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Abstract In two 2006 papers, Kostant and Wallach constructed a complexified
Gelfand–Zeitlin integrable system for the Lie algebra gl(n + 1, C) and introduced
the strongly regular elements, which are the points where the Gelfand–Zeitlin flow
is Lagrangian. Later Colarusso studied the nilfiber, which consists of strongly regu-
lar elements such that each i × i submatrix in the upper left corner is nilpotent. In
this paper, we prove that every Borel subalgebra contains strongly regular elements
and determine the Borel subalgebras containing elements of the nilfiber by using the
theory of Ki = GL(i − 1, C) × GL(1, C)-orbits on the flag variety for gl(i, C) for
2 ≤ i ≤ n + 1. As a consequence, we obtain a more precise description of the nilfi-
ber. The Ki -orbits contributing to the nilfiber are closely related to holomorphic and
anti-holomorphic discrete series for the real Lie groups U (i, 1), with i ≤ n.

Keywords Flag variety · Symmetric subgroup · Nilpotent matrices ·
Gelfand–Zeitlin integrable system
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1 Introduction

In a series of papers [11,12], Kostant and Wallach study the action of a complex Lie
group A on g = gl(n + 1, C). The group A is the simply connected, complex Lie
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160 M. Colarusso, S. Evens

group corresponding to the abelian Lie algebra a generated by the Hamiltonian vector
fields of the Gelfand–Zeitlin collection of functions. The Gelfand–Zeitlin collection of
functions contains (n+2)(n+1)

2 Poisson commuting functions and its restriction to each
regular adjoint orbit forms an integrable system. For each function in the collection,
the corresponding Hamiltonian vector field is complete. The action of A on g is then
defined by integrating the Lie algebra a.

Kostant and Wallach consider a Zariski open subset of g, called the set of strongly
regular elements, which consists of all elements where the differentials of the Gelfand–
Zeitlin functions are linearly independent. The A-orbits of strongly regular elements
are of dimension

(n+1
2

)
and form Lagrangian submanifolds of regular adjoint orbits.

They coincide with the irreducible components of regular level sets of the moment
map for the Gelfand–Zeitlin integrable system. In [3], the first author determined the
A-orbits of the strongly regular set explicitly.

In this paper, we use the geometry of orbits of a symmetric subgroup on the
flag variety to study the Borel subalgebras containing strongly regular elements.
Let Ki := GL(i − 1, C) × GL(1, C) ⊂ GL(i, C) be block diagonal matrices and
let Bi be the flag variety of gl(i, C). Then Ki acts on Bi by conjugation and has
finitely many orbits. We find a new connection between the theory of Ki -orbits on
Bi and the Gelfand–Zeitlin integrable system. In particular, we use the geometry
of Ki -orbits on Bi for i = 1, . . . , n + 1 to show that every Borel subalgebra of
g contains strongly regular elements. We also determine explicitly the Borel subal-
gebras of g which contain strongly regular elements in the nilfiber of the moment
map for the Gelfand–Zeitlin system. We show that there are exactly 2n Borel sub-
algebras containing strongly regular elements of the nilfiber. Further, for each of
these 2n Borel subalgebras, the regular nilpotent elements of the Borel is an irre-
ducible component of the variety of strongly regular elements of the nilfiber, and
every irreducible component of the variety of strongly regular elements of the nilfiber
arises from one of these 2n Borel subalgebras in this way. These 2n Borel subal-
gebras are exactly the Borel subalgebras b with the property that each projection
of b onto its upper left i × i corner for i = 1, . . . , n + 1 is a Borel subalgebra
of gl(i, C) whose Ki -orbit is related via the Beilinson–Bernstein correspondence to
Harish–Chandra modules for the pair (gl(i, C), Ki ) coming from holomorphic and
anti-holomorphic discrete series. It would be interesting to relate our results to rep-
resentation theory, especially to work of Kobayashi [8]. For more on the relation
between geometry of orbits of a symmetric subgroup and Harish–Chandra modules,
see [5,7,17].

In more detail, we denote by xi the upper left i × i corner of the matrix x ∈ g. The
Gelfand–Zeitlin collection of functions is JG Z = { fi, j (x), i = 1, . . . , n + 1, j =
1, . . . , i}, where fi, j (x) is the trace of the j th power of the matrix xi , i.e., fi, j = Tr(x j

i ).
We denote by gi = {xi : x ∈ g} ∼= gl(i, C) embedded in g as the upper left corner, and
denote by Gi ∼= GL(i, C) the corresponding algebraic group. The space a spanned
by {ξ f : f ∈ JG Z } is an abelian Lie algebra. An element x ∈ g is called strongly
regular if the set {d f (x) : f ∈ JG Z } is linearly independent in T ∗

x (g). Kostant and
Wallach showed that the set gsreg of g consisting of strongly regular elements is open
and Zariski dense.
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K -orbits on the flag variety and strongly regular nilpotent matrices 161

The geometry of gsreg and its A-orbit structure have been studied by the first author

in [3] and by both authors in [4]. We consider � : g → C(n+2
2 ), the moment map

for the Gelfand–Zeitlin integrable system, and for c ∈ C(n+2
2 ), we let �−1(c)sreg =

�−1(c) ∩ gsreg. In [3], the first author describes strongly regular A-orbits by study-
ing the moment map �, and shows that the A-orbits in �−1(c)sreg coincide with
orbits of an algebraic group action defined on the fiber �−1(c)sreg. In this paper,
we develop a completely different approach to studying the A-orbits in the nilfiber
�−1(0)sreg := �−1((0, . . . , 0))sreg by finding the Borel subalgebras of g which con-
tain elements of �−1(0)sreg. This approach does not require the use of the complicated
algebraic group action in [3].

It is easy to see that an element x ∈ �−1(0)sreg if and only if x ∈ gsreg and xi ∈ gi
is nilpotent for all i (see Remark 2.2). Elements of gl(n + 1, C) satisfying the second
condition have been studied extensively by Lie theorists and numerical linear algebra-
ists [13,14]. If b ⊂ gi is a Borel subalgebra, let bi−1 = {xi−1 : x ∈ b} be the upper
left i − 1 × i − 1 corner of b. Let Q+,i be the Ki -orbit of the Borel subalgebra of i × i
upper triangular matrices in Bi and let Q−,i be the Ki -orbit of the Borel subalgebra
of i × i lower triangular matrices in Bi . We show that if b ∈ Q+,i or b ∈ Q−,i , then
bi−1 ⊂ gi−1 is a Borel subalgebra (Proposition 4.1). Let Q = (Q1, . . . , Qn+1) denote
a sequence of Ki -orbits Qi in Bi with Qi = Q+,i or Q−,i . We can then define the
closed subvariety of Bn+1

bQ = {b ∈ Bn+1 : bi ∈ Qi , i = 1, . . . , n + 1}. (1.1)

It turns out that bQ is a single Borel subalgebra in g that contains the standard Cartan
subalgebra of diagonal matrices (Theorem 4.2). Let n

reg
Q denote the regular nilpotent

elements of the Borel bQ.

