−1 = L, it follows from (3.25) and (3.23) that

Ad(ẇk1 . . . ẇkm−1)Ξj1,...,ji ⊂ r.

Since Ξ =
⋃
jk=L,U Ξj1,...,ji , Equation (3.20) follows. This completes the proof.

Q.E.D.
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Proof of Theorem 1.1. Equation (1.3) follows from Theorems 3.1 and 3.2 along with The-
orem 3.6. The statement about the number of irreducible components of g(≥ i) follows
from Parts 2 and 3 of Propositions 2.23 and 2.24.

Q.E.D.

Corollary 3.7. Recall the variety g(i) defined in Equation (2.14). The irreducible com-
ponent decomposition of g(i) is

(3.26) g(i) =
⋃

codim(Q)=i

YQ ∩ g(i).

Proof. Theorem 1.1 and Equation (1.3) imply that the irreducible component decompo-
sition of the variety g(i) is

(3.27) g(i) =
⋃

codim(Q)=i

YQ ∩ g(i),

By Propositions 2.8 (1) and 2.13, we have YQ ∩ g(i) 6= ∅ for all Q with codim(Q) = i. For
each K-orbit Q with codim(Q) = i, we claim that

(3.28) YQ ∩ g(i) = YQ ∩ g(i).

Indeed, suppose that (3.28) were false. Then since YQ =
⋃
Q′⊂Q YQ′ by Lemma 2.12,

there exists a K-orbit Q′ with codim(Q′) > codim(Q) such that YQ′ ∩ g(i) 6= ∅. But this
contradicts Theorem 1.1 which asserts that YQ′ ⊂ g(≥ i+1). Equation (3.26) now follows
from (3.28) and (3.27).

Q.E.D.

The following corollary will be useful in Sections 4.3 and 4.4.

Corollary 3.8. For i = 0, . . . , rn−1 − 1, the irreducible component decomposition of g(i)
is

(3.29) g(i) = YQr ∩ g(i),

where r is the θ-stable parabolic subalgebra of Theorems 3.1 and 3.2. For i = rn−1 and
g = so(2n,C),

(3.30) g(rn−1) = g(≥ rn−1) = YQ+ ,

where Q+ = K · b+ is the unique closed K-orbit on B (see part (2) of Proposition 2.24).
For g = so(2n+ 1,C) the irreducible component decomposition of g(rn−1) is

(3.31) g(rn−1) = g(≥ rn−1) = YQ+ ∪ YQ− ,
where Q+ and Q− are the distinct closed K-orbits on B (see part (2) of Proposition 2.23).

Proof. The result follows immediately from Equation (3.27) and part (2) of Theorems 3.1
and 3.2.
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Q.E.D.

4. The geometric invariant theory of multiplicity free spherical pairs

In this section, we study the K-action on g in the cases (K, g) = (GL(n−1,C), gl(n,C))
and (SO(n−1,C), so(n,C)). We extend a result of Kostant characterizing regular elements
using differentials in Theorem 4.8. We then analyze the K-action on the subvariety g(0),
and show that all the K-orbits in g(0) are closed. We use the above analysis to give
representatives of the closed K-orbits in g, and discuss some applications to strongly
regular elements.

Definition 4.1. Let G be a reductive, algebraic group, and let H ⊂ G be a reductive
algebraic subgroup. The pair (G,H) is called spherical if H acts on the flag variety B of
g with finitely many orbits.

Remark 4.2. Let V be a rational G-representation, and let V H be the set of H-fixed
vectors in V . It is well-known that Definition 4.1 is equivalent to the statement that
dimV H ≤ 1 for every irreducible, rational G-representation V (see [VK78], [Bri87]).

Let (G,H) be a spherical pair. Let g = Lie(G) and let h = Lie(H). Let 〈〈·, ·〉〉 denote
the Killing form on g, and let h⊥ be the annihilator of h with respect to 〈〈·, ·〉〉. Then
the adjoint action of G on g restricts to an action of H on h⊥, which is referred to in
the literature as the coisotropy representation of H (see [Pan90]). Let C[h⊥]H be the ring
of H-invariant polynomials on h⊥. Then it is well-known that C[h⊥]H is a polynomial
algebra (Kor 7.2 of [Kno90b] or Corollary 5 of [Pan90]). Consider the geometric invariant
theory quotient Ψ : h⊥ → h⊥//H. In Korollar 7.2 of [Kno90b], Knop proved that Ψ is
flat. We consider spherical pairs satisfying:

(4.1) dimB = dim h⊥ − dim h⊥//H.

In the appendix, we give a different and simpler proof of Knop’s result for spherical pairs
satisfying (4.1) by using conormal geometry.

We now analyze further what the condition in Equation (4.1) means for the coisotropy
representation. If an algebraic group A acts on an irreducible variety Y , we say y ∈ Y
is A-regular if dim(A · y) ≥ dim(A · z) for all z ∈ Y . When the group A is clear, we
let Yreg denote its A-regular elements. Recall that an element x ∈ g is Ad(G)-regular if
dim(Ad(G) ·x) = dim(g)− rank(g). A basic result of Kostant (Theorem 9,[Kos63]) states
that if C[g]G = C[ψ1, . . . , ψr] is the ring of Ad(G)-invariant polynomials on g, then

(4.2) x ∈ greg if and only if dψ1(x) ∧ · · · ∧ dψr(x) 6= 0.

