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Abstract. We generalize a result of Kostant and Wallach concerning the algebraic inte-
grability of the Gelfand–Zeitlin vector fields to the full set of strongly regular elements in
gl(n, C). We use decomposition classes to stratify the strongly regular set by subvarieties
XD. We construct an étale cover ĝD of XD and show that XD and ĝD are smooth and
irreducible. We then use Poisson geometry to lift the Gelfand–Zeitlin vector fields on
XD to Hamiltonian vector fields on ĝD and integrate these vector fields to an action of
a connected, commutative algebraic group.

1. Introduction

In a series of papers [KW06a],[KW06b], Kostant and Wallach study the action
of a complex Lie group A on g = gl(n,C). The group A is the simply con-
nected, complex Lie group corresponding to the abelian Lie algebra a generated
by the Hamiltonian vector fields of the Gelfand–Zeitlin collection of functions.
The Gelfand–Zeitlin collection of functions contains n(n+ 1)/2 Poisson commut-
ing functions and its restriction to each regular adjoint orbit forms an integrable
system. For each function in the collection, the corresponding Hamiltonian vector
field is complete. The action of A on g is then defined by integrating the Lie
algebra a.

Kostant and Wallach consider a Zariski open subset of g, called the set of
strongly regular elements, which consists of all elements where the differentials of
the Gelfand–Zeitlin functions are linearly independent. The A-orbits of strongly
regular elements are of dimension

(
n
2

)
and form Lagrangian submanifolds of regular

adjoint orbits. We denote by xi the upper left i × i corner of the matrix x ∈ g.
Kostant and Wallach consider the Zariski open subset of strongly regular elements
MΩ(n) consisting of x ∈ g such that each xi is a regular semisimple element of
gi and xi and xi+1 have no common eigenvalues. In [KW06b], they show that
there exists a covering MΩ(n, e) → MΩ(n) such that the Lie algebra a lifts to
MΩ(n, e) and integrates to an algebraic action of a torus. Our purpose in this
paper is to extend this algebraic integrability result to the full locus of strongly
regular elements. More precisely, we stratify the strongly regular set by smooth
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subvarieties, and for each stratum we construct a covering such that the Lie algebra
a lifts to the covering and integrates to an algebraic action of a connected, abelian
algebraic group.

In more detail, the Gelfand–Zeitlin collection on g is the collection of functions
JGZ = {fi,j(x) : i = 1, . . . , n, j = 1, . . . , i} where fi,j(x) = Tr((xi)

j). We denote
by gi = {xi : x ∈ g} ∼= gl(i) embedded in g as the upper left corner, and denote by
Gi

∼= GL(i) the corresponding group. The space a spanned by {ξf : f ∈ JGZ} is an
abelian Lie algebra. An element x ∈ g is called strongly regular if {df(x) : f ∈ JGZ}
is linearly independent. Kostant and Wallach showed that the set gsreg of g consist-
ing of strongly regular elements is open and Zariski dense. We stratify the strongly
regular set using decomposition classes. Let li be a standard Levi subalgebra of
gi with blocks of sizes n1, . . . , nk, let zi be the center of li, and let zi,gen be the
set of elements in zi with centralizer li. The regular decomposition class Di in gi

consists of the subset Gi · (zi,gen + ei), where ei is the unique principal nilpotent
element of li in Jordan canonical form. Thus, Di consists of all regular elements
of gi whose Jordan form has blocks of sizes n1, . . . , nk. Let WLi

i = NGi
(li)/Li,

which is a product of symmetric groups and acts on li by permuting blocks of the
same size. If Di ⊂ gi, i = 1, . . . , n, is a sequence of regular decomposition classes,
we call the sequence D = (D1, . . . , Dn) regular decomposition data.

Let

XD = {x ∈ g : xi ∈ Di} ∩ gsreg,

ĝD =

{
(x, z1, . . . , zn) ∈ XD ×

n∏

i=1

zi,gen : xi ∈ Gi · (zi + ei)

}
.

Consider the morphism µ : ĝD → XD given by projection on the first factor, and
let ΣD =

∏n
i=1W

Li

i .

Theorem 1.1 (Theorems 3.10, 3.12 and 5.18). The morphism µ : ĝD → XD is a

ΣD-covering of smooth varieties. Further, ĝD and XD are connected.

The variety XD is easily seen to be A-invariant, but the Lie algebra a integrates
to an action of an algebraic group on XD only for certain special choices of regular
decomposition data D (see Remark 5.14).

Consider the connected, abelian algebraic group ZD =
∏n−1

i=1 ZGi
(zi + ei).

Theorem 1.2 (Theorem 5.13). The Lie algebra a lifts to ĝD, and integrates to a

free algebraic action of ZD on ĝD.

Consider the open subsets

XD,gen = {x ∈ XD : xi and xi+1 have no common eigenvalues} and

ĝD,gen = µ−1(XD,gen).

It is easily seen that ZD acts on ĝD,gen. In the special case where each Di consists
of regular semisimple elements of gi, the covering ĝD,gen → XD,gen coincides with

the covering MΩ(n, e) → MΩ(n) from [KW06b] and the group ZD = (C×)(
n

2) is
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a torus, and our result specializes to the algebraic integrability result of Kostant
and Wallach from [KW06b] (see Remark 5.19). Thus, Theorem 1.2 generalizes this
result to all of gsreg, since gsreg =

⋃
XD, where the union is taken over all regular

decomposition data D.
The ZD-action on ĝD is a lift of a local ZD-action defined on certain Lagrangian

subvarieties of XD by the first author in Section 4 of [Col]. Let Φ : gsreg →

C
(n+1

2 ) be the moment map for the Gelfand–Zeitlin integrable system. In [KW06a],
Kostant and Wallach show that for x ∈MΩ(n), Φ−1(Φ(x)) is a single A-orbit and

a homogeneous space for a free algebraic action of (C×)(
n

2). In [Col], the first
author describes the action of A on all strongly regular elements. Further, in
[Col], for each sequence of regular decomposition data D, an algebraic ZD-action
is constructed on the fibers Φ−1(Φ(x)) for each x ∈ XD. The definition of the
ZD-action on Φ−1(Φ(x)) makes use of the fact that the eigenvalues of each xi,
i = 1, . . . , n , are constant on Φ−1(Φ(x)). This action of ZD cannot in general be
extended to all of XD, because there is no morphism XD → C

ri , ri = dim zi which
assigns to xi a tuple of its eigenvalues in a prescribed order, except for certain
regular decomposition data D (see Remarks 3.13 and 5.14). On the other hand,
the covering ĝD has a natural morphism which assigns to each xi an ordered tuple
of eigenvalues, namely the morphism ĝD → zi,gen which sends (x, z1, . . . , zn) → zi.
This allows us to lift the local ZD-action on Φ−1(Φ(x)) to an algebraic action
on ĝD.

We construct the lift â of a to ĝD using Poisson geometry. More precisely, ĝD
is a subvariety of a Poisson variety ġD. Let ri = dim(zi) and let si = i − ri.
For (x, z1, . . . , zn) ∈ ĝD, we use the semisimple part of the Jordan form of xi to
construct ri functions qi,j on ġD (Section 5.1) and the nilpotent part of the Jordan
form of xi to construct si functions pi,k on ġD (Section 5.2). We let âi be the

span of the Hamiltonian vector fields ξqi,j
and ξpi,k

, and we let â =
∑n−1

i=1 âi. We
show that â is an abelian Lie algebra of vector fields tangent to ĝD (Proposition
5.10), and further show that µ∗(â) = a (Lemma 5.11). In addition, the vector
fields ξqi,j

integrate to give an algebraic C×-action on ĝD (Proposition 5.4), and
the vector fields ξpi,k

integrate to give an algebraic C-action on ĝD (Proposition
5.9). These results imply that â integrates to give an algebraic action of ZD on ĝD.
The ZD-action on ĝD is given by a simple formula, and projects and specializes
to the more complicated ZD-action defined on the fibers Φ−1(Φ(x)), x ∈ XD. We
regard the simplicity of the ZD-action on ĝD as a useful feature of the cover ĝD.
In addition, the cover ĝD facilitates the use of Jordan decomposition to separate
the flows into semisimple and nilpotent parts, and makes Poisson computations
easy to do, as in [KKS78] and in [EL07]. It would be interesting to relate our work
to work of Bielawski and Pidstrygach [BP08], where a different approach to the
geometry of the Gelfand–Zeitlin action is taken.

The paper is organized as follows. In Section 2 we recall results from [KW06a]
and [KW06b], as well as the thesis of the first author [Col07], [Col]. In Section 3
we recall facts about decomposition classes, show XD is smooth, and construct
the covering ĝD → XD. In Section 4 we construct a Poisson structure on ġD and
compute its anchor map. In Section 5 we prove the main results of the paper.

In this paper a variety is a complex quasi-projective algebraic set, and a subset
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of a variety is called a subvariety if it is locally closed. The ring of regular functions
on a variety Y is denoted C[Y ]. We use the Zariski topology on a variety unless
otherwise stated.

Acknowledgements. We would like to thank Michael Broshi, Michael Gekhtman,
Bert Kostant, Hanspeter Kraft, Nolan Wallach, and Milen Yakimov for useful
conversations relevant to the subject of this paper. We thank the referees for
useful comments and for posing the question that is answered by Remark 3.16.

2. Notation and results of Kostant, Wallach, and Colarusso

Let g = gl(n,C) be the Lie algebra of n × n complex matrices. For i 6 n, let
gi = gl(i,C) ⊂ g, regarded as the upper left i × i corner. If x ∈ g, let xi be the
upper left i × i corner of x, so the kj matrix coefficient (xi)kj of xi is (x)kj if
1 6 k, j 6 i, and is zero otherwise. Let Gi

∼= GL(i,C) be the closed Lie subgroup
of GL(n,C) with Lie algebra gi.

The projection g → gi given by x 7→ xi induces an injective ring homomorphism
C[gi] → C[g], which we use to regard C[gi] as a subalgebra of C[g]. In particular,
we regard J(n) = C[g1]

G1 ⊗C · · · ⊗C C[gn]Gn as a subalgebra of C[g].

