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1 Introduction

In a series of papers [24, 25], Kostant and Wallach study the action of an

abelian Lie group A ∼= C
n(n−1)

2 on g = gl(n,C). The Lie algebra a of A is
the abelian Lie algebra of Hamiltonian vector fields of the Gelfand–Zeitlin1

collection of functions JGZ := {fi,j : i = 1, . . . , n, j = 1, . . . , i} (see Section 2
for precise notation). The set of functions JGZ is Poisson commutative, and
its restriction to each regular adjoint orbit in g forms an integrable system.
For each function in the collection, the corresponding Hamiltonian vector
field on g is complete, and the action of A on g is given by integrating the
action of a.

Kostant and Wallach consider a Zariski open subset gsreg of g, which con-
sists of all elements x ∈ g such that the differentials of the functions JGZ are
linearly independent at x. Elements of gsreg are called strongly regular, and
Kostant and Wallach show that gsreg is exactly the set of regular elements x
of g such that the orbit A ·x is Lagrangian in the adjoint orbit of x. In [7, 9],
the first author determined the A-orbits in gsreg through explicit computa-

tions. We denote by Φ : g → C
n(n+1)

2 the map given by Φ(x) = (fi,j(x)), and
note that in [7, 9], the most subtle and interesting case is the nilfiber Φ−1(0).

The Gelfand–Zeitlin functions are defined using a sequence of projections
πi : gl(i,C) → gl(i − 1,C) given by mapping an i × i matrix y to its (i −
1)× (i− 1) submatrix in the upper left hand corner. Our paper [11] exploits
the fact that each projection πi is equivariant with respect to the action of
GL(i−1,C) on gl(i,C) by conjugation, where GL(i−1,C) is embedded in the
top left hand corner of GL(i,C) in the natural way. In particular, we use the
theory of GL(i− 1,C)-orbits on the flag variety Bi of gl(i,C) for i = 1, . . . , n,
to provide a more conceptual understanding of the A-orbits in the nilfiber.
In addition, we prove that every Borel subalgebra contains strongly regular
elements, and hope to develop these methods in order to better understand
the topology of gsreg.

In this paper, we review results of Kostant, Wallach, and the first author,
and then explain how to use the theory of GL(i− 1,C)-orbits on Bi in order
to derive the results from [11]. In Section 2, we recall the basic symplectic and
Poisson geometry needed to construct the Gelfand–Zeitlin integrable system.
We then discuss the work of Kostant and Wallach in constructing the system
and the action of the group A, and the work of the first author in describing
the A-orbit structure of gsreg. In Section 3, we give an overview of our results
from [11] and sketch some of the proofs. In Section 4, we review the rich theory
of orbits of a symmetric subgroup K on the flag variety B of a reductive
group G, as developed by Richardson, Springer, and others. In particular,
we show explicitly how the theory applies if K = GL(n − 1,C) × GL(1,C)

1 Alternate spellings of Zeitlin include Cetlin, Tsetlin, Tzetlin, and Zetlin. In this paper,
we follow the convention from our earlier work.
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and G = GL(n,C), and we hope this section will make the general theory of
K-orbits more accessible to researchers interested in applying this theory.

It would be difficult to overstate the influence of Nolan Wallach on the work
discussed in this paper. We look forward to further stimulating interactions
with Nolan in the future, and note that our plans for developing this work
may well depend on utilizing completely different work of Nolan than that
discussed here.

2 The Gelfand–Zeitlin integrable system on gl(n,C)

2.1 Integrable Systems

In this section, we give a brief discussion of integrable systems. For further de-
tails, we refer the reader to [1], [2]. We denote by M an analytic (respectively
smooth) manifold with holomorphic (resp. smooth) functions H(M).

Let (M,ω) be a 2n-dimensional symplectic manifold with symplectic form
ω ∈ ∧2T ∗M . For f ∈ H(M), we let ξf be the unique vector field such that

df(Y ) = ω(Y, ξf ), (1)

for all vector fields Y on M . The vector field ξf is called the Hamiltonian
vector field of f . We can use these vector fields to give H(M) the structure
of a Poisson algebra with Poisson bracket:

{f, g} := ω(ξf , ξg), (2)

for f, g ∈ H(M). That is {·, ·} makes H(M) into a Lie algebra and {·, ·}
satisfies a Leibniz rule with respect to the associative multiplication of H(M).

To define an integrable system on (M,ω), we need the following notion.