If x ∈ greg, and we identify T ∗x (g) with g using the non-degenerate form on g, then

(4.3) span{dψi(x) : i = 1 . . . , r} = zg(x),

where zg(x) denotes the centralizer of x in g. We study the set of H-regular elements:

(4.4) h⊥reg = {x ∈ h⊥ : dimH · x is maximal}.
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The following result relates the sets h⊥reg and greg.

Theorem 4.3. Let (G,H) be a spherical pair. Then the following conditions are equiva-
lent.

(1) Equation (4.1) holds.
(2) We have h⊥reg ⊂ greg.

Proof. We first show that (1) implies (2). Let x ∈ h⊥reg. By Theorems 3 and 6 and Equation
(15) of [Pan90],

(4.5) dim h⊥//H = codim
h
⊥H · x.

By (1),

(4.6) dimH · x = dimB.

By Proposition 1 of [Pan90], we know that dim(Ad(G)x) ≥ 2 dim(H · x) = 2 dim(B). It
follows that x ∈ greg. For the converse, by Theorem 3 of [Pan90], there is a dense open

subset U of h⊥reg such that if y ∈ U , then dim(Ad(G)y) = 2 dim(H · y). Let x ∈ U ⊂ greg.

Then dim(H · x) = 1
2

dim(Ad(G)x) = dim(B). The assertion now follows by Theorems 3
and 6 of [Pan90].

Q.E.D.

Let θ be an involution of g. It is well-known that the pair (g, k := gθ) is spherical
[Mat79, Spr85]. Recall that an involution θ of g is called quasi-split if there is a Borel
subalgebra b ∈ B such that b∩ θ(b) is a Cartan subalgebra of g. Let K be the connected
subgroup of G with Lie algebra k. Let p := g−θ ∼= k⊥. Let h be a θ-stable Cartan
subalgebra of g such that dim(h−θ) is maximal among all θ-stable Cartan subalgebras of
g. We let a = h−θ, and let m = zk(a). We let Φc be the compact roots for h in g.

Proposition 4.4. Let θ be an involution of g. Then the spherical pair (g, k) satisfies
Equation (4.1) if and only if θ is quasi-split.

Proof. Let x ∈ p be K-regular. By Equation (4.5), we know dim(p) − dim(p//K) =
dim(K) − dim(Kx). If K · b denotes the open K-orbit on B and Kb is the stabilizer of
b, then dim(B) = dim(K) − dim(Kb), so Equation (4.1) holds if and only if dim(Kb) =
dim(Kx). By Proposition 8 of [KR71], dim(Kx) = dim(m). By Proposition 6.70 and page
394 of [Kna02], it follows that dim(m) = dim(hθ) + |Φc|. By Corollary 2 of [BH00], we
know dim(Kb) = dim(hθ) + 1

2
|Φc|. It follows that Equation (4.1) is equivalent to the

assertion that Φc is empty, which happens if and only if θ is quasi-split by Lemma 8.3 of
[RS90].

Q.E.D.
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4.1. Kostant’s Theorem for the K-action on g. We now apply Theorem 4.3 to
study the K-action on g in the cases where (K, g) = (GL(n− 1,C), gl(n,C)) or (SO(n−
1,C), so(n,C)). For g = gl(n,C), we view k = gl(n− 1,C) as the top left hand corner of
g. Then K is the corresponding algebraic subgroup of G = GL(n,C).

Notation 4.5. The following extends notation from the so(n,C) case to the gl(n,C)
case. We continue to use the notation ri = rank(gi), so that ri = i for gi = gl(i,C). The
partial Kostant-Wallach map Φn : gl(n,C)→ Cn−1×Cn is Φn(x) = (fi,j(x))i=n−1,n;j=1,...,i,
where C[gi]

Gi = C[fi,1, . . . , fi,i]. Proposition 2.2 also holds in this case as was noted in
Remark 2.3, and Φn is identified with the quotient morphism g → g//K. The varieties
g(≥ i), g(i), V rn−1,rn(≥ i), and V rn−1,rn(i) are all defined analogously. See Section 3 of
[CE15] for details.

To apply Theorem 4.3 and the theory of spherical varieties to this situation, we con-
sider the following setup. Let G be a connected, reductive algebraic group, let K be
a reductive, connected algebraic subgroup, and let g and k be their Lie algebras. We
say that the branching from G to K is multiplicity free if for every irreducible, finite di-
mensional rational G-representation V , and every irreducible, finite dimensional rational
K-representation W we have dim HomK(W,V ) ≤ 1. Now let G̃ = G ×K and K∆ ⊂ G̃
be the diagonal copy of K in G×K, i.e.

K∆ := {(g, g) : g ∈ K}.
Consider the pair (G̃,K∆) with Lie algebra pair (g̃, k∆). The following result is well-known.

Proposition 4.6. (1) The pair (G̃,K∆) is spherical if and only if the branching rule
from G to K is multiplicity free.