For i 6 n and j = 1, . . . , i, let fi,j ∈ C[g] be the regular function defined by
fi,j = Tr((xi)

j). Note that fi,j ∈ C[gi]
GL(i) ⊂ J(n). Let JGZ = {fi,j : 1 6

i 6 n, 1 6 j 6 i}. Then JGZ freely generates the polynomial algebra J(n). Let
a = span{ξf : f ∈ JGZ}, where ξf is the Hamiltonian vector field on g defined by
a function f ∈ C[g] using the Lie–Poisson Poisson structure on g. It is shown in
Theorem 3.25 of [KW06a] that J(n) is a maximal Poisson commutative subalgebra
of C[g]. Thus, a is an abelian Lie algebra, and further dim(a) =

(
n
2

)
(see [KW06a,

Sect. 3.2]). Further, the vector fields ξfn,j
= 0, so a is spanned by the vector fields

ξfi,j
with i 6 n − 1. Let A be the simply connected holomorphic Lie group with

Lie algebra a. By Section 3 of [KW06a], the group A ∼= C(n

2) integrates the action
of a on g. It follows from standard results in symplectic geometry that A · x is
isotropic in the symplectic leaf G · x in g.

By definition, x ∈ g is called strongly regular if the set {df(x) : f ∈ JGZ} is
linearly independent in T ∗x (g). Let gsreg be the set of strongly regular elements of
g and let greg be the set of regular elements of g, i.e., the set of elements whose
centralizer zg(x) has dimension n. By a well-known result of Kostant [Kos63], if
x ∈ gsreg, xk is regular for all k ([KW06a, Prop. 2.6]).

We give alternate characterizations of the strongly regular set in g.

Theorem 2.1 ([KW06a]). Let x ∈ g. Then the following are equivalent:

(1) x is strongly regular.

(2) dim(A · x) = dim(A) =
(
n
2

)
and A · x is Lagrangian in G · x.

(3) xi ∈ gi is regular for all i, 1 6 i 6 n, and zg
i
(xi) ∩ zg

i+1
(xi+1) = 0 for all

1 6 i 6 n− 1.

Further, let b be the upper triangular Borel subalgebra of g, and let e be the
standard level one regular nilpotent in the opposite Borel to b, i.e., (e)k+1,k = 1,
and (e)l,k = 0 if l 6= k+1. Then b+e is contained in the strongly regular set gsreg.
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Elements in the variety b + e are called (upper) Hessenberg matrices. It follows
that the non-empty set gsreg is Zariski open in g.

For i = 1, . . . , n, consider the morphisms

Φi : gi → C
i, Φi(y) = (pi,1(y), . . . , pi,i(y)),

where pi,j(y) is the coefficient of tj−1 in the characteristic polynomial of y. Note
that pi,j ∈ C[gi]

GL(i). Define

Φ : g → C
1 × · · · × C

n = C
(n+1

2 ), Φ(x) = (Φ1(x1), . . . ,Φn(xn)).

Then the Kostant–Wallach map Φ : b + e→ C(n+1

2 ) is an isomorphism of varieties

([KW06a, Theorem 2.3]). Hence, for c ∈ C
(n+1

2 ), Φ−1(c)sreg := Φ−1(c) ∩ gsreg is
nonempty and open. By Proposition 3.6 in [KW06a], A·x ⊂ Φ−1(c) for x ∈ Φ−1(c).

For x ∈ gi, let σi(x) equal the collection of i eigenvalues of x counted with
repetitions, where here we regard x as an i× i matrix.

Remark 2.2. If x, y ∈ g, then Φ(x) = Φ(y) if and only if σi(xi) = σi(yi) for
i = 1, . . . , n.

Let ci ∈ C
i and consider c = (c1, c2, . . . , cn) ∈ C

1 × C
2 × · · · × C

n = C
(n+1

2 ).
Regard ci = (z1, . . . , zi) as the coefficients of the degree i monic polynomial

pci
(t) = z1 + z2t+ · · ·+ zit

i−1 + ti. (2.1)

Theorem 2.3 ([Col, Theorem 5.11]). Let c = (c1, c2, . . . , cn) ∈ C
1 × C

2 × · · · ×

C
n = C(n+1

2 ), and suppose that pci
(t) and pci+1

(t) have exactly ji roots in common.

Then there are exactly 2
∑n−1

i=1
ji distinct A-orbits in Φ−1(c)sreg. For x ∈ Φ−1(c)sreg,

let ZDi
denote the centralizer of the Jordan form of xi in gi, and consider the

abelian connected algebraic group ZD = ZD1
× · · · × ZDn−1

. Then ZD acts freely

and algebraically on Φ−1(c)sreg, and the A-orbits on Φ−1(c)sreg coincide with the

ZD-orbits on Φ−1(c)sreg.

3. Decomposition classes and decomposition towers

3.1. Decomposition classes

We recall some results about decomposition classes. See the papers [Bro98b] and
[Bro98a] of Broer for details. Let l be a Levi subalgebra of a reductive Lie algebra
k, let z be the center of l, and let WL := NK(l)/L, where K is the adjoint group
of k. Let zgen = {z ∈ z : zk(z) = l}, and let Ox be the L-orbit through nilpotent
x ∈ l. We say that the decomposition class in k associated to l and x is the set

D(l, x) := K · (zgen +Ox) = K · (zgen + x).

By [Bro98a, Prop. 2.3] the morphism

K ×NK(l) (zgen +NK(l) · x) ∼= D(l, x), (k, y) 7→ Ad(k)y,
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is an isomorphism so, in particular D(l, x) is smooth. Let

Ḋ(l, x) := K ×L (zgen +NK(l) · x),

and consider the étale morphism µ : Ḋ(l, x) → D(l, x) given by µ(g, y) = Ad(g)y.
By [Bro98a, Prop. 2.3(iii)] the surjective morphism θ : Ḋ(l, x) → zgen given by
θ(g, z + y) = z for g ∈ G, z ∈ zgen and y ∈ NK(l) · x descends to give a surjective

morphism θ : D(l, x) → zgen/W
L. Denote by q : zgen → zgen/W

L the quotient
morphism.

Proposition 3.1 (See [Bro98a, Prop. 2.3]). Let D(l, x) be a decomposition class.

(1) The following diagram is Cartesian with étale horizontal maps:

Ḋ(l, x)

θ

��

µ // D(l, x)

θ
��

zgen
q // zgen/W

L.

(3.1)

In particular, Ḋ(l, x) is smooth.

(2) θ(D(l, x)) = zgen/W
L is smooth.

Remark 3.2. Let

Dc(l, x) = D(l, x)×z
gen

/W L zgen = {(y, z) : y ∈ K · (z +NK(l) · x), z ∈ zgen}.

By Proposition 3.1, the morphism β : Ḋ(l, x) → Dc(l, x) given by β(g, z + y) =
(Ad(g)(z + y), z) for g ∈ K, z ∈ zgen, and y ∈ NK(l) · x is an isomorphism.

Remark 3.3. Let r be the rank of k and let f1, . . . , fr be algebraically independent
generators of C[k]K , and consider the morphism F : k → C

r given by F (x) =
(f1(x), . . . , fr(x)). Then if χ : k → k//K is the geometric invariant theory quotient,
there is an induced isomorphism F : k//K → C

r. Let h ⊂ g be a Cartan subalgebra
containing zgen and let W = NG(h)/H be the Weyl group. Then, the diagram

D(l, x)

θ
��

χ // k//K

zgen/W
L i // h/W

OO

commutes, where i is the embedding induced by the inclusion zgen → h, and the
right vertical arrow is the Chevalley isomorphism. As a consequence, F (D(l, x)) ∼=
χ(D(l, x)) ∼= θ(D(l, x)) is smooth by Proposition 3.1. We will apply these ideas
later with k = gi, and F = Φi : gi → C

i as in Section 2.

Remark 3.4. We say a decomposition class D is regular if it is contained in kreg, the
set of regular elements of k. D(l, x) is regular if and only if x is regular nilpotent in
l. In the remainder of this paper, we consider only regular D(l, x), in which case
NK(l) · x = L · x.
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Remark 3.5. In the case when k = gl(n), a regular decomposition class D corre-
sponds to a partition of n. Indeed, if λ = (n1, . . . , nr) is a partition of n, we
associate to λ the Levi subalgebra l consisting of block diagonal matrices with
blocks of size nj for j = 1, . . . , r. The corresponding decomposition class consists
of matrices conjugate to a block diagonal matrix M(λ) with blocks of size nj for
j = 1, . . . , r, where the jth block Mj = zj idnj

+ xj , where idnj
is the nj × nj

identity matrix, and xj is a regular nilpotent element of gl(nj), and zi 6= zj if
i 6= j. It is elementary to show that every regular element of gl(n) is in M(λ)
for some partition λ. The group WL is a product of symmetric groups, given by
permuting blocks of the same size ([Bro98a, Sect. 9.1]).

Lemma 3.6. Let x, y ∈ gsreg. If Φ(x) = Φ(y), then yi ∈ Gi · xi for i = 1, . . . , n.

Proof. Since Φi(x) = Φi(y), then χ(xi) = χ(yi), where χ : gl(i) → gl(i)//GL(i)
is the adjoint quotient. The lemma now follows since each fiber of the adjoint
quotient has a unique regular conjugacy class ([Kos63]). �

Let P be a parabolic subgroup of K with Levi factor L and unipotent radical
U , let u and p be the corresponding Lie algebras, and let l1 = [l, l]. Note that
the quotient morphism β : Ḋ(l, x) → K ×P (zgen + L · x + u) is an isomorphism.
Surjectivity follows from the observation that if z ∈ zgen and y is nilpotent in l1,
then U · (z + y) = z + y + u. The reader may verify this assertion using the fact
that z+ y+ u is an irreducible U -variety, U · (x+ y) is closed in z+ y+ u, and the
stabilizer Uz+y is trivial. The remaining steps are routine to verify. In particular,

we regard Ḋ(l, x) as a locally closed subvariety of k̇ := K ×P p.
Let k̃ := K/P × k, and note that the morphism α : k̇ → k̃ given by α(g, y) =

(gP,Ad(g)y) is a closed embedding.