Theorem 1.1 (Theorem 4.5) The irreducible component decomposition of the variety
�−1(0)sreg is

�−1(0)sreg =
∐

Q
n

reg
Q ,

where Q = (Q1, . . . , Qn+1) ranges over all 2n sequences where Qi = Q+,i or Q−,i

for i > 1, and Q1 = Q+,1 = Q−,1. The A-orbits in �−1(0)sreg are exactly the
irreducible components n

reg
Q , for Q as above.

Remark 1.2 Theorem 1.2 improves on [3], Theorem 5.2. In [3], Theorem 5.2, the
irreducible components of �−1(0)sreg are described as orbits of the algebraic group
ZG1(e1) × · · · × ZGn (en), where ei ∈ gi is the principal nilpotent Jordan matrix and
ZGi (ei ) is the centralizer of ei in Gi . The description of irreducible components given

by n
reg
Q ∼= (C×)n × C(n+1

2 )−n is considerably more explicit than the description as
orbits (see Examples 4.4 and 4.7).

To prove Theorem 1.1, we use the following characterization of �−1(0)sreg
(Theorem 2.1 and Remark 2.2).
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162 M. Colarusso, S. Evens

x ∈ �−1(0)sreg if and only if for each i = 2, . . . , n + 1 :
(1) xi ∈ gi , xi−1 ∈ gi−1 are regular nilpotent; and

(2) zgi−1
(xi−1) ∩ zgi

(xi ) = 0,

(1.2)

where zgi
(xi ) denotes the centralizer of xi ∈ gi . To find the Borel subalgebras con-

taining elements of �−1(0)sreg, we first find the Borel subalgebras of gi that contain
elements satisfying conditions (1) and (2) in (1.2). We observe that the conditions
(1) and (2) in (1.2) are Ad(Ki )-equivariant, so that if b ⊂ gi is a Borel subalgebra
containing elements of gi satisfying these conditions, then any Borel in Ki ·b contains
such elements. We show that the only Ki -orbits through Borel subalgebras which con-
tain elements satisfying (1) and (2) are Q+,i and Q−,i . We then link together these
Ki -orbits for i = 1, . . . , n + 1 to construct the Borel subalgebra bQ in Eq. (1.1) and
use them to prove Theorem 1.1.

For concreteness, let us take i = n + 1, and suppose that x ∈ g satisfies the condi-
tions in (1.2). In particular, x is regular nilpotent, so it is contained in a unique Borel
subalgebra bx ⊂ g. To show that Kn+1 · bx = Q+,n+1 or Kn+1 · bx = Q−,n+1,
we analyze each condition in (1.2) in turn. We first observe that if x ∈ g satisfies
condition (1) in (1.2), then the Kn+1-orbit through bx must be closed (Proposition 3.6
and Theorem 3.7). We then study condition (2) and the closed Kn+1-orbits on Bn+1.
We show that if x ∈ g is a nilpotent element satisfying condition (2), and x ∈ b with
Kn+1 · b closed, then Kn+1 · b = Q+,n+1 or Kn+1 · b = Q−,n+1 (Proposition 3.8). It
then follows that Kn+1 · bx = Q+,n+1 or Kn+1 · bx = Q−,n+1.

It would be interesting to study other strongly regular fibers �−1(c)sreg using the
theory of Kn+1-orbits on the flag variety. As a step in this direction, we prove:

Theorem 1.3 Every Borel subalgebra b ⊂ g contains strongly regular elements.

The paper is organized as follows. In Sect. 2, we recall some of the results of [11].
In Sect. 3, we recall results concerning Ki -orbits on the flag variety, and we show that
the Ki -orbit through a Borel subalgebra containing elements satisfying the conditions
in (1.2) must be Q+,i or Q−,i . In Sect. 4, we construct the subvarieties bQ in Eq. (1.1)
and show that they are Borel subalgebras of g that contain the standard Cartan subal-
gebra. At the end of that section, we prove Theorem 1.1, which is the main result of
the paper. In the final section, Sect. 5, we prove Theorem 1.3.

2 Notation and results of Kostant and Wallach

Let g = gl(n + 1, C) be the Lie algebra of (n + 1) × (n + 1) complex matrices. If
x ∈ g, let xi be the upper left i × i corner of x , so the k j matrix coefficient (xi )k j of
xi is (x)k j if 1 ≤ k, j ≤ i and is zero otherwise. For i ≤ n + 1, let gi = gl(i, C) ⊂ g,
regarded as the upper left i × i corner. Let Gi ∼= GL(i, C) be the closed Lie subgroup
of GL(n + 1, C) with Lie algebra gi .

Recall the Gelfand–Zeitlin collection of functions JG Z = { fi, j (x) : i = 1, . . . ,

n +1, j = 1, . . . , i}, where fi, j (x) = Tr(x j
i ). The collection JG Z is Poisson commu-

tative with respect to the Lie-Poisson structure on g, and it generates a maximal Poisson
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K -orbits on the flag variety and strongly regular nilpotent matrices 163

commuting subalgebra of C[g] (see [11], Theorem 3.25). Let a = span{ξ f : f ∈ JG Z },
where ξ f is the Hamiltonian vector field of f on g. Note that a = span{ξ fi, j : i =
1, . . . , n, j = 1, . . . , i}, since the Hamiltonian vector fields ξ fn+1, j corresponding to
the Casimir functions fn+1, j are identically zero for j = 1, . . . , n +1. Since the func-
tions JG Z Poisson commute, the Lie algebra a is abelian, and further dim(a) = (n+1

2

)

(see [11], Sect. 3.2).
Let A be the simply connected holomorphic Lie group with Lie algebra a. By Sect. 3

of [11], the group A ∼= C(n+1
2 ) integrates the action of a on g. It follows from standard

results in symplectic geometry that A · x is isotropic in the symplectic leaf G · x in g.
By definition, x ∈ g is called strongly regular if the set {d f (x) : f ∈ JG Z } is

linearly independent in T ∗
x (g). Let gsreg be the (open) set of strongly regular elements

of g and recall that a regular element x of g is an element whose centralizer zg(x) has
dimension n + 1. By a well-known result of Kostant [9], if x ∈ gsreg, xk is regular for
all k ([11], Proposition 2.6).

We give alternate characterizations of the strongly regular set in g.

Theorem 2.1 [11] Let x ∈ g. Then the following are equivalent.