(2) For the pairs (G,K) = (GL(n,C), GL(n − 1,C)) and (SO(n,C), SO(n − 1,C)),
(G̃,K∆) is spherical.

Proof. The first statement follows by Theorem B of [Bru97], together with the easy ob-
servaton that a Borel subgroup BK of K has an open orbit on the flag variety G/B of G
if and only if K∆ has an open orbit on G/B×K/BK . The second statement follows from
the first statement and well-known branching laws (see [Joh01]).

Q.E.D.

A spherical pair (G̃,K∆) satisfying the above property is called a multiplicity free spher-
ical pair. A result of Knop shows that up to isogeny, these are essentially the only two
multiplicity free spherical pairs [Kno90a]. In the sequel, unless otherwise specified, we
assume that that (g, k) = (gl(n,C), gl(n− 1,C)) or (so(n,C), so(n− 1,C)).

It is easy to see that the restriction of 〈〈·, ·〉〉 to k is non-degenerate. Equip g̃ = Lie(G̃) =
g ⊕ k with the non-degenerate invariant form 〈·, ·〉 = 〈〈·, ·〉〉 + (〈〈·, ·〉〉)|k. For x ∈ g, let

x = xk + xp with xk ∈ k and xp ∈ k⊥. An easy calculation shows that

k⊥∆ = {(x,−xk) : x ∈ g, xk ∈ k}.



EIGENVALUE COINCIDENCES AND MULTIPLICITY FREE SPHERICAL PAIRS 27

Note that k⊥∆
∼= g via the map (x,−xk) 7→ x. This isomorphism intertwines the coisotropy

representation of K∆ on k⊥∆ with the action of K on g via conjugation. We can now use
the geometry of spherical varieties, in particular Theorem 4.3, to study the geometry of
the K-conjugation on g and the partial Kostant-Wallach map Φn (see (2.9)).

Lemma 4.7. Consider the multiplicity-free spherical pairs (G̃,K∆).

(1) Equation (4.1) holds.
(2) dim(K) = dim(K · x) if and only if x ∈ (k⊥∆)reg.
(3)

(4.7) (k⊥∆)reg ∼= {x ∈ g : zk(xk) ∩ zg(x) = 0}.

Proof. Equation (4.1) is equivalent to the routine identity

(4.8) dim(Bg) + dim(Bk) = dim(g)− rn − rn−1 = dim(g)− dim(g//K).

To prove the second assertion, let x ∈ (k∆)⊥reg. Since (1) holds, we can apply Equation
(4.6) to conclude that dim(K · x) = dim(Bg) + dim(Bk). The assertion now follows from
(4.8) and the simple observation

(4.9) dim(g)− rn − rn−1 = dimK.

The second assertion implies that (x,−xk) ∈ (k⊥∆)reg if and only if zk(xk)∩ zk(x) = 0. The
third assertion now follows since zk(xk) ∩ zk(x) = zk(xk) ∩ zg(x).

Q.E.D.

We now describe the regular elements of the coisotropy representation of the spherical
pairs (G̃,K∆), which establishes an analogue of Kostant’s theorem. Denote the generators
of C[g]K by {fn−1,1, . . . , fn−1,rn−1 ; fn,1, . . . , fn,rn}. Let

ωg//K := dfn−1,1 ∧ · · · ∧ dfn−1,rn−1 ∧ dfn,1 ∧ · · · ∧ dfn,rn ∈ Ωrn−1+rn(g).

Theorem 4.8.
x ∈ (k⊥∆)reg if and only if ωg//K(x) 6= 0.

Proof. We first suppose that ωg//K(x) 6= 0. By Equation (4.2), it follows that x is regular
in g and xk is regular in k. Equation (4.3) then implies that zk(xk) ∩ zg(x) = 0, so

x ∈ (k⊥∆)reg by Equation (4.7).

Conversely, suppose x ∈ (k⊥∆)reg. Then by Theorem 4.3 and part (1) of Lemma 4.7,
(x,−xk) ∈ g̃reg. Thus, both x ∈ g and xk ∈ k are regular. Hence by Equation (4.2),

(4.10) dfn−1,1(xk) ∧ · · · ∧ dfn−1,rn−1(xk) 6= 0 and dfn,1(x) ∧ · · · ∧ dfn,rn(x) 6= 0.

Since x ∈ (k⊥∆)reg, zk(xk) ∩ zg(x) = 0 by Equation (4.7). It now follows from (4.10) and

(4.3) that ωg//K(x) 6= 0.

Q.E.D.
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Theorem 4.8 has an immediate corollary which is of interest in linear algebra.

Corollary 4.9. Let x ∈ g and suppose that zk(xk) ∩ zg(x) = 0. Then x ∈ g and xk ∈ k
are both regular.

Proof. This follows by Equation (4.7) and Theorem 4.8.

Q.E.D.

Elements of (k⊥∆)reg regarded as elements of g play a major role in our study of the
K-action on g, so we give them a special name.

Definition 4.10. An element x ∈ g such that zk(xk)∩ zg(x) = 0 is said to be n-strongly
regular. We denote the set of n-strongly regular elements by gnsreg.