3.2. Decomposition towers

For i = 1, . . . , n, choose a regular decomposition class Di = Gi · (zi,gen +Oui
), with

zi,gen the generic part of the center zi of the Levi factor li of gi determined by Di,
and Oui

the regular nilpotent Li-orbit in li. Let Pi be a parabolic containing Li

for i = 1, . . . , n. We call the collection D = (D1, . . . , Dn) regular decomposition

data. Let WLi

i = NGi
(Li)/Li and

ΣD = WL1

1 × · · · ×WLn

n .

The group ΣD is a product of symmetric groups (see [Bro98a, Sect. 9.1]). Let

zD := z1,gen ⊕ · · · ⊕ zn,gen

and note that the product action of ΣD on zD is free, so zD/ΣD is smooth of
dimension dim(zD).

Definition 3.7. The subvariety

XD := {x ∈ gsreg : xi ∈ Di}

is called a tower of decomposition classes.

Recall the morphisms θi : Di → zi,gen/W
Li

i from diagram (3.1). Denote by

θD : XD → zD/ΣD the morphism θD(x) = (θ1(x1), . . . , θn(xn)). Let hi be a
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Cartan subalgebra of gi containing zi, and letWi beNGi
(hi)/Hi, the corresponding

Weyl group. Recall the embedding zi,gen/W
Li

i → hi/Wi and the isomorphism

Φi : hi/Wi → C
i from Remark 3.3. They compose to give an embedding Φi :

zi,gen/W
Li

i → C
i. We consider the product morphism

Φ = (Φ1, . . . ,Φn) : zD/ΣD → C(n+1

2 ).

Lemma 3.8. The diagram

XD
�

� //

θD
��

gsreg

Φ

��
zD/ΣD

Φ //
C

(n+1

2 )

is Cartesian. In particular, Φ−1(Φ(XD)) ∩ gsreg = XD, so that XD is a union of

A-orbits in gsreg.

Proof. Let z = (z1, . . . , zn) ∈ zD, and denote by z its representative in zD/ΣD. If
Φ(z) = Φ(x) for x ∈ gsreg, then Φi(zi) = Φi(xi) for i = 1, . . . , n. Thus, Φi(zi+ui) =
Φi(xi), so for each i, xi ∈ Gi · (zi + ui) by the proof of Lemma 3.6. It follows that
x ∈ XD and that θD(x) = z. �

Remark 3.9. Since the Kostant–Wallach map Φ : gsreg → C
(n+1

2 ) is surjective

(Theorem 2.3 in [KW06a]), it follows by Lemma 3.8 that the morphism θD : XD →
zD/ΣD is surjective. It then follows easily that dim Φ(XD) = dim zD/ΣD = dim zD.

Theorem 3.10. The subvariety XD is a smooth subvariety of g, and all its con-

nected components have dimension dim(zD) + n2 −
(
n+1

2

)
.

Proof. By Theorem 2.3 of [KW06a], Φ : gsreg → C(n+1

2 ) is a surjective submersion,

so Φ is smooth of relative dimension n2−
(
n+1

2

)
by Proposition III.10.4 of [Har77].

By Proposition III.10.1(b) of [Har77] and Lemma 3.8, the morphism θD : XD →
zD/ΣD is smooth of relative dimension n2 −

(
n+1

2

)
. By Remark 3.9, zD/ΣD is

smooth of dimension dim(zD) = dim(Φ(XD)), and it follows from Proposition
III.10.1(c) of [Har77] that XD is smooth of dimension n2 −

(
n+1

2

)
+ dim(zD). The

result now follows from definitions. �

3.3. Covers of decomposition towers

Fix regular decomposition data D = (D1, . . . , Dn) and associated notation, as in
the last section. Let

ġD :=

n∏

i=1

Ḋ(li, ui), g̃D :=

n∏

i=1

Gi/Pi × gi.

Consider the locally closed embedding

α = (α1, . . . , αn) : ġD → g̃D, (3.2)
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where αi(gi, y
i) = (giPi,Ad(gi)y

i) with gi ∈ Gi and yi ∈ zi,gen +Oui
.

Denote by µ = (µ1, . . . , µn) : ġD →
∏n

i=1 Di, where µi(gi, y
i) = Ad(gi)y

i.
Consider also the embedding γ : g →

∏n
i=1 gi given by γ(x) = (x1, . . . , xn).

Let ĝD := XD ×∏
n
i=1

Di
ġD, so the diagram

ĝD //

µ

��

ġD

µ

��
XD

γ // ∏n
i=1 Di

(3.3)

is Cartesian. Note that the canonical morphism ĝD → ġD is a locally closed
embedding, so we can view ĝD as a subvariety of ġD.

Remark 3.11. A point y = (g1, y
1, . . . , gn, y

n) ∈ ġD is contained in ĝD if and only
if (Ad(gn)yn)i = Ad(gi)y

i for i = 1, . . . , n− 1 and Ad(gn)yn ∈ gsreg.

Recall the morphisms θi : Ḋ(li, ui) → zi,gen, θi : Di → zi,gen/W
Li

i from diagram
(3.1). Denote by θD : ġD → zD the morphism θD = (θ1, . . . , θn). Abusing notation,
we denote by θD :

∏n
i=1 Di → zD/ΣD the morphism θD = (θ1, . . . , θn). We note

that θD ◦ γ : XD → zD/ΣD coincides with the morphism θD : XD → zD/ΣD from
Section 3.2.

Theorem 3.12. The morphism µ : ĝD → XD is a ΣD-covering, ĝD is smooth,

and all its connected components have dimension dim(zD) + n2 −
(
n+1

2

)
.

Proof. Consider the Cartesian diagram

ġD

µ

��

θD // zD

qD

��∏n
i=1Di

θD // zD/ΣD,

(3.4)

where qD is the quotient of the action of ΣD. This diagram is the product of Carte-
sian diagrams from equation (3.1). By Proposition 3.1, the product morphism µ is
a ΣD-covering, and the first claim follows easily from the Cartesian diagram (3.3).
Smoothness of ĝD and the dimension assertion follow from Theorem 3.10. �

Remark 3.13. Let D = (D1, . . . , Dn) with Di = (li, ui) and suppose for each i
that all blocks of li have different sizes (see Remark 3.5). Then ΣD is trivial and
ĝD ∼= XD.

Remark 3.14. We give another characterization of the variety ĝD, which will be
useful in Sections 5.4 and 5.5. Indeed, by diagrams (3.3) and (3.4), it follows that

ĝD
θD //

µ

��

zD

qD

��
XD

θD // zD/ΣD

(3.5)
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is Cartesian. Since XD → zD/ΣD is a surjective submersion, it follows that ĝD →
zD is a surjective submersion. Hence,

ĝD ∼= XD ×z
D

/ΣD zD = Dc,

where Dc := {(x, z1, . . . , zn) : x ∈ gsreg, xi ∈ Gi · (zi + ui)}. We denote by
µ : Dc → XD the projection on XD, and by κ : Dc → zD the projection on zD, so
κ(x, z1, . . . , zn) = (z1, . . . , zn).

Remark 3.15. Recall the open subset XD,gen of XD defined in the introduction,
and its preimage ĝD,gen = µ−1(XD,gen). In Remark 5.19, in the special case when
all Di are regular semisimple, we identify the cover ĝD,gen → XD,gen with the cover
MΩ(n, e) → MΩ(n) that plays a key role in [KW06b]. In Theorem 5.18, we show
that ĝD and XD are connected.

Remark 3.16. Consider the stratification gsreg =
⋃
XD. We claim that each XD

is coisotropic, and XD is a union of strata XE , where E ranges over certain regular
decomposition data. Indeed, for each x ∈ XD, A · x ⊂ XD is Lagrangian by
(2) of Theorem 2.1. Hence, XD is a union of Lagrangian subvarieties and hence
coisotropic.

By Remark 3.5, each regular decomposition class D ⊂ g is determined by a
partition of n, λ = (n1, . . . , nr) with n1 > n2 ≥ · · · > nr. We introduce an ordering
� on the set of partitions of n by declaring µ � λ if and only if µ = (m1, . . . ,ms),
where mi = nk1

+ · · ·+ nkr
, for some 1 6 kj 6 r.

Let h ⊂ g be the standard Cartan subalgebra of diagonal matrices and let W be
the Weyl group. We construct a stratification of h/W using partitions as follows.
Let λ = (n1, . . . , nr) be a partition of n and let Cλ ⊂ C

n ∼= h be given by all
n-tuples (x1, . . . , xn) in C

n satisfying the following two conditions:

(1) xn1+···+nj+1 = xn1+···+nj+2 = · · · = xn1+···+nj+nj+1
for all 0 6 j 6 r − 1

(with the convention that n0 = 0); and
(2) xn1+···+nj

6= xn1+···+nk
for any 1 6 j, k,6 r, j 6= k.

Let π : h → h/W be the quotient map and let Yλ = π(Cλ). Then h/W =⋃
λ`n Yλ, and Yλ =

⋃
µ�λ Yµ. Recall from Remark 3.3 that the map Φn : g → C

n

descends to an isomorphism Φn : h/W → C
n. By abusing notation, we also denote

by Yλ the image of Yλ under Φn.
Let D = (D1(λ1), . . . , Dn(λn)) and E = (E1(µ1), . . . , En(µn)) be regular de-

composition data, with λi, µi partitions of i. We declare E � D if µi � λi for all

i. As was observed in the proof of Theorem 3.10, Φ : gsreg → C
(n+1

2 ) is a smooth
morphism. From Lemma 3.8, it follows easily that XD = Φ−1(Yλ1

×· · ·×Yλn
). By

Theorem III.10.2 of [Har77] the morphism Φ is flat. Hence, by Theorem VIII.4.1
of [Gro03]

XD =Φ−1(Yλ1
× · · · × Yλn

)

=Φ−1(Yλ1
× · · · × Yλn

)

=Φ−1(∪µ1�λ1
Yµ1

× · · · × ∪µn�λn
Yµn

)

=
⋃

E�D

XE .
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4. Poisson geometry of ġ
D

In this section we use standard results from Poisson geometry to construct and
compute a Poisson structure πD on ġD.