Definition 2.1. We say the functions {F1, . . . , Fr} ⊂ H(M) are independent
if the open set U = {m ∈ M : (dF1)m ∧ · · · ∧ (dFr)m 6= 0} is dense in M .

Definition 2.2. Let (M,ω) be a 2n-dimensional symplectic manifold. An in-
tegrable system on M is a collection of n independent functions {F1, . . . , Fn} ⊂
H(M) such that {Fi, Fj} = 0 for all i, j.

Remark 2.3. This terminology originates in Hamiltonian mechanics. In that
context, (M,ω,H) is a phase space of a classical Hamiltonian system with
n degrees of freedom and Hamiltonian function H ∈ H(M) (the total en-
ergy of the system). The trajectory of the Hamiltonian vector field ξH de-
scribes the time evolution of the system. If we are given an integrable system
{F1 = H, . . . , Fn}, then this trajectory can be found using only the opera-
tions of function integration and function inversion ([1], Section 4.2). Such a
Hamiltonian system is said to be integrable by quadratures.
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Integrable systems are important in Lie theory, because they are useful in
geometric constructions of representations through the theory of quantization
[19], [14] (see Remark 2.12 below). For example, integrable systems provide a
way to construct polarizations of symplectic manifolds (M,ω). By a polariza-
tion, we mean an integrable subbundle of the tangent bundle P ⊂ TM such
that each of the fibers Pm ⊂ Tm(M) is Lagrangian, i.e., Pm = P⊥

m , where P⊥
m

is the annihilator of Pm with respect to the symplectic form ωm on Tm(M). A
submanifold S ⊂ (M,ω) is said to be Lagrangian if Tm(S) is Lagrangian for
each m ∈ S, so that the leaves of a polarization are Lagrangian submanifolds
of M . The existence of a polarization is a crucial ingredient in constructing a
geometric quantization of M (for M a real manifold) (see for example [39]),
and Lagrangian submanifolds are also important in the study of deformation
quantization (see for example [28]).

To see how an integrable system on (M,ω) gives rise to a polarization, we
consider the moment map of the system {F1, . . . , Fn}:

F : M → Kn, F(m) = (F1(m), . . . , Fn(m)) for m ∈ M, (3)

where K = R or C. Let U = {m ∈ M : (dF1)m ∧ · · · ∧ (dFn)m 6= 0} and
let P ⊂ TU be P = span{ξFi

: i = 1, . . . , n}. Then P is a polarization of
the symplectic manifold (U, ω|U ) whose leaves are the connected components
of the level sets of F|U , i.e., the regular level sets of F. Indeed, if S ⊂ U
is a regular level set of F, then dimS = dimM − n = n. It then follows
that for m ∈ S, Tm(S) = span{(ξFi

)m : i = 1, . . . , n}, since the vector fields
ξF1 , . . . , ξFn

are tangent to S and independent on U . Thus, Tm(S) is isotropic
by Equation (2) and of dimension dimS = n = 1

2 dimU , so that Tm(S) is
Lagrangian.

2.2 Poisson manifolds and the Lie–Poisson structure

To study integrable systems in Lie theory, we need to consider not only
symplectic manifolds, but Poisson manifolds. We briefly review some of the
basic elements of Poisson geometry here. For more detail, we refer the reader
to [37] and [1].

A Poisson manifold (M, {·, ·}) is an analytic (resp. smooth) manifold where
the functions H(M) have the structure of a Poisson algebra with Poisson
bracket {·, ·}. For example, any symplectic manifold is a Poisson manifold
where the Poisson bracket of functions is given by Equation (2). For a Poisson
manifold (M, {·, ·}), the Hamiltonian vector field for f ∈ H(M) is given by

ξf (g) := {f, g}, (4)
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where g ∈ H(M). In the case where (M,ω) is symplectic, it is easy to see that
this definition of the Hamiltonian vector field of f agrees with the definition
given in Equation (1).

If we have two Poisson manifolds (M1, {·, ·}1) and (M2, {·, ·}2), an analytic
(resp. smooth) map Φ : M1 → M2 is said to be Poisson if

{f ◦ Φ, g ◦ Φ}1 = {f, g}2 ◦ Φ, (5)

for f, g ∈ H(M2). That is, Φ∗ : H(M2) → H(M1) is a homomorphism of
Poisson algebras. Equivalently, for f ∈ H(M2),

Φ∗ξΦ∗f = ξf . (6)

In particular, a submanifold (S, {·, ·}S) ⊂ (M, {·, ·}M ) with Poisson structure
{·, ·}S is said to be a Poisson submanifold of (M, {·, ·}M ) if the inclusion
i : S →֒ M is Poisson.