Remark 4.11. In [CE15], we defined the set of n-strongly regular elements for g to be the
set of elements x ∈ g for which ωg//K(x) 6= 0. It follows from Theorem 4.8 and Equation

(4.7) that our new definition is consistent with the previous one and gnsreg
∼= (k⊥∆)reg.

We end this section by explaining how Corollary 4.9 can be used to simplify a crucial
definition of Kostant and Wallach in the construction of the Gelfand-Zeitlin integrable
system. We consider the chain of subalgebras

g1 ⊂ g2 ⊂ · · · ⊂ gn−1 ⊂ g,

where gi = gl(i,C) (resp. so(i,C)) when g = gl(n,C) (resp. so(n,C)). Let Gi ⊂ G be
the corresponding, connected algebraic group. Let C[gi]

Gi = C[ψi,1, . . . , ψi,ri ] be the ring
of Ad(Gi)-invariant polynomials on gi, and let πi : g→ gi be the projection off of g⊥i . For
j = 1, . . . , ri, define fi,j := π∗iψi,j. Then the Gelfand-Zeitlin collection of functions is

(4.11) JGZ := {fi,j : i = 1, . . . , n; j = 1, . . . , ri}.
For x ∈ g, consider the subset of T ∗x (g),

dJGZ(x) := {dfi,j(x) : i = 1, . . . , n; j = 1, . . . , ri}.
The set gsreg of strongly regular elements was defined by Kostant and Wallach to be the
open set

(4.12) gsreg := {x ∈ g : dJGZ(x) is a linearly independent set}.
Then gsreg is nonempty (Theorem 2.3 of [KW06a] for gl(n,C) and Theorem 3.2 of [Col09]
for g = so(n,C)). The existence of a strongly regular element in a regular G-adjoint orbit
implies that the functions JGZ in (4.11) form an integrable system on the orbit.

To characterize strongly regular elements, we need a little more notation. For an n×n
matrix x, let xi := πi(x), and let zgi(xi) denote the centralizer of xi in gi thought of as a
subalgebra of g.

Proposition 4.12. An element x ∈ g is strongly regular if and only if

zgi(xi) ∩ zgi+1
(xi+1) = 0 for i = 1, . . . , n− 1.
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Proof. An element x ∈ g is strongly regular if and only if the following two conditions
hold:

(1) xi ∈ gi, xi+1 ∈ gi+1 are regular for all i = 1, . . . , n− 1.

(2) zgi(xi) ∩ zgi+1
(xi+1) = 0 for i = 1, . . . , n− 1.

(4.13)

For the case g = gl(n,C) this is the content of Theorem 2.14 of [KW06a], and for g =
so(n,C) it is Proposition 2.11 of [Col09]. It follows from Corollary 4.9 that if xi+1 ∈ gi+1

satisfies (2) in (4.13), then it automatically satisfies (1).

Q.E.D.

4.2. The K-orbit structure of g(0). We now study the K-orbit structure of the Zariski
open subset

g(0) = {x ∈ g : σ(xk) ∩ σ(x) = ∅}.
We show that g(0) ⊂ gnsreg, and that each K-orbit in g(0) is closed in g. The fact that
g(0) ⊂ gnsreg follows from the following result in linear algebra.

Lemma 4.13. Let V be a finite dimensional complex vector space. Suppose we are given
a direct sum decomposition of V

V = V1 ⊕ V2.

Let X ∈ End(V ), and let Y 6= 0 ∈ End(V ) such that Y : V1 → V1 and Y |V2 = 0. Suppose
that [Y,X] = 0. Then X has a nonzero eigenvector u ∈ V1.

Proof. The assumptions imply that the image Im(Y ) of Y is nonzero, contained in V1,
and stable under the action of X. The result follows.

Q.E.D.

The following consequence plays a crucial role in our study of g(0).

Proposition 4.14. Let X, Y , and V = V1 ⊕ V2 be as in the statement of Lemma 4.13.
Define X1 : V1 → V1 by X1 := πV1 ◦ X|V1, where πV1 : V → V1 is the projection onto V1

off V2. Then σ(X1) ∩ σ(X) 6= ∅.

Proof. Let u ∈ V1 be an eigenvector of X of eigenvalue λ. It follows from definitions that

X1u = πV1(Xu) = πV1(λu) = λu.

Thus, λ ∈ σ(X1) ∩ σ(X).

Q.E.D.

Example 4.15. Let V = Cn, and let e1, . . . , en be the standard basis of Cn. Let V1 =
span{e1, . . . , ek}, and let V2 = span{ek+1, . . . , en}. Let x ∈ gl(n,C), and let xk be the
k × k submatrix in the upper lefthand corner of x. We embed gl(k,C) in gl(n,C) in
the upper left corner. Suppose there exists nonzero Y ∈ gl(k,C) with [Y, x] = 0. Then
Proposition 4.14 implies that σ(xk) ∩ σ(x) 6= 0.
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We now return to the pairs (gl(n,C), gl(n− 1,C)) and (so(n,C), so(n− 1,C)). Using
Proposition 4.14, we can prove a fundamental result regarding the structure of g(0).

Theorem 4.16. Let x ∈ g(0). Then x ∈ gnsreg.