4.1. Recollections from Poisson geometry

Let (M,π) be a Poisson manifold. Thus, π is a global section of
∧2(TM), and if

f, g are functions on M , their Poisson bracket defined by {f, g} := π(df, dg) makes
the ring of functions on M into a Poisson Lie algebra. Let π̃ : T ∗x (M) → Tx(M)
be the anchor map, defined by π̃(α)(β) = π(α, β) if α, β are cotangent vectors at
x ∈M . For f ∈ C[M ], we let ξf := π̃(df) be the Hamiltonian vector field of f . For
f, g ∈ C[M ], [ξf , ξg ] = ξ{f,g}. If N ⊂ M is a submanifold of M , its characteristic

distribution is π̃(T ∗N (M)), where T ∗N (M) is the conormal bundle to N in M .

Definition 4.1. A submanifold N of M is called coisotropic with respect to π if
its characteristic distribution π̃(T ∗N (M)) ⊂ TN .

Given two Poisson manifolds (M,πM ) and (R, πR) a smooth map φ : M → R
is Poisson if φ∗πM = πR.

Proposition 4.2. Let φ : (M,πM ) → (R, πR) be a surjective Poisson submersion

between Poisson manifolds. Assume that:

(1) Q is a coisotropic submanifold of (M,πM ).
(2) The characteristic distribution of πM on Q is a subspace of the distribution

defined by the tangent spaces to the fibers of φ.
(3) φ(Q) is a smooth submanifold of R.

Then φ(Q) is a Poisson submanifold of (R, πR).

We remark that this proposition is a mild generalization of Proposition 6.7 from
[EL07], and the proof given in [EL07] also works for our result here.

4.2. The Poisson structure on Ḋ(l, x)

A symplectic form ω on M induces an identification ω̃ : T (M) → T ∗(M) given
by ω̃(ξ)(η) = ω(ξ, η) for vector fields ξ, η on M . We consider the bivector π = πω

such that the second exterior power of ω̃ maps π to ω. Then (M,π) is Poisson (see
Section 1.2 of [CG97]).

We apply this construction to the case where M = T ∗K is the cotangent bundle
of a reductive group K with invariant nondegenerate bilinear form 〈 , 〉 on its Lie
algebra k. We identify T ∗K = K×k∗ = K×k, using left-invariant forms in the first
identification and 〈 , 〉 for the second identification. Fix a point (g, α) ∈M = K×k.

Definition 4.3.

(1) For X ∈ k, let ξX be the tangent vector at (g, α) to the curve t 7→
(g exp tX, α) at t = 0.

(2) For β ∈ k, let ηβ be the tangent vector at (g, α) to the curve t 7→ (g, α+ tβ)
at t = 0.

We identify k + k ∼= T(g,α)(M) via the map (X, β) 7→ (ξX , ηβ). We identify the
dual space T ∗(g,α)(M) = k + k using the form 〈 , 〉. Using these identifications, a

symplectic form ωcl on K × k is given by the formula (cf. page 497 of [KKS78]):
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ωcl(g,α)((X1, β1), (X2, β2)) = −〈β1, X2〉+ 〈β2, X1〉+ 〈α, [X1, X2]〉.

Up to sign, ωcl coincides with the canonical symplectic form on the cotangent
bundle from Section 1.1 of [CG97]. We denote by πcl = πωcl

the induced Poisson
bivector on T ∗K. Then the anchor map of πcl is given by the formula

π̃cl(g,α)(γ, Y ) = (−Y, γ + [Y, α]), γ, Y ∈ k. (4.1)

Recall the notation of Section 3.1, so p is a parabolic subalgebra of k with Levi
decomposition p = l + u, and zgen is the generic part of the center z of l.

Let Q = K × (z+L · x+ u), where z ∈ zgen and x ∈ l is nilpotent. Note that P
acts on Q diagonally by p · (g, α) = (gp−1,Ad(p)α) for p ∈ P , (g, α) ∈ Q.

Lemma 4.4. The subvariety Q is a coisotropic subvariety of M = K×k. Further,

the characteristic distribution is tangent to the diagonal P -action on Q.

Proof. Let (g, α) ∈ Q and let α = z+y+u, with y ∈ L·x and u ∈ u. Using the above
identification T(g,α)(M) = k + k, T(g,α)(Q) = (k, [l, y] + u), so that (T ∗Q(M))(g,α) =

(0, ([l, y] + u)⊥). Note that

([l, y] + u)⊥ = [l, y]⊥ ∩ u⊥ = (u− + zl(y) + u) ∩ p = zl(y) + u,

so that
(T ∗Q(M))(g,α) = (0, zl(y) + u). (4.2)

Applying (4.1), we compute the characteristic distribution

π̃cl(T
∗
Q(M))(g,α) = {(−Y, [Y, α]) : Y ∈ zl(y) + u}. (4.3)

It follows that the characteristic distribution is in the tangent space to the diagonal
P -action. In particular, Q is coisotropic. �

Note that the diagonal P -action on K × k preserves the Poisson structure πcl.
Hence, if we consider the projection map pr : K × k → K ×P k, then π := pr∗πcl is
a well-defined Poisson structure on K ×P k. Let α : K ×P k be given by α(k, x) =
(kP,Ad(k)x) as in equation (3.2). Since α : K×P k → K/P × k is an isomorphism,
it follows that Π := α∗π is a well-defined Poisson structure on K/P × k. Further,
if we let φ = α◦pr so φ(g, α) = (gP,Ad(g)α), then φ : (K× k, πcl) → (K/P × k,Π)
is a Poisson morphism.

Proposition 4.5. Let D(l, x) be a decomposition class. Then the variety Ḋ(l, x)
is a Poisson subvariety of (K ×P k, π). The morphism µ : Ḋ(l, x) → k defined by

p(g, v) = Ad(g)v is Poisson.

Proof. Choose z ∈ zgen. We apply Proposition 4.2 with M = K× k, Q = K× (z+
L · x+ u) and R = K ×P k, and the quotient morphism φ : M → R defined above.

By Lemma 4.4 and Proposition 4.2, K×P (z+L ·x+ u) is a Poisson subvariety
of (R, π). We show that π is nondegenerate on K×P (z+L ·x+ u). Note that the
morphism µ : R→ k is Poisson by Lemma 1.4.2 and Proposition 1.4.10 of [CG97],
so its restriction µ : K ×P (z + L · x + u) → K · (z + x) is a Poisson covering by
Proposition 3.1. Since K · (z + x) has nondegenerate Poisson structure, it follows
that K ×P (z + L · x + u) is symplectic. Thus, Ḋ(l, x) is a union of symplectic
leaves, and hence Poisson. �
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Remark 4.6. The Poisson structure on Ḋ(l, x) can also be realized by symplectic
reduction (see [KKS78] and [CG97]).

Since each Ḋ(li, ui) has Poisson structure πi, the product ġD =
∏n

i=1 Ḋ(li, ui)
inherits a product Poisson structure πD. Further, the product g̃D :=

∏n
i=1 g̃i

inherits a product Poisson structure ΠD, and the product morphism α : (ġD, πD) →
(g̃D,ΠD) from equation (3.2) is Poisson.

4.3. Computation of the anchor map

In this section we compute the anchor map on K/P × k for Π.

Since φ : (K×k, πcl) → (K/P×k,Π) is Poisson, it follows easily that Π̃(gP,Ad(g)α)

= φ(g,α),∗ ◦ π̃cl(g,α) ◦φ
∗
(g,α). We factor φ = (p, µ), where p(g, α) = gP and µ(g, α) =

Ad(g)α. As in the last section, we identify T(g,α)(K×k) = k+k. We further identify

k/p + k ∼= T(gP,β)(K/P × k); (X + p, γ) 7→ (ξX , ηγ), (4.4)

where ξX is the tangent vector to the curve t 7→ (g exp(tX)P, β) at t = 0, and ηγ is
the tangent vector to the curve (gP, β+tγ) at t = 0. We identify T ∗(gP,β)(K/P×k) =

u + k, using the identification u = p⊥.
It is routine to check that if (X, β) ∈ k + k and γ ∈ k = T ∗Ad(g)νk, then the

differential and codifferential are computed by

µ(g,ν),∗(X, β)=Ad(g)([X, ν]+β), µ∗(g,ν)(γ)=([ν,Ad(g−1)γ],Ad(g−1)γ). (4.5)

It follows that the differential

φ(g,ν),∗(X, β) = (X + p,Ad(g)([X, ν] + β)), (4.6)

and hence the codifferential

φ∗(g,ν)(λ, γ) = (λ+ [ν,Ad(g−1)γ],Ad(g−1)γ), λ ∈ u, γ ∈ k. (4.7)

Thus, for λ ∈ u,

Π̃(gP,Ad(g)ζ)(λ, 0) = φ(g,ζ),∗π̃cl(g,ζ)(λ, 0) = φ(g,ζ),∗(0, λ) = (0,Ad(g)λ), (4.8)

using equations (4.6), (4.7), and (4.1). Further, using the same equations, we
obtain

Π̃(gP,Ad(g)ζ)(0, γ)=φ(g,ζ),∗π̃cl(g,ζ)([ζ,Ad(g−1)γ],Ad(g−1)γ)

=φ(g,ζ),∗(−Ad(g−1)γ, 0)=(−Ad(g−1)γ + p, [Ad(g)ζ, γ]).
(4.9)

It follows that

Π̃(gP,Ad(g)ζ)(λ, γ) = (−Ad(g−1)γ + p, [Ad(g)ζ, γ] + Ad(g)λ). (4.10)

Remark 4.7. We can instead identify k/Ad(g)p ∼= TgP (K/P ) by letting X+Ad(g)p
be the tangent vector to t 7→ exp(tX)gP at t = 0, and use the corresponding
identification Ad(g)u ∼= T ∗gP (K/P ). When we use these identifications, we obtain
the formula for the anchor map

Π̃(gP,Ad(g)ζ)(λ, γ) = (−γ + Ad(g)p, [Ad(g)ζ, γ] + λ). (4.11)

With these identifications, it is clear that the anchor map does not depend on the
representative chosen for the coset gP .
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5. Lifting of Gelfand–Zeitlin fields to ĝD and algebraic integrability

In this section, let D = (D1, . . . , Dn) be regular decomposition data with Di =
D(li, ui). We introduce a collection of

(
n
2

)
functions Ĵ on ġD and compute their

Hamiltonian vector fields on ĝD. More precisely, if Di = D(li, ui), then we define
ri = dim(zi) functions qi,j on ġD using zi, and we define si = i− ri functons pi,k

on ġD using the semisimple part [li, li] of li. The functions Ĵi = {qi,j , pi,k : j =

1, . . . , ri, k = 1, . . . , si} give i functions on ĝD, and we define Ĵ =
⋃n−1

i=1 Ĵi. We

let â be the linear span of {ξf : f ∈ Ĵ}. We further show that â is abelian, and
the vector fields in â lift the vector fields in a on XD to ĝD and are algebraically
integrable on the ΣD-cover ĝD of XD.