(1) x is strongly regular.
(2) xi ∈ gi is regular for all i, 1 ≤ i ≤ n + 1 and zgi

(xi ) ∩ zgi+1
(xi+1) = 0 for all

1 ≤ i ≤ n.
(3) dim(A · x) = dim(A) = (n+1

2

)
and A · x is Lagrangian in G · x.

By (3) of Theorem 2.1 and Theorem 3.36 of [11], strongly regular A-orbits form the
leaves of a polarization of an open subvariety of regular G ·x . For this reason, we study
the geometry of the A-action on gsreg. It is useful to consider the moment map for the
Gelfand–Zeitlin integrable system, which we refer to as the Kostant–Wallach map.

� : g 	→ C(n+2
2 ), �(x) = ( f1,1(x), . . . , fn+1,n+1(x)). (2.1)

For z ∈ gi , let σi (z) equal the collection of i eigenvalues of z counted with repetitions,
where here we regard z as an i × i matrix.

Remark 2.2 If x, y ∈ g, then �(x) = �(y) if and only if σi (xi ) = σi (yi ) for i =
1, . . . , n + 1. In particular, �(x) = (0, . . . , 0) if and only if xi is nilpotent for i =
1, . . . , n + 1.

It follows from [11], Theorem 2.3 that � is surjective and that for any c ∈ C(n+2
2 )

the variety �−1(c)sreg := �−1(c) ∩ gsreg is nonempty. By [11], Theorem 3.12,
the irreducible components of the variety �−1(c)sreg coincide with strongly regular
A-orbits, A · x for x ∈ �−1(c)sreg. Thus, we can understand the A-orbit structure of
gsreg by studying the geometry of the strongly regular fibers �−1(c)sreg.

3 The nilfiber and K -orbits on the flag variety

We study the strongly regular nilfiber �−1(0)sreg. In this section, we find the Borel
subalgebras of gi that contain elements x ∈ gi satisfying the conditions:
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164 M. Colarusso, S. Evens

(1) x ∈ gi , xi−1 ∈ gi−1 are regular nilpotent.

(2) zgi−1
(xi−1) ∩ zgi

(x) = 0.
(3.1)

(c.f. Eqs. (1.2).) In the following sections, we develop an inductive construction that
uses these Borel subalgebras to construct Borel subalgebras of g that contain elements
of �−1(0)sreg.

Notation 3.1 We let θ be the inner automorphism of gi given by conjugation by the
diagonal matrix c = diag[1, . . . , 1,−1] ∈ Gi , that is, θ(x) = cxc−1.

For each i, 1 ≤ i ≤ n + 1, let Bi denote the flag variety of gi . We let ki denote
the set of θ fixed points in gi and let Ki be the corresponding algebraic subgroup of
GL(i, C). Then ki = gl(i − 1, C)⊕ gl(1, C) consists of block diagonal matrices with
one (i −1)×(i −1) block in the upper left corner and one 1×1 block in the (i, i)-entry,
and the group Ki = GL(i − 1, C) × GL(1, C) is the set of invertible elements of ki .

As we observed in the introduction, the set of Borel subalgebras of gi containing
elements satisfying (3.1) is Ki -stable. In this section, we describe the Ki -orbits on
Bi through such Borel subalgebras. In Sect. 3.2, we show that for a Borel subalgebra
to contain elements satisfying condition (1) in (3.1), its Ki -orbit must be closed. In
Sect. 3.3, we show that if we also require condition (2), the Borel subalgebra must be
in the Ki -orbit through upper or lower triangular matrices.

Notation 3.2 Throughout the paper, we will make use of the following notation for
flags in C

n+1. Let

F = (V0 = {0} ⊂ V1 ⊂ · · · ⊂ Vi ⊂ · · · ⊂ Vn = C
n+1).

be a flag in C
n+1, with dim Vi = i and Vi = span{v1, . . . , vi }, with each v j ∈ C

n+1.
We will denote the flag F as follows:

v1 ⊂ v2 ⊂ · · · ⊂ vi ⊂ vi+1 ⊂ · · · ⊂ vn+1.

We denote the standard ordered basis of C
n+1 by {e1, . . . , en+1}. For 1 ≤ i, j ≤ n+1,

let Ei j be the matrix with 1 in the (i, j)-entry and 0 elsewhere.
We also use the following standard notation. Let h ⊂ g be the standard Cartan

subalgebra of diagonal matrices. Let εi ∈ h∗ be the linear functional whose action on
h is given by

εi (diag[h1, . . . , hi , . . . , hn]) = hi .

Let αi = εi − εi+1, for 1 ≤ i ≤ n, be the standard simple roots.

3.1 Basic facts about Kn+1-orbits on Bn+1

Our parameterization of Kn+1-orbits on Bn+1 follows that of [18], Sect. 2. For the
general case of orbits of a symmetric subgroup on a generalized flag variety, see
[15–17].
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K -orbits on the flag variety and strongly regular nilpotent matrices 165

In [18], Yamamoto gives explicit representatives for the Kn+1-orbits on Bn+1 in
terms of stabilizers of certain flags in C

n+1. More precisely, there are (n + 1) closed
Kn+1-orbits Qi = Kn+1 ·bi on Bn+1 where i = 1, . . . , n+1, and the Borel subalgebra
bi is the stabilizer of the following flag in C

n+1:

e1 ⊂ · · · ⊂ en+1︸︷︷︸
i

⊂ ei ⊂ · · · ⊂ en .

Note that if i = n + 1, then bn+1 = b+, the Borel subalgebra of the (n + 1) × (n + 1)

upper triangular matrices in g which stablilizes the standard flag

F+ = (e1 ⊂ · · · ⊂ en+1). (3.2)

If i = 1, then Kn+1 · b1 = Kn+1 · b−, where b− is the Borel subalgebra of lower
triangular matrices in g.

There are
(n+1

2

)
Kn+1-orbits in Bn+1 which are not closed. They are of the form

Qi, j = Kn+1 · bi, j for 1 ≤ i < j ≤ n + 1, where bi, j is the stabilizer of the flag in
C

n+1:

Fi, j = (e1 ⊂ · · · ⊂ ei + en+1︸ ︷︷ ︸
i

⊂ ei+1 ⊂ · · · ⊂ e j−1 ⊂ ei︸︷︷︸
j

⊂ e j ⊂ · · · ⊂ en).

The unique open Kn+1-orbit Q1,n+1 on Bn+1 is generated by the stabilizer of the flag

e1 + en+1 ⊂ e2 ⊂ · · · ⊂ en ⊂ e1.