Proof. Let x ∈ g and suppose that zk(xk) ∩ zg(x) 6= 0. We show that x ∈ g(≥ 1) by
considering the types A,B,D separately. First, suppose that g is type A. Then decompose
V = Cn as V = V1 ⊕ V2 where V1 = span{e1, . . . , en−1}, and V2 = span{en}. Now apply
Example 4.15. Similarly, when g = so(2l,C), we decompose C2l as V = V1 ⊕ V2, where
V1 = span{e±1, . . . , e±(l−1), el+e−l}, and V2 = span{el−e−l}. The reader can check that k
annihilates V2. Since the involution θ acts on e±i via θ(e±i) = e±i for i 6= l and θ(el) = e−l
(see Section 2.2), we know θ acts on V1 as the identity and on V2 as the negative of the
identity. Therefore xk : V1 → V1 and xg−θ : V1 → V2, and it follows that x1 = xk, where

x1 = πV1(x|V1). The result now follows from Proposition 4.14. The case of so(2l + 1,C)
follows by taking V1 = span{e±1, . . . , e±l}, V2 = span{e0}, and using Proposition 4.14.

Q.E.D.

Let c = (crn−1 , crn) ∈ V rn−1,rn and write cri = (ci,1, . . . , ci,ri) ∈ Cri for i = n − 1, n.
Let In,c be the ideal of C[g] generated by the functions fi,j − ci,j for i = n − 1, n and
j = 1, . . . , ri.

Corollary 4.17. Let c = (crn−1 , crn) ∈ V rn−1,rn(0), so that Φ−1
n (c) ⊂ g(0).

(1) Then In,c is radical, so that In,c is the ideal of the fibre Φ−1
n (c). Further, the variety

Φ−1
n (c) is smooth.

(2) The fibre Φ−1
n (c) is a single closed K-orbit.

Proof. By Theorem 4.16 every element of the fibre Φ−1
n (c) is n-strongly regular. It follows

from Theorem 4.8 and Remark 4.11 that the differentials {dfi,j(x) : i = n − 1, n; j =
1, . . . , ri} are independent for all x ∈ Φ−1

n (c). By Theorem 18.15 (a) of [Eis95], the ideal
In,c is radical, so In,c is the ideal of Φ−1

n (c). The smoothness of Φ−1
n (c) now follows since

the differentials of the generators of In,c are independent at every point of Φ−1
n (c). For

the second assertion, note first that

dim(K) = dim(g)− dim(g//K) = dim(Φ−1
n (c)),

where the first equality follows from Equations (4.8) and (4.9), and the second equality
follows from Proposition 2.2 (3). By Lemma 4.7, dim(K ·x) = dim(K) for all x ∈ Φ−1

n (c).
By Proposition 2.2 (2), each fibre Φ−1

n (c) has a unique closed K-orbit, which implies the
assertion.

Q.E.D.

Using Theorem 4.16, we can generalize a result of the first author to the orthogonal
setting (cf the first statement of Theorem 5.15, [Col11]). Consider the Zariski open
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subvariety of so(n,C)

so(n,C)Θ := {x ∈ so(n,C) : σ(xi) ∩ σ(xi+1) = ∅ for i = 2, . . . , n− 1}.

Proposition 4.18. The elements of so(n,C)Θ are strongly regular.

Proof. If x ∈ so(n,C)Θ, then xi ∈ so(i,C)(0) for i = 2, . . . , n. It follows from Theorem
4.16 that zgi−1

(xi−1) ∩ zgi(xi) = 0. The result now follows from Proposition 4.12.

Q.E.D.

Remark 4.19. The Gelfand-Zeitlin system for gl(n,C) is much better understood than
the Gelfand-Zeitlin system for so(n,C). Let JGZ be the Gelfand-Zeitlin functions for
either g = gl(n,C) or g = so(n,C) defined in (4.11). Consider the Kostant-Wallach
morphism:

(4.14) Φ : g→ Cr1 × Cr2 × · · · × Crn−1 × Crn given by Φ(x) = (fi,j(x))fi,j∈JGZ

(for g = so(n,C), Cr1 is a point). In [KW06a], Kostant and Wallach prove that Φ is
surjective, and in Theorem 5.15 of [Col11], the first author shows that for all x in the
Zariski open set

gl(n,C)Θ := {x ∈ gl(n,C) : σ(xi) ∩ σ(xi+1) = ∅ for i = 2, . . . , n− 1},
the fibre Φ−1(Φ(x)) is irreducible. In later work, we will use the flatness assertion of
Proposition 2.2 to show that Φ is surjective in the orthogonal case, which together with
the preceding proposition, shows that every regular adjoint orbit contains strongly regular
elements. This implies that the Gelfand-Zeitlin functions in (4.11) form an integrable
system on every regular adjoint orbit in so(n,C). We will also use Proposition 4.18
and part (2) of Corollary 4.17 to show that Φ−1(Φ(x)) is irreducible for x ∈ so(n,C)Θ.
The proofs of both these results for so(n,C) are different and more conceptual than the
analogous proofs for gl(n,C), and we will develop these ideas in further work on the
orthogonal Gelfand-Zeitlin system.