Throughout this section, we denote by y = (g1, y
1, . . . , gn, y

n) an element of ĝD.

5.1. Functions associated to the center

In this section we introduce functions associated to the center of the Levi factor li.
For each i, 1 6 i 6 n, let Di be a decomposition class of gi. As in Remark 3.5,

the decomposition class Di determines a partition i = i1 + · · · + iri
, normalized

so ik > ij when k 6 j. Let li be the standard Levi subalgebra with diagonal
blocks of sizes (i1, . . . , iri

) and let Li · ui be the regular nilpotent orbit. Then
zi =

∑ri

k=1 C · idik
, where idik

is the identity matrix in the kth block, and 0 outside
the kth block. Consider the invariant symmetric form on g given by 〈X,Y 〉 =
Tr(X · Y ). The restriction of 〈· , ·〉 to gi is nondegenerate and gi

⊥ is spanned by
elementary matrices not in gi. In particular, g is a direct sum

g = gi ⊕ g⊥i . (5.1)

Remark 5.1. It is easy to see that both components of the decomposition in (5.1)
are Ad(Gi) and hence ad(gi) invariant.

Further, the restriction of the form is nondegenerate on li and zi. Let {zi,1, . . .
. . . , zi,ri

} be the dual basis in zi to the basis {idi1 , . . . , idiri
} of zi. Then 〈zi,j , z〉 =

λj where z =
∑ri

i=1 λk idik
, so that pairing with zi,j computes the jth eigenvalue

of z. It is easy to check that

zi,j =
idij

ij
. (5.2)

For j = 1, . . . , ri, we define a function qi,j on ġD =
∏n

k=1 Gk×Lk
(zk,gen+Lk ·uk)

by the formula

qi,j(g1, y
1, . . . , gn, y

n) =

n∑

s=i+1

〈Ad(gs)y
s,Ad(gi)zi,j〉, (5.3)

where gk ∈ Gk and yk ∈ zk,gen + Lk · uk for k = 1, . . . , n. It is routine to check
that qi,j is a well-defined regular function on ġD.

For i = 1, . . . , n, we fix a parabolic subgroup Pi containing Li, and recall that
g̃D =

∏n
i=1(Gi/Pi × gi).

At a point v = (g1P1, x
1, . . . , gnPn, x

n) of g̃D, we identify the tangent space
Tv(g̃D) =

⊕n
i=1(gi/pi + gi) using the product of the identifications of equation
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(4.4). Similarly, we identify T ∗v (g̃D) =
⊕n

i=1(ui + gi). For each j = 1, . . . , ri, we

define a covector λ̃i,j ∈
⊕n

i=1(ui + gi) by setting

λ̃i,j = (0, 0, . . . , 0, 0︸︷︷︸
ith

, 0,Ad(gi)zi,j︸ ︷︷ ︸
(i + 1)st

, . . . , 0,Ad(gi)zi,j︸ ︷︷ ︸
nth

),

so that the first i pairs are (0, 0) ∈ uk ⊕ gk, 1 6 k 6 i, and the last (n − i) pairs
are (0,Ad(gi)zi,j) ∈ uk ⊕ gk, i+ 1 6 k 6 n.

Recall the morphism α : ġD → g̃D from equation (3.2).

Proposition 5.2. Let y ∈ ĝD. Then

α∗y(λ̃i,j) = dqi,j(y).

Proof. It suffices to verify that

λ̃i,j(αy,∗(χ)) = dqi,j(y)(χ) (5.4)

for each tangent vector χ in a generating set of tangent vectors of Ty(ġD).
For Bk ∈ gk, we let ξBk

∈ Ty(ġD) be the tangent vector at t = 0 to the curve

t 7→ (g1, y
1, . . . , gk exp(tBk), yk, . . . , gn, y

n), (5.5)

constant in all directions except the (gk, y
k) direction. For Ck ∈ zk, we let ηCk

∈
Ty(ġD) be the tangent vector at t = 0 to the curve

t 7→ (g1, y
1, . . . , gk, y

k + tCk, . . . , gn, y
n), (5.6)

constant in all directions except the (gk, y
k) direction. For k = 1, . . . , n, the

tangent vectors ξBk
, ηCk

generate Ty(ġD).
For k < i, dqi,j(ξBk

) = 0 since qi,j is constant along the corresponding flows.
For k 6 i, dqi,j(ηCk

) = 0 for the same reason.
For the case k = i,

dqi,j(y)(ξBi
) =

d

dt

∣∣∣
t=0

n∑

s=i+1

〈Ad(gs)y
s,Ad(gi exp(tBi))zi,j〉

=

n∑

s=i+1

〈Ad(gs)y
s,Ad(gi)[Bi, zi,j ]〉.

We claim that dqi,j(y)(ξBi
) = 0. For this, it suffices to prove that for each s > i,

〈Ad(gs)y
s,Ad(gi)[Bi, zi,j ]〉 = 〈[zi,j ,Ad(g−1

i gs)y
s], Bi〉 = 0. By equation (5.1),

〈[zi,j ,Ad(g−1
i gs)y

s], Bi〉 = 〈[zi,j ,Ad(g−1
i gs)y

s]i, Bi〉. (5.7)

Since y ∈ ĝD, (Ad(gs)ys)i = Ad(gi)yi by Remark 3.11. Since zi,j ∈ gi, it follows
from Remark 5.1 that we may rewrite (5.7) as

〈[zi,j ,Ad(g−1
i )(Ad(gs)y

s)i], Bi〉 = 〈[zi,j , y
i], Bi〉 = 0,
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since yi ∈ li.
For k > i,

dqi,j(y)(ξBk
) =

d

dt

∣∣∣
t=0

〈Ad(gk exp(tBk))yk,Ad(gi)zi,j〉

= 〈Ad(gk)[Bk, y
k],Ad(gi)zi,j〉.

It is now straightforward to verify equation (5.4) for χ = ξBk
using the formula

for λ̃i,j . An easier version of the above computation implies equation (5.4) for
χ = ηCk

. This completes the proof. �

We now compute the Hamiltonian vector fields ξqi,j
of the functions qi,j on ĝD.

Proposition 5.3. For the Poisson structure πD on ġD and a point y = (g1, y
1, . . .

. . . , gn, y
n) of ĝD, the pushforward αy,∗ξqi,j

has a (gk/pk, gk)-component (0, 0) for

k 6 i and has a (gk/pk, gk)-component

(−Ad(g−1
k gi)zi,j + pk, [Ad(gk)yk,Ad(gi)zi,j ])

for k > i.

Proof. By Proposition 5.2,

αy,∗(ξqi,j
) = αy,∗π̃Dyα

∗
y(λ̃i,j).

Since the embedding α : (ġD, πD) → (g̃D,ΠD) is Poisson (see Section 4.2),

αy,∗π̃Dyα
∗
y(λ̃i,j) = Π̃Dα(y)(λ̃i,j).

The proposition now follows easily from equation (4.10). �

We now define a curve θi,j(y, t) that integrates the vector field ξqi,j
on ĝD. For

y = (g1, y
1, . . . , gn, y

n) ∈ ġD, we let

hi,j(y, t) = exp(−tAd(gi)zi,j).

We define the curve θi,j(y, t) in ġD by the equation

t 7→ (g1, y
1, . . . , gi, y

i, hi,j(y, t)gi+1, y
i+1, . . . , hi,j(y, t)gn, y

n). (5.8)

Proposition 5.4. The curve θi,j(y, t) is an integral curve for ξqi,j
on ĝD, and

induces an algebraic action of C× on ĝD.

Proof. Suppose y ∈ ĝD. Let xi = Ad(gi)y
i for i = 1, . . . , n. To show that

θi,j(y, t) ∈ ĝD, we must verify that, for k > i,

(Ad(hi,j(y, t))x
n)k = Ad(hi,j(y, t))x

k (5.9)

and, for k 6 i,
(Ad(hi,j(y, t))x

n)k = xk, (5.10)

61



ON ALGEBRAIC INTEGRABILITY OF GELFAND–ZEITLIN FIELDS

and also verify that Ad(hi,j(y, t))x
n is strongly regular. For k > i, hi,j(y, t) ∈

Gi ⊂ Gk, so by Remark 5.1 we may rewrite the left side of (5.9) as

Ad(hi,j(y, t))(x
n)k = Ad(hi,j(y, t))x

k ,

since (xn)k = xk by Remark 3.11. Now, if k 6 i, then

(Ad(hi,j(y, t))x
n)k = (Ad(hi,j(y, t))(x

n)i)k = (Ad(hi,j(y, t))x
i)k = (xi)k = xk,

since hi,j(y, t) centralizes xi. To verify that Ad(hi,j(y, t))x
n is strongly regular, we

use equations (5.9) and (5.10). We first observe that (Ad(hi,j(y, t))x
i)k is regular

in gk by equations (5.9) and (5.10) and Theorem 2.1(3). For k < i, equation (5.10)
implies

zg
k
((Ad(hi,j(y, t))·x

n)k)∩zg
k+1

((Ad(hi,j(y, t))·x
n)k+1)=zg

k
(xk)∩zg

k+1
(xk+1)=0,

by Theorem 2.1(3). For k > i, by (5.9),

zg
k
((Ad(hi,j(y, t)) · x

n)k) ∩ zg
k+1

((Ad(hi,j(y, t)) · x
n)k+1)

= Ad(hi,j(y, t))(zg
k
(xk) ∩ zg

k+1
(xk+1)) = 0.