In general, Poisson manifolds (M, {·, ·}) are not symplectic, but they are
foliated by symplectic submanifolds called symplectic leaves. Consider the
(singular) distribution on M given by

χ(M) := span{ξf : f ∈ H(M)}. (7)

The distribution χ(M) is called the characteristic distribution of (M, {·, ·}).
Using the Jacobi identity for the Poisson bracket {·, ·}, one computes that

[ξf , ξg] = ξ{f,g}, (8)

so that the distribution χ(M) is involutive. Using a general version of the
Frobenius theorem, one can then show that χ(M) is integrable and the leaves
(S, {·, ·}S) are Poisson submanifolds of (M, {·, ·}), where the Poisson bracket
{·, ·}S is induced by a symplectic form ωS on S as in Equation (2). For further
details, see [37], Chapter 2.

Let g be a reductive Lie algebra over R or C and let G be any connected Lie
group with Lie algebra g. Let β(·, ·) be a nondegenerate, G-invariant bilinear
form on g. Then g has the structure of a Poisson manifold, which we call
the Lie–Poisson structure. If f ∈ H(g), we can use the form β to identify
the differential dfx ∈ T ∗

x (g) = g∗ at x ∈ g with an element ∇f(x) ∈ g. The
element ∇f(x) is determined by its pairing against z ∈ g ∼= Tx(g) by the
formula,

β(∇f(x), z) =
d

dt

∣∣∣∣
t=0

f(x+ tz) = dfx(z). (9)

We then define a Poisson bracket on H(g) by

{f, g}(x) = β(x, [∇f(x),∇g(x)]). (10)
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It can be shown that this definition of the Poisson structure on g is indepen-
dent of the choice of form β in the sense that a different form gives rise to an
isomorphic Poisson manifold structure on g.

From (10) it follows that

(ξf )x = [x,∇f(x)] ∈ Tx(g) = g. (11)

For x ∈ g, let G · x denote its adjoint orbit. From Equation (11), it follows
that the fiber of the characteristic distribution of (g, {·, ·}) at x is

χ(g)x = {[x, y] : y ∈ g} = Tx(G · x).

One can then show that the symplectic leaves of (g, {·, ·}) are the adjoint
orbits of G on g with the canonical Kostant–Kirillov–Souriau (KKS) sym-
plectic structure (see for example [6], Proposition 1.3.21). Since G · x ⊂ g is
a Poisson submanifold, it follows from Equations (5) and (6) that

{f, g}LP|G·x = {f |G·x, g|G·x}KKS and ξLPf |G·x = ξKKS
f |G·x

(12)

for f, g ∈ H(g), where the Poisson bracket and Hamiltonian field on the left
side of the equations are defined using the Lie–Poisson structure, and on the
right side they are defined using the KKS symplectic structure as in Section
2.1.

This description of the symplectic leaves allows us to easily identify the
Poisson central functions of (g, {·, ·}). We call a function f ∈ H(g) a Casimir
function if {f, g} = 0 for all g ∈ H(g). Clearly, f is a Casimir function if and
only if ξf = 0. Equation (12) implies this occurs if and only if df |G·x = 0 for
every x ∈ g, since each G · x is symplectic. Thus, the Casimir functions for
the Lie–Poisson structure on g are precisely the Ad(G)-invariant functions,
H(g)G.

The symplectic leaves of (g, {·, ·}) of maximal dimension play an important
role in our discussion. For x ∈ g, let zg(x) denote the centralizer of x. We call
an element x ∈ g regular if dim zg(x) = rank(g) is minimal [23]. The orbit
G·x then has maximum possible dimension, i.e., dim(G·x) = dim g−rank(g).

2.3 Construction of the Gelfand–Zeitlin integrable

system on gl(n,C)

Let g = gl(n,C) and let G = GL(n,C). Then g is reductive with nondegen-
erate, invariant form β(x, y) = tr(xy), where tr(xy) denotes the trace of the
matrix xy for x, y ∈ g. Thus, g is a Poisson manifold with the Lie–Poisson
structure. In this section, we construct an independent, Poisson commuting
family of functions on g, whose restriction to each regular adjoint orbit G · x
forms an integrable system in the sense of Definition 2.2. We refer to this
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family of functions as the Gelfand–Zeitlin integrable system on g. The family
is constructed using Casimir functions for certain Lie subalgebras of g and
extending these functions to Poisson commuting functions on all of g.