In order to more easily understand the action of θ on the roots of bi, j , we replace
the pair (bi, j , θ) with the equivalent pair (b+, θ ′), where θ ′ is an involution of g (the
pair b+ ⊃ h is a standard pair with respect to θ , in the language of [15]). To do this,
let

v = wuαi σ, (3.3)

where w and σ are the permutation matrices corresponding, respectively, to the cycles
(n + 1 n . . . i) and (i + 1 i + 2 . . . j), and uαi is the Cayley transform matrix such that

uαi (ei ) = ei + ei+1, uαi (ei+1) = −ei + ei+1, uαi (ek) = ek, k = i, i + 1.

It is easy to verify that v(F+) = Fi, j , and thus Ad(v)(b+) = bi, j . We can define a
new involution θ ′ : g → g by

θ ′ = Ad(v−1) ◦ θ ◦ Ad(v) = Ad(v−1θ(v)) ◦ θ. (3.4)

By a routine computation

v−1θ(v) = τi, j t, (3.5)
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166 M. Colarusso, S. Evens

where τi, j is the permutation matrix for the transposition (i j) and t is a diagonal
matrix with t2 equal to the identity.

Remark 3.3 If K ′ = Gθ ′
, then vK ′v−1 = K , and if k′ denotes the Lie algebra of K ′,

then k = Ad(v)(k′).
Let q be the standard parabolic generated by the Borel b+ and the negative simple

root spaces g−αi
, g−αi+1

, . . . , g−α j−1
. Then q has Levi decomposition q = l + u, with

l consisting of block diagonal matrices of the form

l=gl(1, C) ⊕ · · · ⊕ gl(1, C)︸ ︷︷ ︸
i−1 factors

⊕gl( j +1−i, C) ⊕ gl(1, C) ⊕ · · · ⊕ gl(1, C)︸ ︷︷ ︸
n+1− j factors

. (3.6)

Remark 3.4 Since the permutation matrix corresponding to the transposition (i j) is in
the Levi subgroup L with Lie algebra l, the Lie subalgebras q, l, u, and gl( j +1− i, C)

are θ ′-stable by Eqs. (3.4) and (3.5).

Let θ̃ denote the restriction of θ ′ to gl( j+1−i, C) and let k̃ = gl( j+1−i, C)θ̃ denote
the fixed subalgebra of θ̃ with corresponding algebraic group K̃ = GL( j +1− i, C)θ̃ .
Let b+, j+1−i be the Borel subalgebra of upper triangular matrices in gl( j + 1 − i, C),
and let θ j+1−i be the involution of gl( j + 1 − i, C) with fixed set k j+1−i .

Lemma 3.5 1) There is an element ṽ ∈ GL( j + 1 − i, C) such that
θ̃ = Ad(ṽ−1) ◦ θ j+1−i ◦ Ad(ṽ). Further, the symmetric subgroup K̃ ∼= K j+1−i .

2) Ad(ṽ)b+, j+1−i is in the open orbit of K j+1−i on B j+1−i .

Proof Let ṽ = w̃uαi σ , where σ and uαi are the same as in the definition of v from
Eq. (3.3) and w̃ is the permutation matrix corresponding to the cycle ( j j − 1 . . . i).
Then a routine computation shows that θ̃ = Ad(ṽ−1) ◦ θ j+1−i ◦ Ad(ṽ), and it follows
that K̃ ∼= K j+1−i . It is easy to show that Ad(ṽ)b+, j+1−i is the stabilizer of the flag

ei + e j ⊂ ei+1 ⊂ · · · ⊂ e j−1 ⊂ ei ,

in C
j+1−i , where we take {ei , . . . , e j } as an ordered basis for C

j+1−i (see Nota-
tion 3.2). Hence, the K j+1−i -orbit through Ad(ṽ)b+, j+1−i is open by the results from
[18] discussed at the beginning of this section. ��

3.2 Analysis of the first condition in (3.1)

Write g = kn+1 ⊕pn+1 where kn+1 is the 1-eigenspace for the involution θ and pn+1 is
the −1-eigenspace. Let πkn+1

: g → kn+1 denote the projection of g onto kn+1 along
pn+1 and let Nkn+1

denote the nilpotent cone in kn+1. For a Borel subalgebra b with
nilradical n, let nreg denote the regular nilpotent elements of n. For b = b+, by [10],

n
reg
+ =

{
n∑

i=1

ai Eii+1 + y : a1 . . . an = 0, y ∈ [n+, n+]
}

. (3.7)

The main result of this section is the following proposition.
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K -orbits on the flag variety and strongly regular nilpotent matrices 167

Proposition 3.6 Suppose that x ∈ g satisfies (1) in (3.1) for i = n + 1 and suppose
that b ⊂ g is the unique Borel subalgebra containing x. Then b ∈ Q, where Q is a
closed Kn+1-orbit in Bn+1.

Proposition 3.6 follows from a stronger result.

Theorem 3.7 Let b ⊂ g be a Borel subalgebra with nilradical n and suppose that the
Kn+1-orbit Q through b is not closed. Then πkn+1

(nreg) ∩ Nkn+1
= ∅.

We first prove Proposition 3.6 assuming Theorem 3.7.

Proof of Proposition 3.6 Suppose x ∈ g satisfies (1) in (3.1). We observe that
πkn+1

(x) = xn . Indeed, πkn+1
(x) is the block diagonal matrix xn ⊕ xn+1,n+1. But

since x satisfies (1) in (3.1), we must have:

0 = Tr(x)

= Tr(xn) + xn+1,n+1

= xn+1,n+1,

where Tr(x) denotes the trace of x ∈ g. Now the proposition follows immediately
from Theorem 3.7. ��

Proof of Theorem 3.7 Let Q be a Kn+1-orbit in Bn+1 which is not closed. By the
results of [18] discussed in Sect. 3.1, we may assume Q = Kn+1 ·bi, j . By Kn+1-equi-
variance of πkn+1

, it suffices to prove the assertion for b = bi, j . Recall the element
v from Eq. (3.3) such that Ad(v)b+ = b, and the involution θ ′, and let πk′ denote
projection from g to k′ with respect to the −1-eigenspace of θ ′. By Eq. (3.4), it follows
that πk = Ad(v) ◦ πk′ ◦ Ad(v−1). Hence, for y regular in n, πk(y) is nilpotent if and
only if πk′(x) is nilpotent, where x = Ad(v−1)(y) in n+ is regular nilpotent.

Recall the Levi subalgebra l from Eq. (3.6), as well as the parabolic q = l + u and
gl( j + 1 − i, C). Then x ∈ q, so we decompose x = xl + xu, with xl ∈ l and xu ∈ u.
Note that xl is regular nilpotent in gl( j + 1 − i, C) by Eq. (3.7). Let πl : q → l be the
projection of q onto l along u. Since l and u are θ ′-stable by Remark 3.4, it follows that
θ ′ ◦ πl = πl ◦ θ ′. Recalling that θ̃ is the restriction of θ ′ to gl( j + 1 − i, C), let π

k̃
be

the projection from gl( j +1− i, C) to the fixed point set of θ̃ along its −1-eigenspace.
It follows that

πl ◦ πk′(x) = 1

2
(θ ′(xl) + xl) = 1

2
(θ̃(xl) + xl) = π

k̃
◦ πl(x).