Thus, by Theorem 2.1, Ad(hi,j(y, t))x
n is strongly regular and θi,j(y, t) ∈ ĝD for

y ∈ ĝD.
By Proposition 5.3, it follows that (d/dt)θi,j(y, t) = ξqi,j

. Consider the element

h̃i,j(y, s) = giAj(s)g
−1
i ∈ Gi, where s ∈ C× and Aj(s) is the diagonal matrix in

Gi with scalar matrix s in the jth block of li and 1 elsewhere on the diagonal.
We define a curve θ̃i,j(y, s) in ġD using equation (5.8) with h̃i,j(y, s) in place of

hi,j(y, t). It follows from equations (5.2) and (5.8) that θ̃i,j(y, s) = θi,j(y, t) when
s = exp(−t/ij), which completes the proof of the proposition. �

5.2. Functions associated to the semisimple part

Let si = i− dim(zi). In this section we find si algebraically independent functions
on ġD and show their Hamiltonian vector fields integrate to an algebraic action on
ĝD.

Let li be the standard Levi factor associated to the decomposition class Di. We
decompose li = si ⊕ zi, where si = [li, li] is the derived algebra of li, and note that
the form 〈 , 〉 is nondegenerate on si.

For x ∈ si, and f ∈ C[si], we define the gradient ∇f(x) ∈ si by the property
that 〈∇f(x), u〉 = df(x)(u) = (d/dt)|t=0f(x + tu) for u ∈ si. It follows from
definitions that if g ∈ Li and Ad(g)f = f , then

∇f(Ad(g)x) = Ad(g)(∇f(x)). (5.11)

Further, if f ∈ C[si]
ZLi

(x), then

[∇f(x), u] = 0 ∀ u ∈ zsi
(x). (5.12)
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Lemma 5.5. Let f1, f2 ∈ C[si]
Li . Then [∇f1(x),∇f2(x)] = 0.

Proof. By equation (5.12) with u = x, ∇fi(x) ∈ zsi
(x). The result follows imme-

diately from another application of equation (5.12) with u = ∇fi(x). �

Let now f ∈ C[si]
Li be an invariant function, and define a regular function f̃

on ġD by the formula

f̃(g1, y
1, . . . , gn, y

n) =

n∑

s=i+1

〈Ad(gs)y
s,Ad(gi)∇f(ni)〉, (5.13)

where yi = si + ni is the Jordan decomposition of yi. By equation (5.11), f̃ is a
well-defined regular function on ġD.

Let y = (g1, y
1, . . . , gn, y

n) ∈ ĝD. Using the identification T ∗α(y)(g̃D) =
⊕

(ui +

gi), we regard the vector

ψ = (0, 0, . . . , 0, 0︸︷︷︸
ith

, 0,Ad(gi)∇f(ni)︸ ︷︷ ︸
(i + 1)st

, . . . , 0,Ad(gi)∇f(ni)︸ ︷︷ ︸
nth

)

as a cotangent vector at α(y) ∈ g̃D.

Proposition 5.6. For y ∈ ĝD, α∗y(ψ) = df̃(y).

Proof. We must check that

ψ(α∗,y(χ)) = df̃(y)(χ) (5.14)

for each tangent vector χ in a generating set of tangent vectors of Ty(ġD). It
suffices to check this assertion when χ is the evaluation of a vector field ξBk

with
Bk ∈ gk or the evaluation of a vector field ηCk

with Ck ∈ zk at y (see equations
(5.5) and (5.6)). If k < i, the assertion is trivial as both sides are 0. If k > i, we
compute

df̃(y)(ξBk
) = 〈Ad(gk)[Bk, y

k],Ad(gi)∇f(ni)〉 = ψ(α∗,yξBk
).

If k = i, we compute

df̃(y)(ξBi
) =

d

dt

∣∣∣
t=0

n∑

s=i+1

〈Ad(gs)y
s,Ad(gi exp(tBi))∇f(ni)〉. (5.15)

Since exp(−tBi) ∈ Gi, ∇f(ni) ∈ gi, and (Ad(gs)y
s)i = Ad(gi)y

i,

〈Ad(gs)y
s,Ad(gi exp(tBi))∇f(ni)〉 = 〈Ad(exp(−tBi)g

−1
i gs)y

s,∇f(ni)〉

= 〈(Ad(exp(−tBi)g
−1
i gs)y

s)i,∇f(ni)〉

= 〈Ad(exp(−tBi))y
i,∇f(ni)〉.

(5.16)

Hence, we may rewrite equation (5.15) as

df̃(y)(ξBi
) =

d

dt

∣∣∣
t=0

n∑

s=i+1

〈Ad(exp(−tBi))y
i,∇f(ni)〉. (5.17)
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But

d

dt

∣∣∣
t=0

〈Ad(exp(−tBi))y
i,∇f(ni)〉 = 〈−Bi, [y

i,∇f(ni)]〉 = 0 (5.18)

using equation (5.12), and equation (5.14) follows easily for χ = ξBk
. The verifi-

cation of equation (5.14) for χ = ηCk
is left to the reader. �

We denote by yi = si + ni the Jordan decomposition of yi ∈ D(li, ui) for
the remainder of the paper. We choose si algebraically independent functions
φi,j ∈ C[si]

Li . For j = 1, . . . , si, we define a regular function pi,j on ġD by

pi,j = φ̃i,j , using equation (5.13) with f = φi,j .

Remark 5.7. The set {∇φi,j(n
i) : j = 1, . . . , si} is a basis of zsi

(ni). First note
that ∇φi,j(n

i) ∈ zsi
(ni) by equation (5.12). Since ni is principal nilpotent in

si, dim zsi
(ni) = rank(si) = si, and the elements {∇φi,j(n

i) : j = 1, . . . , si} are
linearly independent by a well-known result of Kostant [Kos63, Theorem 9].

By Proposition 5.6, it follows that, for y ∈ ĝD,

dpi,j(y) = α∗y(ψi,j), (5.19)

where ψi,j is the vector in
⊕

(ui + gi) given by

ψi,j = (0, 0, . . . , 0, 0︸︷︷︸
ith

, 0,Ad(gi)∇φi,j(n
i)︸ ︷︷ ︸

(i + 1)st

, . . . , 0,Ad(gi)∇φi,j(n
i)︸ ︷︷ ︸

nth

). (5.20)

Proposition 5.8. For the Poisson structure πD on ġD and y = (g1, y
1, . . . , gn, y

n)
∈ ĝD, the kth component in (gk/pk, gk) of the pushforward αy,∗ξpi,j

is (0, 0) if

k 6 i, and if k > i, it is

(−Ad(g−1
k gi)∇φi,j(n

i) + pk, [Ad(gk)yk,Ad(gi)∇φi,j(n
i)]).

The proof is similar to the proof of Proposition 5.3, and we leave the details to the
reader.

We define
Ai,j(y, t) = exp(−tAd(gi)(∇φi,j (n

i))). (5.21)

Since ni is principal nilpotent in si, ∇φi,j(n
i) ∈ zsi

(ni) is nilpotent by a well-
known result of Kostant (see Remark 35.1.4 in [TY05]). It follows that the mor-
phism t 7→ Ai,j(y, t) is algebraic.

For each j = 1, . . . , si, define a curve in ġD by the formula

µi,j(y, t) = (g1, y
1, . . . , gi, y

i, Ai,j(y, t)gi+1, y
i+1, . . . , Ai,j(y, t)gn, y

n). (5.22)

Proposition 5.9. The curve µi,j(y, t) is an integral curve for the Hamiltonian

vector field ξpi,j
on ĝD, and induces an algebraic action of the additive group C on

ĝD.

The proof is similar to the proof of Proposition 5.4 and the details are left to
the reader.
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5.3. Lift of the A-action to ĝD

Let

Ĵi = {qi,j : j = 1, . . . , ri = dim(zi)} ∪ {pi,k : k = 1, . . . , si = i− ri},

and let Ĵ =
⋃n−1

i=1 Ĵi.
Let

âi := span{ξf : f ∈ Ĵi} ⊂ Γ(ĝD, T ĝD), â :=

n−1∑

i=1

âi. (5.23)

Recall the étale covering µ : ĝD → XD. In this section, we show that â is an
abelian Lie algebra of dimension

(
n
2

)
, and µ∗â = a, so that â lifts the action of a

to the covering ĝD.

Proposition 5.10. If ξf and ξg ∈ â, then [ξf , ξg](y) = 0 for all y ∈ ĝD.

Proof. To prove the proposition, it suffices to show that the flows corresponding
to generating vector fields in â commute, i.e., for i 6 k,

θi,j(θk,l(y, s), t) = θk,l(θi,j(y, t), s), ∀ y ∈ ĝD,

µi,j(µk,l(y, s), t) = µk,l(µi,j(y, t), s), ∀ y ∈ ĝD,

θi,j(µk,l(y, s), t) = µk,l(θi,j(y, t), s), ∀ y ∈ ĝD.