4.3. Classification of closed K-orbits on g. In Section 4.2, we showed that K-orbits in
g(0) are closed. In this section, we describe the other closed K-orbits in g. Our main tool
is Theorem 1.1 when (g, K) = (so(n,C), SO(n− 1,C)) and Theorem 3.7 of [CE15] when
(g, K) = (gl(n,C), K = GL(n − 1,C)). Recall the varieties g(i) = g(≥ i) \ g(≥ i + 1)
defined in (2.14) and the partition g =

⋃rn−1

i=0 g(i) of g in (2.15). For the analogous
definition in type A, see Equation (3.3) of [CE15].)

Theorem 4.20. Let x ∈ g(i), i = 0, . . . , rn−1. Then K · x is closed if and only if
K · x ∩ l(i) 6= ∅, where l(i) := g(i) ∩ l and l is a θ-stable Levi subalgebra of the following
form:

(1) If g = gl(n,C), then l is the Levi subalgebra of block diagonal matrices

l = gl(n− i,C)⊕ gl(1,C)i.

(2) If g = so(2l + 1,C), then l is the θ-stable Levi subalgebra defined in Theorem 3.1.
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(3) If g = so(2l,C), then l is the θ-stable Levi subalgebra defined in Theorem 3.2.

Theorem 4.20 will follow from two lemmas.

Lemma 4.21. Let x ∈ g(i), and let l be the corresponding Levi subalgebra in Theorem
4.20. Then K · x contains an element of l(i).

Proof. Any element x ∈ g(i) is K-conjugate to an element in a θ-stable parabolic subal-
gebra r with Levi factor l. This follows from Corollary 3.8 when g = so(n,C) and from
Theorem 3.7 of [CE15] when g = gl(n,C). Thus, we can assume that x ∈ r. We choose an
element z in the centre z of l such that α(z) > 0 for every root α of u, the nilradical of r.
Note that z ⊂ k, which is clear for type A, and follows by Remark 3.3 for the orthogonal
cases. Then

(4.15) lim
t→−∞

Ad(exp tz)x ∈ l ∩K · x = l(i) ∩K · x,

where the last equality follows since K · x ⊂ Φ−1(Φ(x)) ⊂ g(i).

Q.E.D.

We now study the K-orbits of elements in l.

Lemma 4.22. Let l be one of the Levi subalgebras in Theorem 4.20. Any two elements in
l(i) which lie in the same fibre of the partial Kostant-Wallach map Φn are K-conjugate.

Proof. Suppose that x, y ∈ Φ−1
n (c), with c ∈ V rn−1,rn(0). Then Corollary 4.17 implies

that x and y are K-conjugate.

Now suppose that x, y ∈ Φ−1
n (c) ∩ l with c ∈ V rn−1,rn(i) with i > 0. Decompose x and

y as x = xz +xlss and y = yz + ylss , with xz, yz ∈ z and xlss , ylss ∈ lss. Then σ(x)∩σ(xk)

are the coordinates of xz and similarly for y. Since Φn(x) = Φn(y) ∈ V rn−1,rn(i), we
know σ(x) ∩ σ(xk) = σ(y) ∩ σ(yk). It follows that there exists ẇ ∈ NK(L ∩ K) such
that Ad(ẇ)xz = yz. So without loss of generality, we may assume that xz = yz. Since
x, y ∈ g(i) ∩ l, then xlss , ylss ∈ lss(0), where

lss(0) := {z ∈ lss : σ(z) ∩ σ(zk) = ∅}.

Let Φlss : lss → Crk(lss∩k) × Crk(lss) be the partial Kostant-Wallach map for lss. Then

Φn(x) = Φn(y) implies that Φlss(xlss) = Φlss(ylss). But then Corollary 4.17 applied to lss
forces xlss and ylss to lie in the same K ∩ Lss-orbit. This completes the proof.

Q.E.D.

We now prove Theorem 4.20.

Proof of Theorem 4.20. Suppose that x ∈ g(i) with Ad(K) · x closed. Then by Lemma

4.21, there exists an element z ∈ l(i) ∩ Ad(K) · x. But since Ad(K) · x is closed, we
conclude that Ad(K) · x = Ad(K) · z.
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Conversely, suppose that x ∈ l(i) and consider Ad(K) · x. By Lemma 4.21, there exists

z ∈ l(i) with K · z closed and K · z ⊂ Ad(K) · x ⊂ Φ−1(Φ(x)). Therefore Ad(K) · x =
Ad(K) · z by Lemma 4.22. Thus, Ad(K) · x is closed.

Q.E.D.

4.4. The nilfibre of the partial Kostant-Wallach map in the orthogonal case.
Though there are many similarities between the GL(n− 1,C)-action on gl(n,C) and the
SO(n− 1,C)-action on so(n,C), in this subsection we show that their n-strongly regular
sets are different. In the case of gl(n,C), every fibre of the partial Kostant-Wallach map
contains n-strongly regular elements. This follows easily from Theorem 2.3 of [KW06a].
However, this is not the case for so(n,C). To see this, we need to study the nilfibre
Φ−1
n (0, 0) of the orthogonal partial Kostant-Wallach map in more detail using Theorems

1.1 and 4.8.