As is well-known, if an element y ∈ q is nilpotent, then πl(y) is also nilpotent. Thus,
it suffices to show that π

k̃
(xl) is not nilpotent.

Let πk j+1−i
be the projection from gl( j + 1 − i, C) to k j+1−i along its −1-eigen-

space. By 1) of Lemma 3.5, it follows that Ad(ṽ) ◦ π
k̃

= πk j+1−i
◦ Ad(ṽ), and hence

it suffices to prove that πk j+1−i
(Ad(ṽ)(xl)) is not nilpotent. By 2) of Lemma 3.5 and
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equivariance, it suffices to prove this last assertion in the case where b is the stablizer
of the flag

e1 + en+1 ⊂ e2 ⊂ · · · ⊂ en ⊂ en+1.

in the open Kn+1-orbit for the flag variety of gl(n + 1, C).
Let g ∈ GL(n + 1, C) be the matrix

g =

⎡

⎢⎢
⎢
⎣

1 0
. . .

...

1 0
1 0 1

⎤

⎥⎥
⎥
⎦

,

so that

b = gb+g−1. (3.8)

Let x ∈ b be regular nilpotent. Then by Eq. (3.8), the element x has the form

x =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

−a1n+1 a12 a13 . . . a1n+1

−a2n+1 0
. . .

...
...

. . . an−1n
...

−ann+1 0 . . . 0 ann+1
−a1n+1 a12 . . . . . . a1n+1

⎤

⎥⎥
⎥⎥⎥⎥
⎦

,

where aii+1 = 0, 1 ≤ i ≤ n. Then we compute

πkn+1
(x) =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

−a1n+1 a12 a13 . . . 0

−a2n+1 0
. . .

...
...

. . . an−1n
...

−ann+1 0 . . . 0 0
0 0 . . . 0 a1n+1

⎤

⎥⎥
⎥⎥⎥⎥
⎦

.

By expanding by cofactors along the nth row, the determinant of the n × n submatrix
of πkn+1

(x) in the upper left corner is (−1)n ∏n
i=1 aii+1 = 0, which is nonzero by

Eq. (3.7). Hence, πkn+1
(x) is not nilpotent, which proves the theorem. ��

3.3 Analysis of the second condition in (3.1)

We now study the closed Kn+1-orbits on Bn+1 and the condition (2) in (3.1). Let
x ∈ g be nilpotent and satisfy (2) in (3.1) for i = n + 1. Suppose further that x ∈ b,
where b generates a closed Kn+1-orbit in Bn+1. In this section, we show that b must
generate the same orbit in Bn+1 as the Borel subalgebra of upper triangular matrices
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or the Borel subalgebra of lower triangular matrices. This is an easy consequence of
the following proposition. Recall that πn : g → gn denotes the projection which sends
an (n + 1) × (n + 1) matrix to its n × n submatrix in the upper left corner.

Proposition 3.8 Let b ⊂ g be a Borel subalgebra that generates a closed Kn+1-orbit
Q, which is neither the orbit of the upper nor the lower triangular matrices. Let
n = [b, b] and let nn := πn(n). Let zg(n) denote the centralizer of n in g and let
zgn

(nn) denote the centralizer of nn in gn. Then

zgn
(nn) ∩ zg(n) = 0. (3.9)

Proof By the Kn+1-equivariance of the projection πn , we can assume that b is the
stabilizer of the flag in C

n+1:

e1 ⊂ · · · ⊂ en+1︸︷︷︸
i

⊂ ei ⊂ · · · ⊂ en,

where 1 < i < n + 1 (see Sect. 3.1). The Borel subalgebra b is the set of all matrices
of the form

b =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

a11 . . . . . . a1i−1 . . . . . . a1n a1n+1

0
. . .

...
...

...
... ai−1i−1 ∗ ai−1n ai−1n+1

0 aii
... 0

...
... 0

. . .
...

...
...

. . .
...

...
... 0 0 . . . ann 0
0 . . . . . . 0 an+1i . . . an+1n an+1n+1

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

,

(3.10)

1 < i < n + 1. A system of positive roots for this Borel with respect to the Cartan
subalgebra of diagonal matrices is � = �+,n ∪ 
, where �+,n is the set of positive
roots for the strictly upper triangular matrices in gl(n, C) and 
 is the following set
of roots:


 = {−αi − · · · − αn,−αi+1 − · · · − αn, . . . ,−αn}
∪{α1 + · · · + αn, α2 + · · · + αn, . . . , αi−1 + · · · + αn}. (3.11)

Let β = α1 + · · · + αn−1. Then β ∈ � and β + α /∈ � for any α ∈ �. Thus, if
gβ is the root space corresponding to β, gβ ⊂ zg(n). Note also that gβ ⊂ gn so that
gβ ⊂ zgn

(nn) ∩ zg(n). ��
Remark 3.9 It follows from the proof of Proposition 3.8 that if x ∈ b is nilpotent with
b ∈ Q, Q a closed Kn+1-orbit, then xn ∈ gn is nilpotent (in contrast to the situation
of Theorem 3.7.)
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Let Q+,n+1 = Kn+1 · b+ denote the Kn+1-orbit of the Borel subalgebra of upper
triangular matrices in Bn+1 and let Q−,n+1 = Kn+1 · b− denote the Kn+1-orbit of the
Borel subalgebra of lower triangular matrices in Bn+1.

The following result is immediate from Propositions 3.6 and 3.8.

Proposition 3.10 Let x ∈ g satisfy both conditions in (3.1) and let b be the unique
Borel subalgebra containing x. Then b ∈ Q+,n+1 or b ∈ Q−,n+1.

We conclude this section with a partial converse to Proposition 3.8 that will be
useful in proving Theorem 4.5.

Proposition 3.11 Let x ∈ g be a regular nilpotent element and suppose x ∈ b ∈ Q,
with Q = Q+,n+1 or Q−,n+1. Then xn ∈ gn is regular nilpotent and zgn

(xn)∩zg(x)=0.