(5.24)

For this, let u ∈ Gi and v ∈ Gk. For a point q=(g1, y
1, . . . , gn, y

n)∈
∏n

a=1Ga×
ga, define h(q) = giug

−1
i and l(q) = gkvg

−1
k . Set

ri(q) = (g1, y
1, . . . , gi, y

i, h(q)gi+1, y
i+1, . . . , h(q)gn, y

n),

wk(q) = (g1, y
1, . . . , gk, y

k, l(q)gk+1, y
k+1, . . . , l(q)gn, y

n).

The identities in equation (5.24) reduce to the equation

ri(wk(q)) = wk(ri(q)) (5.25)

for particular choices of u and v.
We first assume i < k. Then if a 6 k, it is routine to check that the Ga × ga

coordinates in equation (5.25) coincide. For a > k, the Ga × ga-coordinate of
ri(wk(q)) is (h(q)l(q)ga, y

a), while the Ga × ga-coordinate of wk(ri(q)) is

(h(q)l(q)h(q)−1h(q)ga, y
a),

so equation (5.25) is easily verified.
In the case i = k, note that equation (5.25) is easy to verify when uv = vu.

Thus, to verify equations (5.24), it suffices to check that uv = vu when u and v are
chosen from exp(−tzi,j) and exp(−s∇φi,l(n

i)), for j = 1, . . . , ri and l = 1, . . . , si,
and for any t, s ∈ C. This follows by Lemma 5.5. �

We now show that â lifts the action of a to ĝD.
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Lemma 5.11. Let µ : ĝD → XD be the étale covering defined in Section 3.3. Then

µ∗â = a, so that â lifts the action of a to ĝD.

Proof. Consider the commutative diagram

ĝD //

µ

��

ġD
α //

µ

��

g̃D

Ψ

��
XD

γ // ∏n
i=1Di

// ∏n
i=1 Di,

(5.26)

where the first square is diagram (3.3) and the map Ψ : g̃D →
∏n

i=1Di is pro-
jection on

∏n
i=1Di. For z ∈

∏n
i=1Di we identify Tz(

∏n
i=1Di) as a subspace

of Tz(
∏n

i=1 gi) = ⊕n
i=1gi. Let y = (g1, y

1, . . . , gn, y
n) ∈ ĝD. Then α(y) =

(g1P1, x
1, . . . , gnPn, x

n), where xi = Ad(gi)y
i. We let x = xn, so xi = xi by

Remark 3.11. By Propositions 5.3 and 5.8,

Ψα(y),∗αy,∗ξqi,j
= (0, 0, . . . , 0︸︷︷︸

ith

, [xi+1,Ad(gi)zi,j ]︸ ︷︷ ︸
(i + 1)st

, . . . , [x,Ad(gi)zi,j ]︸ ︷︷ ︸
nth

), (5.27)

for 1 6 i 6 n− 1, 1 6 j 6 ri, and

Ψα(y),∗αy,∗ξpi,j

= (0, 0, . . . , 0︸︷︷︸
ith

, [xi+1,Ad(gi)∇φi,j(n
i)]︸ ︷︷ ︸

(i + 1)st

, . . . , [x,Ad(gi)∇φi,j(n
i)]︸ ︷︷ ︸

nth

), (5.28)

for 1 6 i 6 n− 1, 1 6 j 6 si.
Recall that ξfi,j

∈ a, where fi,j(x) = Tr(xj
i ). Then identifying Tz(g) = g for

z ∈ g, it follows from Theorem 2.12 in [KW06a] that (ξfi,j
)z = [jzj−1

i , z]. Hence,

γx,∗ξfi,j
= ([jxj−1

i , x]1, [jx
j−1
i , x]2, . . . , [jx

j−1
i , x]).

From Remark 5.1 it follows that for k > i, [jxj−1
i , x]k = [jxj−1

i , xk] and for

k 6 i, [jxj−1
i , x]k = 0. Thus,

γx,∗ξfi,j
= (0, 0 . . . , 0︸︷︷︸

ith

, [jxj−1
i , xi+1]︸ ︷︷ ︸
(i + 1)st

, . . . , [jxj−1
i , x]). (5.29)

Since y ∈ ĝD, x ∈ gsreg by Remark 3.11, so that by Theorem 2.1, xi is regular
for all i. Thus,

span{xj−1
i : 1 6 j 6 i} = zg

i
(xi),

by a standard result from linear algebra. We claim

span{Ad(gi)zi,j , Ad(gi)∇φi,k(ni) : 1 6 j 6 ri, 1 6 k 6 si} = zg
i
(xi).

Indeed, Ad(g−1
i )xi = yi = si + ni with ni ∈ si principal nilpotent. By Remark

5.7, {∇φi,k(ni) : 1 6 k 6 si} is a basis of zsi
(ni). Since zg

i
(yi) = zi ⊕ zsi

(ni), the
claim follows easily.

By equations (5.27), (5.28), and (5.29), span{γx,∗ξfi,j
: 1 6 j 6 i− 1} equals

span{Ψα(y),∗αy,∗ξqi,j
: 1 6 j 6 ri} ⊕ span{Ψα(y),∗αy,∗ξpi,k

: 1 6 k 6 si} (5.30)

for each i, 1 6 i 6 n− 1, and any y ∈ ĝD. Thus, γ∗a = Ψ∗α∗â = γ∗µ∗â, so since γ
is an embedding, a = µ∗â. �
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5.4. The integration of the â-action on ĝD

In this section, we show that the Lie algebra â integrates to an algebraic action of
a connected abelian algebraic group on ĝD.

As before, D = (D1, . . . , Dn) is regular decomposition data with Di = Gi ·
(zi,gen + ui). Recall the identification from Section 3.3,

ĝD ∼= Dc = {(x, z1, . . . , zn) ∈ gsreg × zD : xi ∈ Gi · (zi + ui)},

and the projections µ : Dc → gsreg and κ : Dc → zD. For (z1, . . . , zn) ∈ zD,

κ−1(z1, . . . , zn)
µ
∼= {x ∈ XD : xi ∈ Gi · (zi + ui), i = 1, . . . , n}

= Φ−1(Φ1(z1), . . . ,Φn(zn)) ∩ gsreg

(5.31)

by Lemma 3.6.
It is convenient to normalize the nilpotent matrix ui so that ui = ei is the

unique principal nilpotent element of li in Jordan canonical form. Let ZDi
=

ZGi
(zi + ei) = ZLi

(ei). Note that ZDi
is connected and abelian because it is the

centralizer of a regular element of li (see Proposition 14 in [Kos63]). We identify

Ḋ(li, e
i) = Gi ×Li

(zi,gen + Li · e
i) ∼= Gi ×ZDi

(zi,gen + ei),

and identify ġD
∼=

∏n
i=1Gi ×ZDi

(zi,gen + ei). The abelian algebraic group ZDi
has

Levi decomposition ZDi
= Zi × (ZDi

)u with unipotent radical (ZDi
)u, and its Lie

algebra zDi
= zi ⊕ zsi

(ei). Recall that exp : zsi
(ei) → (ZDi

)u is an isomorphism.
Further zsi

(ei) has basis given by the elements ∇φi,j(e
i) for j = 1, . . . , si by

Remark 5.7.

Lemma 5.12. If x ∈ gsreg, then ZGi
(xi)∩ZGi+1

(xi+1) = {e} for all 1 6 i 6 n−1,
where e ∈ Gn denotes the identity matrix.

Proof. If A ∈ ZGi
(xi) ∩ ZGi+1

(xi+1), then it follows easily that A− e ∈ zg
i
(xi) ∩

zg
i+1

(xi+1) = 0 by Theorem 2.1, which implies the lemma. �

We consider the connected, abelian algebraic group ZD = ZD1
× · · · × ZDn−1

.

Theorem 5.13.

(1) The Lie algebra â integrates to a free algebraic action of the group ZD on

ĝD. This action of ZD preserves the fibers κ−1(z1, . . . , zn) for (z1, . . . , zn)∈
zD.

(2) The orbits of ZD in κ−1(z1, . . . , zn) are the irreducible components of

κ−1(z1, . . . , zn). If we let ji denote the cardinality of the set σi(zi) ∩
σi+1(zi+1) for 16 i6n−1, then the number of ZD-orbits in κ−1(z1, . . . , zn)

is exactly 2
∑n−1

i=1
ji .

Proof. Let ki ∈ ZDi
and let y = (g1, y

1, . . . , gn, y
n) ∈ ĝD with yi ∈ zi,gen + ei. The

group ZDi
acts on ĝD by the formula

ki · y = (g1, y
1, . . . , gi, y

i, gikig
−1
i gi+1, y

i+1, . . . , gikig
−1
i gn, y

n). (5.32)
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We claim that T (ZDi
· y) = âi (see (5.23)). Indeed, Ty(ZDi

· y) = Ty(Zi ·
y) + Ty((ZDi

)u · y). By equations (5.8) and (5.22), for y ∈ ĝD, Ty(Zi · y) =
span{ξqi,j

(y) : j = 1, . . . , ri} and Ty((ZDi
)u · y) = span{ξpi,k

(y) : k = 1, . . . , si},
which gives the claim. Hence, âi induces the tangent space to the ZDi

-action at
every point y of ĝD, so the action of âi integrates to the algebraic action of the
algebraic group ZDi

on ĝD.
Using equation (5.24), it is easy to verify that the actions of ZDi

and ZDk

commute for i 6= k. Hence, ZD acts on ĝD by the formula

(k1, . . . , kn−1) · y = k1 · · · kn−1 · y, ki ∈ ZDi
, y ∈ ĝD. (5.33)

or, more explicitly,

(k1, . . . , kn−1) · y =

(g1, y
1, g1k1g

−1
1 g2, y

2, . . . , g1k1g
−1
1 . . . gi−1ki−1g

−1
i−1gi, y

i

︸ ︷︷ ︸
ith

,

. . . , g1k1g
−1
1 . . . gn−1kn−1g

−1
n−1gn, y

n

︸ ︷︷ ︸
nth

). (5.34)

Since âi integrates to an algebraic action of ZDi
for each i, 1 6 i 6 n− 1, and

the actions of the groups ZDi
commute, it follows that â integrates to an algebraic

action of ZD on ĝD. By equations (5.32) and (5.33), the ZD-action on ĝD preserves
the fibers κ−1(z1, . . . , zn) for (z1, . . . , zn) ∈ zD.