Theorem 4.23. Let Φn : so(n,C) → Crn−1 ⊕ Crn be the orthogonal partial Kostant-
Wallach map Φn defined in Equation (2.9).

Case I: Suppose n = 2l. Then Φ−1
n (0, 0) = K · n+ is irreducible, where n+ = [b+, b+]

and Q+ = K · b+ is the unique closed K-orbit in B (see part (2) of Proposition 2.24).

Case II: Suppose n = 2l + 1. Then Φ−1
n (0, 0) = K · n+ ∪ K · n− has two irreducible

components, where n± = [b±, b±] and Q± = K · b±, are the two closed K-orbits in B (see
part (2) of Proposition 2.23).

Proof. Let Q = K · b be a closed K-orbit. Let n = [b, b] be the nilradical of b. We first
show that Ad(K) · n is an irreducible component of Φ−1

n (0, 0). Since Q is closed, b is
θ-stable by Proposition 4.12 of [CE]. Thus, b∩ k is a Borel subalgebra of k with nilradical
n∩ k. It follows that for any x ∈ n, we have Φn(x) = (0, 0). By the K-equivariance of Φn,
Ad(K) · n ⊂ Φ−1

n (0, 0).

Recall the Grothendieck resolution g̃ = {(x, b) : x ∈ b} ⊂ g × B and the morphisms
π : g̃ → B, π(x, b) = b and µ : g̃ → g, µ(x, b) = x. Corollary 3.1.33 of [CG97] gives a
G-equivariant isomorphism g̃ ∼= G×B b. Under this isomorphism π−1(Q) is identified with
the closed subvariety K ×K∩B b ⊂ G×B b. The closed subvariety K ×K∩B n ⊂ K ×K∩B b
maps surjectively under µ to Ad(K)n. Since µ is proper, Ad(K)n is closed and irreducible.
By Proposition 3.2.14 of [CG97], the restriction of µ to K ×K∩B n generically has finite
fibres. Thus, the same reasoning that we used in Equation (2.19) along with Propositions
2.13 and 2.8 shows that

dim Ad(K)n = dim(K ×K∩B n)

= dim(YQ)− rn
= dim(g(≥ rn−1))− rn
= dim(g)− rn−1 − rn
= dim Φ−1

n (0, 0).
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Thus, Ad(K) · n is an irreducible component of Φ−1
n (0, 0).

We now show that every irreducible component of Φ−1
n (0, 0) is of the form Ad(K)n. It

follows from definitions that Φ−1
n (0, 0) ⊂ g(rn−1) ∩N , where N ⊂ g is the nilpotent cone

in g. Thus, if X is an irreducible component of Φ−1
n (0, 0), then X ⊂ Ad(K)n by Equations

(3.30) and (3.31) from Corollary 3.8. But then X = Ad(K)n by Proposition 2.2.

Q.E.D.

We use Theorem 4.23 to study Φ−1
n (0, 0) in more detail. In [CE15], we studied the

interaction between the set of n-strongly regular elements for the pair (g = gl(n,C), k =
gl(n − 1,C)) and the nilfibre of the corresponding partial Kostant-Wallach map. We
now show that unlike in the case of gl(n,C), there are no n-strongly regular elements in
the nilfibre of the partial Kostant-Wallach map for the orthogonal Lie algebra so(n,C).
The key observation is the following proposition, which can be viewed as an extension of
Proposition 3.8 in [CE12].

Proposition 4.24. Let n > 3, let g = so(n,C), and let K = SO(n− 1,C). Let b ⊂ g be
a Borel subalgebra and suppose that the K-orbit K · b is closed in B. Let n = [b, b] be the
nilradical of b. Then

(4.16) zk(n ∩ k) ∩ zg(n) 6= 0,

where zg(n) is the centralizer of n in g, and zk(n ∩ k) is the centralizer of n ∩ k in k.

Proof. Consider a closed K-orbit Q in B. By K-equivariance, it suffices to show Equation
(4.16) for a representative b of Q. By part (2) of Propositions 2.23 and 2.24, we can
assume that the standard diagonal Cartan subalgebra h is in b. Let φ ∈ Φ+(g, h) be the
highest root of b. We claim for n > 4 that φ is compact imaginary. It then follows that
the root space

gφ ⊂ zk(n ∩ k) ∩ zg(n).

Suppose first that g = so(2l,C). By part (2) of Proposition 2.24, we can assume that
b = b+. The highest root is then ε1 + ε2, which is compact imaginary for l > 2 (Example
2.16.) If g = so(2l + 1,C), then by part (2) of Proposition 2.23, we can assume that
b = b+ or b = b− = sαl(b+). In both cases, the highest root is ε1 + ε2, which is compact
imaginary (Example 2.16).

If g = so(4,C), then φ = ε1 + ε2 is complex θ-stable. Since n is abelian in this case,
(gφ ⊕ gθ(φ))

θ ⊂ zk(n ∩ k) ∩ zg(n).

Q.E.D.