Proof By Kn+1-equivariance of the projection πn : g → gn , we may assume that b =
b+ or b−. Without loss of generality, we assume b = b+, since the proof in the case of
b = b− is completely analogous. Let n = [b, b] and let nreg be the regular nilpotent ele-
ments of b. Then if x ∈ nreg, then by Eq. (3.7), x = λ1 E12+λ2 E23+· · ·+λn Enn+1+z,
where λi ∈ C

× and z ∈ [n, n]. It follows easily that xn ∈ πn(b) is regular nilpotent.
Now we claim that for any x ∈ nreg

zg(x) ∩ gn = 0. (3.12)

It is easily seen that zg(x) ∩ gn = zgn
(xn) ∩ zg(x). Let x ∈ nreg, then x = Ad(b)e for

b ∈ B and one knows that zg(x) has basis {I, Ad(b)e, . . . , Ad(b)en}, where I is the
(n + 1) × (n + 1) identity matrix. In matrix coordinates,

I d = E11 + · · · + En+1n+1

Ad(b)e = X1 + c1 Enn+1

...

Ad(b)ei = Xi + ci En−i+1n+1

...

Ad(b)en = cn E1n+1,

(3.13)

where ci ∈ C
× for 1 ≤ i ≤ n and Xi ∈ n is of the form Xi = ∑

j<k, j<n−i+1 αi
jk E jk

with αi
jk ∈ C for i ≤ n − 1. Suppose that y ∈ zg(x) ∩ gn . Then there exist scalars

d0, d1, . . . , dn ∈ C such that d0 I d + d1Ad(b)e + · · · + dnAd(b)en ∈ gn . But this
implies that d0 = 0, by the form of the Xi for 1 ≤ i ≤ n − 1 in (3.13). Similarly,
d1 = 0 by the form of the Xi for i ≥ 2. Thus, di = 0 for all i by induction. ��
Remark 3.12 It is well-known that the closed Kn+1-orbits Q+,n+1 and Q−,n+1 are
exactly the orbits which correspond to holomorphic and anti-holomorphic discrete
series via the Beilinson–Bernstein correspondence. Indeed, let b be a Borel subalge-
bra contained in a closed orbit, assume that b ⊃ h, where h is the standard Cartan
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subalgebra of diagonal matrices, and let �+ be the roots of h in b. Note that the
involution θ acts on �+ since it preserves h and b. The reader can easily check that the
orbits Q+,n+1 and Q−,n+1 are the only two closed orbits such that θ acts as the identity
on all but one of the simple root spaces in b, and by the negative of the identity on the
remaining simple root space. According to the discussion on page 220 of [1], these
are exactly the closed orbits which correspond to holomorphic and anti-holomorphic
discrete series.

4 Components of the strongly regular nilfiber

Let 1 ≤ i ≤ n + 1. If y ∈ gi satisfies the conditions in (3.1) and b ⊂ gi is the unique
Borel containing y, then Proposition 3.10 implies that b ∈ Q+,i or Q−,i , where Q+,i

is the Ki -orbit of the upper triangular matrices in Bi and Q−,i is the Ki -orbit of
the lower triangular matrices. In this section, we develop a construction which links
together the Ki -orbits Q+,i and Q−,i for each i, 1 ≤ i ≤ n +1 to construct Borel sub-
algebras of g that contain elements of �−1(0)sreg and use them to find the irreducible
components of �−1(0)sreg. The main tool in our construction is the following simple
proposition.

Proposition 4.1 Let Q be a closed Kn+1-orbit in Bn+1 and b ∈ Q. Then πn(b) ⊂ gn
is a Borel subalgebra. Moreover, πn(b) is a subalgebra of b.

Proof By the Kn+1-equivariance of the projection πn , it suffices to prove the state-
ment for a representative for the orbit Q. Thus, we can assume that b is the Borel
subalgebra in Eq. (3.10) where 1 ≤ i ≤ n + 1. Then πn(b) = b+,n , where b+,n is the
n × n upper triangular matrices in gn , and clearly, b+,n is a subalgebra of b. ��

Suppose we are given a sequence Q = (Q1, . . . , Qn+1) with Qi a closed Ki -orbit
in Bi . We call Q a sequence of closed Ki -orbits. We use the data Q and Proposi-
tion 4.1 to construct a special subvariety XQ of Bn+1. For this construction, we view
Ki ⊂ Ki+1 by embedding Ki in the upper left corner of Ki+1. We also make use of
the following notation. If m ⊂ g is a subalgebra, we denote by mi the image of m
under the projection πi : g → gi .

For b ∈ Qn+1, bn is a Borel subalgebra by Proposition 4.1. Since Kn+1 acts tran-
sitively on Bn , there is k ∈ Kn+1 such that Ad(k)bn ∈ Qn and the variety

X Qn ,Qn+1 := {b ∈ Bn+1 : b ∈ Qn+1, bn ∈ Qn}

is nonempty. Proposition 4.1 again implies that (Ad(k)bn)n−1 = (Ad(k)b)n−1 is a
Borel subalgebra, so that there exists an l ∈ Kn such that Ad(l)(Ad(k)b)n−1 ∈ Qn−1.
Since Kn ⊂ Kn+1, the variety

X Qn−1,Qn ,Qn+1 = {b ∈ Bn+1 : b ∈ Qn+1, bn ∈ Qn, bn−1 ∈ Qn−1}

is nonempty. Proceeding in this fashion, we can define a nonempty closed subvariety
of Bn+1 by
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XQ = {b ∈ Bn+1 : bi ∈ Qi , 1 ≤ i ≤ n + 1}. (4.1)

Theorem 4.2 Let Q = (Q1, . . . , Qn+1) be a sequence of closed Ki -orbits in Bi .
Then the variety XQ is a single Borel subalgebra of g that contains the standard
Cartan subalgebra of diagonal matrices. Moreover, if b ⊂ g is a Borel subalgebra,
which contains the diagonal matrices, then b = XQ for some sequence of closed
Ki -orbits Q.

Proof Let h ⊂ g be the standard Cartan subalgebra of diagonal matrices. We prove
that XQ is a single Borel subalgebra in g containing h by induction on n, the case
n = 1 being trivial. Let b, b′ ∈ XQ. Then bn, b′

n ∈ X Q1,...,Qn and by induction
b′

n = bn = m, where m ⊂ gn is a Borel subalgebra in gn containing the standard
Cartan hn . Since b, b′ ∈ XQ, it follows that b, b′ ∈ Qn+1, so there exists a k ∈ Kn+1
such that b′ = Ad(k)b. Thus,

Ad(k)m = m. (4.2)

Suppose k =
[

kn 0
0 λ

]
, with kn ∈ GL(n, C) and λ ∈ C

×. Then Eq. (4.2) implies that

kn ∈ M , where M is the Borel subgroup of GL(n, C) corresponding to m. By the
second statement of Proposition 4.1, M ⊂ B from which it follows that k ∈ B, since

k =
[

knλ−1 0
0 1

] [
λIn 0
0 λ

]
,

where In denotes the n × n identity matrix, and the center of G is contained in all
Borel subgroups of G. Thus, b′ = Ad(k)b = b. To see that h ⊂ b, note that by the
induction hypothesis hn ⊂ m ⊂ b. But then h = hn ⊕ z(g), where z(g) is the center
of g, so h ⊂ b.