To prove that the ZD-action on ĝD is free, we show by induction that if k =
(k1, . . . , kn−1) fixes y ∈ ĝD, and k1, . . . , ki−1 = e, then ki = e. Indeed, then k ·y has
Gi+1×gi+1 coordinate (gikig

−1
i gi+1, y

i+1), so by hypothesis, Ad(gikig
−1
i gi+1)y

i+1

= Ad(gi+1)y
i+1. Thus, if we set xi = Ad(gi)y

i and xi+1 = Ad(gi+1)y
i+1, then

gikig
−1
i ∈ ZGi

(xi) ∩ ZGi+1
(xi+1) = {e} by Lemma 5.12. Hence, ki = e, which

establishes the inductive step, so the ZD-action is free.
To prove (2) we first observe that since the connected algebraic group ZD

acts freely on ĝD, each ZD-orbit in κ−1(z1, . . . , zn) is an irreducible subvariety of
κ−1(z1, . . . , zn) of dimension

(
n
2

)
. It follows that all orbits of ZD on κ−1(z1, . . . , zn)

are closed. Let c=(Φ1(z1), . . . ,Φn(zn)). Using the isomorphism µ : κ−1(z1, . . . , zn)
→ Φ−1(c)sreg of equation (5.31), it follows that if x ∈ κ−1(z1, . . . , zn), then µ(ZD·x)
is a closed, irreducible subvariety of dimension

(
n
2

)
of Φ−1(c)sreg. By Theorem 3.12

in [KW06a], each irreducible component of Φ−1(c)sreg is an A-orbit of dimension(
n
2

)
, which implies the first statement of (2). The last statement of (2) now follows

from Theorem 2.3. �

Remark 5.14. Let D = (D1, . . . , Dn) with Di = D(li, ui) and suppose for each i
that all blocks of li have different sizes (see Remarks 3.5 and 3.13). In this case,
Theorem 5.13 implies that a integrates to an algebraic action of ZD on XD.

Remark 5.15. Let x ∈ XD and let Φ(x) = c ∈ C
(n+1

2 ). In Section 4 of [Col], the
first author constructed an algebraic ZD-action on Φ−1(c)sreg (see Theorem 2.3).
For y ∈ ĝD such that µ(y) ∈ Φ−1(c)sreg and z ∈ ZD, µ(z · y) = z · µ(y). This can
be verified using the formula for the action in [Col]. However, the ZD-action on
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each fiber Φ−1(c)sreg does not in general extend to a global algebraic ZD-action
on XD that integrates the a-action, but the lift â of a does integrate to a global
algebraic action on the covering ĝD by the previous theorem. In addition, we
regard the formula for the ZD-action given in equation (5.33) as much simpler
than the formula given from [Col].

5.5. Generic elements and irreducibility of ĝD

In this section we show that ĝD and XD are connected by considering the open
subset

zD,gen := {(z1, . . . , zn) ∈ zD : σi(zi) ∩ σi+1(zi+1) = ∅, i = 1, . . . , n− 1},

its preimage ĝD,gen := κ−1(zD,gen), and XD,gen := µ(ĝD,gen). We further show that
when each Di consists of regular semisimple elements, then µ : ĝD,gen → XD,gen

specializes to a covering considered by Kostant and Wallach in [KW06b], and
generalize a result in [KW06b] concerning Hessenberg matrices to our setting.

Note that

ĝD,gen = {(x, z1, . . . , zn) : x ∈ XD,gen, (z1, . . . , zn) ∈ zD,gen},

XD,gen = {x ∈ XD : σi(xi) ∩ σi+1(xi+1) = ∅}.

It follows from definitions that ZD acts on ĝD,gen.

Corollary 5.16. For (z1, . . . , zn) ∈ zD,gen, the group ZD acts simply transitively

on the fibers κ−1(z1, . . . , zn).

Proof. Since the cardinality of the sets σi(zi)∩σi+1(zi+1) is zero for i = 1, . . . , n−1,
the corollary follows by Theorem 5.13. �

Proposition 5.17. The map µ : ĝD,gen → XD,gen is a ΣD-covering and ĝD,gen is

smooth and irreducible.

Proof. By Theorem 3.12, µ : ĝD,gen → XD,gen is a ΣD-covering of smooth varities,
so it suffices to show that ĝD,gen is connected. By Remark 3.14, κ : ĝD,gen → zD,gen

is a surjective submersion, so κ is smooth of relative dimension n2−
(
n+1

2

)
([Har77,

Prop. III.10.4]) and hence flat ([Har77, Theorem III.10.2]). Hence by Exercise
III.9.1 in [Har77], it follows that κ is an open morphism. By Corollary 5.16, κ
has connected fibers, and it is clear that zD,gen is connected. The proposition now
follows from the following easy fact: if f : X → Y is a surjective, open morphism,
and Y and all fibers of f are connected, then X is connected. �

Theorem 5.18. The varieties ĝD and XD are connected and irreducible.

Proof. By Theorems 3.10 and 3.12, and the fact that µ : ĝD → XD is surjective,
it suffices to prove that ĝD is connected. Let ĝD = Y1 ∪ · · · ∪ Yk be the connected
components of ĝD. By Proposition 5.17, we may assume that ĝD,gen ⊂ Y1. Hence,
if i > 1, Yi ⊂ ĝD,s := ĝD − ĝD,gen. By the dimension assertion in Theorem 3.12, it
suffices to prove that dim(ĝD,s) < dim(ĝD).

For this, since κ : ĝD → zD is smooth of relative dimension n2 −
(
n+1

2

)
, for

any locally closed subvariety Y ⊂ zD, dim(κ−1(Y )) = dim(Y ) + n2 −
(
n+1

2

)
by
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Proposition III.10.1(b) of [Har77]. Let zD,s := zD − zD,gen, and note that ĝD,s =

κ−1(zD,s). It follows easily that dim(ĝD,s) = dim(zD,s)+n
2−

(
n+1

2

)
and dim(ĝD) =

dim(zD) + n2 −
(
n+1

2

)
. At the beginning of Section 5.1, we identify C

ri ∼= zi,
and we can then identify the variety zD with an open subset in C

r ∼=
∑n

i=1 zi,
r =

∑n
i=1 ri. Using this identification, zD,s is identified with an open subset of a

union of hyperplanes in C
r. It follows that dim(zD,s) < dim(zD), so dim(ĝD,s) <

dim(ĝD). �

Remark 5.19. Corollary 5.16 and Proposition 5.17 specialize to give results proved
by Kostant and Wallach in [KW06b]. Indeed, suppose that each Di consists of
regular semisimple elements. Then Proposition 5.17 implies that

ĝD,gen
∼= MΩ(n, e) :={(x, z1, . . . , zn) : (z1, . . . , zn) ∈ zD,gen, xi∈Gi · zi, i=1, . . . , n}

is a covering of XD,gen by a product of symmetric groups, which is Theorem 4.14

in [KW06b]. Further, in this case ZD ∼= (C×)(
n

2), and the algebraic action of ZD

on ĝD,gen is easily seen to coincide with the algebraic action of (C×)(
n

2) in [KW06b]
which lifts the a-action on MΩ(n).

We use Corollary 5.16 to obtain an analogue of Theorem 5.12 in [KW06b]. In
Section 2, we introduced the variety of upper Hessenberg matrices b+ e and noted
that the Kostant–Wallach map restricts to an isomorphism of varieties Φ : b+e→

C(n+1

2 ) and that b + e ⊂ gsreg. We define a closed subvariety of ĝD,gen,

(ĝD,gen)b+e = {(g1, y
1, . . . , gn, y

n) ∈ ĝD,gen : Ad(gn)yn ∈ b + e}. (5.35)

Theorem 5.20. The morphism φ : ZD × (ĝD,gen)b+e → ĝD,gen given by (k, x) →
k · x, k ∈ ZD, x ∈ (ĝD,gen)b+e is an isomorphism of algebraic varieties. Thus,

ĝD,gen is a Zariski trivial ZD-principal bundle over (ĝD,gen)b+e.

Proof. By Proposition 5.17 and Zariski’s main theorem (see [TY05, Cor. 17.4.8]),
it suffices to show that φ is bijective. By Theorem 5.13 (1), the morphism φ is
injective. Let (x, z1, . . . , zn) ∈ ĝD,gen, so (z1, . . . , zn) ∈ zD,gen, and let c = Φ(x).
There is a unique x̃ ∈ Φ−1(c)sreg ∩ (b + e). Since µ : κ−1(z1, . . . , zn) → Φ−1(c)sreg
is an isomorphism by equation (5.31), it follows that (x̃, z1, . . . , zn) ∈ (ĝD,gen)b+e.
Since x and x̃ are elements of κ−1(z1, . . . , zn), by Corollary 5.16 there exists k ∈ ZD
such that k · x̃ = x, so φ is surjective. �

Remark 5.21. By Theorem 5.20, the variety (ĝD,gen)b+e is a smooth and irreducible
closed subvariety of ĝD,gen. Moreover, the projection κ : ĝD,gen → zD,gen restricts
to an isomorphism of varieties (ĝD,gen)b+e → zD,gen. This last assertion can be
proved using the argument from the proof of the last theorem.

References

[BP08] R. Bielawski, V. Pidstrygach, Gelfand–Zeitlin actions and rational maps, Math.
Z. 260 (2008), no. 4, 779–803.

[Bro98a] A. Broer, Decomposition varieties in semisimple Lie algebras, Canad. J. Math.
50 (1998), no. 5, 929–971.

70



MARK COLARUSSO AND SAM EVENS

[Bro98b] A. Broer, Lectures on decomposition classes, in: Representation Theories and

Algebraic Geometry (Montreal, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys.
Sci., Vol. 514, Kluwer Academic, Dordrecht, 1998, pp. 39–83.

[CG97] N. Chriss, V. Ginzburg, Representation Theory and Complex Geometry, Birk-
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