Corollary 4.25. Let n > 3, and let Φn : so(n,C)→ Crn−1⊕Crn be the orthogonal partial
Kostant-Wallach map. Then Φ−1

n (0, 0) contains no n-strongly regular elements.
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Proof. Suppose x ∈ Φ−1
n (0, 0), so by Theorem 4.23, x is contained in n, the nilradical of a

Borel subalgebra b with K · b closed. By Proposition 4.24, there is a nonzero element y
of zk(n ∩ k) ∩ zg(n). Then y ∈ zk(xk) ∩ zg(x), so x is not n-strongly regular.

Q.E.D.

Remark 4.26. The assertion of the corollary is false for n = 3. In this case, so(3,C) ∼=
sl(2,C) and k = h ⊂ sl(2,C), where h is the standard Cartan subalgebra of sl(2,C). In
this case, it follows by Proposition 3.11 from [CE12] that each irreducible component
contains strongly regular elements.

The following result is analogous to Proposition 3.11 of [CE15]. We let In be the ideal

of C[so(n,C)] generated by elements of C[so(n,C)]SO(n−1,C) of positive degree.

Corollary 4.27. The ideal In is radical if and only if n = 3.

Proof. By Theorem 18.15 (a) of [Eis95], the ideal In is radical if and only if the set of
differentials {dfi,j(x) : j = 1, . . . , ri, i = n − 1, n} is linearly independent on an open,
dense subset of each irreducible component of Φ−1

n (0, 0). It follows from Definition 4.10
and Theorem 4.8 that In is radical if and only if each irreducible component of Φ−1

n (0, 0)
contains n-strongly regular elements. But it follows from Corollary 4.25 and the case of
so(3,C) in Remark 4.26 that each irreducible component of Φ−1

n (0, 0) contains n-strongly
regular elements if and only if n = 3.

Q.E.D.

Note that we have derived results concerning the n-strongly regular set without using
a slice, in contrast to the case of gl(n,C) studied by Kostant and Wallach [KW06a],
Theorem 2.3.

Remark 4.28. Consider the orthogonal Kostant-Wallach map Φ defined in (4.14). It
follows from Corollary 4.25 that the nilfibre Φ−1(0, . . . , 0) contains no strongly regular
elements. This is very different than the case of gl(n,C) studied extensively in [CE12].

5. appendix

In the appendix, we prove a general result which implies Proposition 2.2. The proof is
an adaptation of the proof of Proposition 2.3 from [CE15].

Theorem 5.1. Let (G,H) be a spherical pair such that

dimB = dim h⊥ − dim h⊥//H.

(cf Equation (4.1)). Then Ψ : h⊥ → h⊥//H is flat.



36 M. COLARUSSO AND S. EVENS

Proof. We first show that Ψ−1(0) is equidimensional of dimension dim h⊥ − dim h⊥//H.
Let C be an irreducible component of Ψ−1(0). By standard results, dim(C) ≥ dim h⊥ −
dim h⊥//H. Label the finite number of H-orbits on B by Q1, . . . , Qs. Let Z = ∪si=1T

∗
Qi

(B)

and note that the irreducicible components of Z are the subvarieties Zi := T ∗Qi(B), and
also that dimZi = dimB for i = 1, . . . , s. Recall the standard identification T ∗B =
{(b, x) ∈ B × g : x ∈ [b, b]} and let µ : T ∗B → g be the moment map, µ(b, x) = x.

We claim that Ψ−1(0) ⊂ µ(Z). Indeed, by Theorem 6 of [Pan90] , C[h⊥]H = C[g1, . . . , gk]
is a polynomial ring in k generators, which can be taken to be homogeneous. Further,
the morphism Ψ : h⊥ → h⊥//H may be identified with (g1, . . . , gk) : h⊥ → Ck. For
f ∈ C[g]G of positive degree, note that f |

h
⊥ ∈ C[h⊥]H , so f |

h
⊥ is a polynomial of strictly

positive degree in the variables g1, . . . , gk. By the above identification, gi(x) = 0 for each
x ∈ Ψ−1(0), so f(x) = 0. By Proposition 16 of [Kos63], it follows that x is nilpotent, and
hence lies in n := [b, b], the nilradical of a Borel subalgebra b. Thus, if Qi = H · b, then
(b, x) ∈ Zi, and x = µ(b, x) ∈ µ(Z).

Since µ is proper, it follows that C ⊂ µ(Zi) for some i. Hence, dimC ≤ dimZi =
dimB = dim h⊥ − dim h⊥//H, so dimC = dim h⊥ − dim h⊥//H.

Now for x ∈ h⊥, let dx be the maximum of the dimension of the irreducible components
of Ψ−1(Ψ(x)). Since the functions g1, . . . , gk are homogeneous, scalar multiplication by
λ ∈ C∗ induces an isomorphism Ψ−1(Ψ(x)) ∼= Ψ−1(Ψ(λx)), so dx = dλx. By upper semi-
continuity of dimension, the set {y ∈ h⊥ : dy ≥ d} is closed for each integer d (Proposition

4.4 of [Hum75]). Hence, dy ≤ d0 = dim h⊥ − dim h⊥//H for all y ∈ h⊥. It follows that

dy = dim h⊥ − dim h⊥//H for all y ∈ h⊥. Hence, Ψ is flat by the corollary to Theorem
23.1 of [Mat86].

Q.E.D.
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