We now show that every b ⊂ g with h ⊂ b can be realized as XQ for some sequence
of closed Ki -orbits Q = (Q1, . . . , Qn+1). It is easy to see that if Q and Q′ are two
different sequences of Ki -orbits, then XQ = XQ′ . Since there are exactly i closed
Ki -orbits in Bi (see Sect. 3.1), there are (n + 1)! varieties XQ. But this is precisely
the number of Borel subalgebras in g that contain h. ��

Notation 4.3 In light of Theorem 4.2, we refer to the Borel XQ as bQ for the rest of
the paper.

To find the Borel subalgebras that contain elements of �−1(0)sreg, Proposition 3.10
suggests we consider bQ, where the sequence Q is given by Q = (Q1, . . . , Qn+1)

with Qi = Q+,i or Q−,i for all i . Since Q+,1 = Q−,1, there are 2n such Borel
subalgebras, and they are precisely the Borel subalgebras identified as the irreducible
components of �−1(0)sreg in [3], Theorem 5.5.
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Example 4.4 For g = gl(3, C), we have four such Borel subalgebras:

bQ−,Q− =
⎡

⎣
h1 0 0
a1 h2 0
a2 a3 h3

⎤

⎦ bQ+,Q+ =
⎡

⎣
h1 a1 a2
0 h2 a3
0 0 h3

⎤

⎦

bQ+,Q− =
⎡

⎣
h1 a1 0
0 h2 0
a2 a3 h3

⎤

⎦ bQ−,Q+ =
⎡

⎣
h1 0 a1
a2 h2 a3
0 0 h3

⎤

⎦ ,

where ai , hi ∈ C.

Theorem 4.5 If x ∈ �−1(0)sreg, then x ∈ bQ where Q = (Q1, . . . , Qn+1) is a
sequence of closed Ki -orbits with Qi = Q+,i or Q−,i for all i . Further, let nQ =
[bQ, bQ] and n

reg
Q denote the regular elements of nQ. Then

�−1(0)sreg =
∐

Q
n

reg
Q (4.3)

is the irreducible component decomposition of the variety �−1(0)sreg, where Q runs
over all 2n sequences of closed Ki -orbits (Q1, . . . , Qn+1) with Qi = Q+,i or Q−,i .

Proof We prove the first statement by induction on n, the case n = 1 being trivial.
Let x ∈ �−1(0)sreg. Then x is regular nilpotent and therefore contained in a unique
Borel subalgebra b ⊂ g. Further, since x ∈ gsreg, part (2) of Theorem 2.1 implies that
x satisfies the conditions of Eq. (3.1) for i = 2, . . . , n + 1, so by Proposition 3.10,
b ∈ Q+,n+1 or b ∈ Q−,n+1. It also follows immediately from part (2) of Theorem 2.1

and Remark 2.2 that xn ∈ �−1
n (0)sreg, where �n : gl(n, C) → C(n+1

2 ) is the Kostant–
Wallach map for gl(n, C), that is, �n(y) = ( f1,1(y) . . . , fn,n(y)) for y ∈ gl(n, C).
By induction, xn ∈ bQn ⊂ gn , where Qn = (Q1, . . . , Qn) is a sequence of closed
Ki -orbits with Qi = Q+,i or Q−,i for i = 1, . . . , n. Since xn is regular nilpotent and
bn is a Borel subalgebra by Proposition 4.1, it follows that bn = bQn . It then follows
from definitions that b = bQ where Q = (Q1, . . . , Qn, Qn+1) and Qn+1 = Q+,n+1
or Q−,n+1.

Let Q = (Q1, . . . , Qn+1) be a sequence of closed Ki -orbits with Qi = Q+,i or
Q−,i . To prove Eq. (4.3), we first observe that n

reg
Q ⊂ �−1(0)sreg. Indeed, let x ∈ n

reg
Q ,

then x ∈ bQ is regular nilpotent and bQ ∈ Q+,n+1 or Q−,n+1. Proposition 3.11 then
implies that xn is regular nilpotent and zgn

(xn) ∩ zg(x) = 0. But then xn ∈ n
reg
Qn

, with

Qn = (Q1, . . . , Qn). By induction we conclude that xn ∈ �−1
n (0)sreg. By part (2) of

Theorem 2.1, it follows that x is strongly regular and hence n
reg
Q ⊂ �−1(0)sreg.

We now show that n
reg
Q is an irreducible component of �−1(0)sreg. Observe that

n
reg
Q is an irreducible variety of dimension

(n+1
2

)
. By [11], Theorem 3.12, �−1(0)sreg

is a variety of pure dimension
(n+1

2

)
whose irreducible and connected components

coincide. Thus, if
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k∐

i=1

(�−1(0)sreg)(i)

is the irreducible component decomposition of �−1(0)sreg, then n
reg
Q ⊂(�−1(0)sreg)( j)

for some j and n
reg
Q is open in (�−1(0)sreg)( j). From the first statement of the theorem,

it follows that

(�−1(0)sreg)( j) =
∐

Q′
n

reg
Q′ ,

where the disjoint union is taken over a subset of the set of all sequences
(Q′

1, . . . , Q′
n+1) with Q′

i = Q+,i or Q−,i . Thus, n
reg
Q is both open and closed in

(�−1(0)sreg)( j) forcing (�−1(0)sreg)( j) = n
reg
Q , since (�−1(0)sreg)( j) is connected.

��
Theorem 4.5 provides an alternative proof of the following corollary from [3] (see

Theorem 5.2). Recall that the group A ∼= C(n+1
2 ) is obtained by integrating the Lie

algebra of Hamiltonian vector fields a = span{ξ fi, j : 1 ≤ i ≤ n, 1 ≤ j ≤ i} on g
(see Sect. 2).

Corollary 4.6 There are 2n A-orbits in �−1(0)sreg.

Proof By [11], Theorem 3.12, the A-orbits in �−1(0)sreg coincide with the irreducible
components of �−1(0)sreg. The result then follows immediately from Theorem 4.5.

��
Example 4.7 For g = gl(3, C), Theorem 4.5 implies that the four A-orbits in
�−1(0)sreg are the regular nilpotent elements of the Borel subalgebras given in Exam-
ple 4.4.

n
reg
Q−,Q− =

⎡

⎣
0 0 0
a1 0 0
a3 a2 0

⎤

⎦ n
reg
Q+,Q+ =

⎡

⎣
0 a1 a3
0 0 a2
0 0 0

⎤

⎦

n
reg
Q+,Q− =

⎡

⎣
0 a1 0
0 0 0
a2 a3 0

⎤

⎦ n
reg
Q−,Q+ =

⎡

⎣
0 0 a1
a2 0 a3
0 0 0

⎤

⎦ ,

where a1, a2 ∈ C
× and a3 ∈ C.

Remark 4.8 It follows from Theorem 4.5 that the irreducible components of the vari-
ety �−1(0)sreg are precisely the nilradicals nQ of the Borel subalgebras bQ. This
result was proved earlier in [3], Theorem 5.5, but we regard the argument in this
paper as more conceptual and the results more extensive. The connection between the
strongly regular elements �−1(0)sreg and the regular nilpotent elements of the Borel
subalgebras bQ was not understood in [3] (see Remark 1.2).
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5 Borel subalgebras and strongly regular elements

In this section, we show that every Borel subalgebra b ⊂ g contains strongly regular
elements. We first consider the Borel subalgebras b ⊂ g which contain the standard
Cartan subalgebra h of diagonal matrices in g. We refer to such Borel subalgebras as
standard Borel subalgebras.

Recall the involution θ from Notation 3.1, so Kn+1 = Gθ . Let H be the Cartan
subgroup of G with Lie algebra h. Let W = NG(H)/H denote the Weyl group of G
with respect to H and consider its subgroup WKn+1 = NKn+1(H)/H , the Weyl group
of Kn+1.

Lemma 5.1 Let b, b′ be standard Borel subalgebras of g which generate the same
closed Kn+1-orbit in Bn+1. Then b′ = w · b for some w ∈ WKn+1 .

Proof We have b′ = k · b for some k ∈ Kn+1, and we let B ′ be the Borel subgroup
with Lie algebra b′. Then the Cartan subalgebra k · h ⊂ b′ is θ -stable. Since any two
θ -stable subalgebras of b′ are conjugate by an element of B ′ ∩ Kn+1 (see for example
Proposition 1.2.1 [15]), there exists b ∈ B ′ ∩ Kn+1 such that bk · h = h. But then
bk ∈ NKn+1(H) and bk · b = b′ and the result follows. ��
Proposition 5.2 Let b ⊂ g be a standard Borel subalgebra. Then b contains strongly
regular elements.

Proof Let b ⊂ g be a standard Borel subalgebra. We construct an element x ∈ b
satisfying the following conditions.

(1) xi ∈ gi is regular semisimple for i = 1, . . . , n + 1.

(2) zgi
(xi−1) ∩ zgi

(xi ) = 0 for i = 2, . . . , n + 1.
(5.1)

The construction of x proceeds by induction on n; the case n = 1 being trivial. By
Theorem 4.2, the Borel subalgebra b = bQ for some sequence of closed Ki -orbits
Q = (Q1, . . . , Qn, Qn+1). Thus, bn = bQ1,...,Qn is a standard Borel subalgebra of
gn . By induction, there exists y ∈ bQ1,...,Qn satisfying the conditions in (5.1) for
1 ≤ i ≤ n. Since y ∈ bQ1,...,Qn is regular semisimple, there exists b ∈ BQ1,...,Qn

such that Ad(b)y = h ∈ hn , where hn is the standard Cartan subalgebra of diagonal
matrices in gn and BQ1,...,Qn ⊂ Gn is the Borel subgroup corresponding to the Borel
subalgebra bQ1,...,Qn .

By the results discussed in Sect. 3.1, the orbit Qn+1 = Kn+1 · m, where m is the
stabilizer of the flag

e1 ⊂ · · · ⊂ en+1︸︷︷︸
i

⊂ ei ⊂ · · · ⊂ en .

for some i = 1, . . . , n + 1. The Borel subalgebra m is given explicitly in Eq. (3.10).
Since bQ and m are standard Borel subalgebras contained in Qn+1, Lemma 5.1 implies
thatw·m = bQ for somew ∈ WKn+1 . Recall the subset
 of positive roots formdefined
in Eq. (3.11) and note that the corresponding root spaces are in the far right column
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and bottom row. Now we define an element z ∈ m as follows. Let zn = Ad(w−1)h,
and let the coefficient of z in any root space gα with α ∈ 
 be 1, and define zn+1n+1 so
that zn+1n+1 = hii for any i . A simple matrix calculation shows that the eigenvalues
of z are {h11, . . . , hnn, zn+1n+1}, so that z is regular semisimple. Since zgn

(zn) = hn
and zhn

(z) = 0, it follows that zgn
(zn) ∩ zg(z) = 0.

Now consider x = Ad(b−1w)z. Since b−1w ∈ Kn+1, it follows that x satisfies the
conditions in (5.1) for i = n + 1. By construction xn = Ad(b−1w)zn = y. It then
follows from Theorem 2.1 that x ∈ gsreg and that x satisfies the conditions of (5.1) for
all i = 1, . . . , n + 1. Further, since b ∈ BQ1,...,Qn ⊂ BQ1,...,Qn+1 by Proposition 4.1,
the strongly regular element x ∈ bQ. ��

Using Proposition 5.2, we can prove the main result of the section.

Theorem 5.3 Let b ⊂ g be any Borel subalgebra. Then b contains strongly regular
elements of g.

Proof For ease of notation, we denote the flag variety Bn+1 of gl(n + 1, C) by B.
Define

Bsreg = {b ∈ B | b ∩ gsreg = ∅}.

By Proposition 5.2, Bsreg is nonempty and we claim that Bsreg is open in B. To see
this, we use the Grothendieck resolution g̃ = {(x, b) ∈ g × B | x ∈ b}, as well as the
morphisms μ : g̃ → g, μ(x, b) = x , and π : g̃ → B, π(x, b) = b. Then π is a
smooth morphism of relative dimension dim b = (n+2

2

)
by [2], Sect. 3.1 and [6], Prop-

osition III.10.4. Thus, π is a flat morphism ([6], Theorem III.10.2) and hence open by
Exercise III.9.1 in [6]. Now consider μ−1(gsreg) = {(x, b) : x ∈ gsreg, x ∈ b}. Since
gsreg ⊂ g is open, μ−1(gsreg) ⊂ g̃ is open, and it follows that π(μ−1(gsreg)) is open
in B. But it is easily seen that π(μ−1(gsreg)) = Bsreg, which proves the claim.

We now show that the closed set Y = B \ Bsreg is empty. Suppose to the contrary
that b ∈ Y . It follows from Theorem 2.1 that H acts on gsreg by conjugation and hence

on Bsreg and Y by conjugation. Thus, H ·b ⊂ Y . Since Y is closed, we have H · b ⊂ Y .
Now H · b contains a closed H -orbit, and the closed H -orbits in B are precisely the
standard Borel subalgebras of g ([2], Lemma 3.1.10). Hence, there is a standard Borel
bstd in Y , which contradicts Proposition 5.2. ��
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