We consider the following Lie subalgebras of g. For i = 1, . . . , n − 1, we
embed gl(i,C) into g in the upper left corner and denote its image by gi. That
is to say, gi = {x ∈ g : xk,j = 0, if k > i or j > i}. Let Gi ⊂ GL(n,C) be
the corresponding closed subgroup. If g⊥i denotes the orthogonal complement
of gi with respect to the form β, then g = gi ⊕ g⊥i . Thus, the restriction of
the form β to gi is nondegenerate, so we can use it to define the Lie–Poisson
structure of gi via Equation (10). We have a natural projection πi : g → gi
given by πi(x) = xi, where xi is the upper left i × i corner of x, that is,
(xi)k,j = xk,j for 1 ≤ k, j ≤ i and is zero otherwise. The following lemma
is the key ingredient in the construction of the Gelfand–Zeitlin integrable
system on g.

Lemma 2.4. The projection πi : g → gi is Poisson with respect to the Lie–
Poisson structures on g and gi.

Proof. Since the Poisson brackets on H(g) and H(gi) satisfy the Leibniz
rule, it suffices to show Equation (5) for linear functions λx, µy ∈ H(gi),
where λx(z) = β(x, z) and µy(z) = β(y, z) for x, y, z ∈ gi. This is an easy
computation using the definition of the Lie–Poisson structure in Equation
(10) and the decomposition g = gi ⊕ g⊥i . ⊓⊔

Let C[g] denote the algebra of polynomial functions on g. Let

J(n) :=< π∗
1(C[g]

G1), . . . , π∗
n−1(C[gn−1]

Gn−1),C[g]G > (13)

be the associative subalgebra of C[g] generated by π∗
i (C[gi]

Gi) for i ≤ n − 1
and C[g]G.

Proposition 2.5. The algebra J(n) is a Poisson commutative subalgebra of
C[g].

Proof. The proof proceeds by induction on n, the case n = 1 being trivial.
Suppose that J(n− 1) is Poisson commutative. Then

J(n) =< π∗
n−1(J(n− 1)),C[g]G >

is the associative algebra generated by π∗
n−1(J(n−1)) and C[g]G. By Lemma

2.4, π∗
n−1(J(n − 1)) is Poisson commutative, and the elements of C[g]G are

Casimir functions, so that J(n) is Poisson commutative. ⊓⊔

Remark 2.6. It can be shown that the algebra J(n) is a maximal Poisson
commutative subalgebra of C[g] ([24], Theorem 3.25).

The Gelfand–Zeitlin integrable system is obtained by choosing a set of
generators for the algebra J(n). We note that the map πi : g → gi is
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surjective, so that we can identify C[gi]
Gi with its image π∗

i (C[gi]
Gi). Let

C[gi]
Gi = C[fi,1, . . . , fi,i], where fi,j(x) = tr(xj

i ) for j = 1, . . . , i. Then the
functions

JGZ := {fi,j : i = 1, . . . , n, j = 1, . . . , i} (14)

generate the algebra J(n) as an associative algebra. We claim that JGZ is an
algebraically independent, Poisson commuting set of functions whose restric-
tion to each regular G · x forms an integrable system.

By Proposition 2.5, the functions JGZ Poisson commute. To see that the
functions JGZ are algebraically independent, we study the following mor-
phisms:

Φi : gi → C
i, Φi(y) = (fi,1(y), . . . , fi,i(y)),

for i = 1, . . . , n. We define the Kostant–Wallach map to be the morphism

Φ : g → C(
n+1
2 ) given by Φ(x) = (Φ1(x1), . . . , Φi(xi), . . . , Φn(xn)). (15)

For z ∈ gi, let σi(z) equal the collection of i eigenvalues of z counted with
repetitions, where here we regard z as an i× i matrix.

Remark 2.7. If x, y ∈ g, then Φ(x) = Φ(y) if and only if σi(xi) = σi(yi)
for i = 1, . . . , n. This follows from the fact that C[gi]

Gi = C[fi,1, . . . , fi,i] =
C[pi,1, . . . , pi,i], where pi,j is the coefficient of tj−1 in the characteristic poly-
nomial of xi thought of as an i× i matrix. In particular, Φ(x) = (0, . . . , 0) if
and only if xi is nilpotent for i = 1, . . . , n.

Kostant and Wallach produce a cross-section to the map Φ using the (up-
per) Hessenberg matrices. For 1 ≤ i, j ≤ n, let Ei,j ∈ g denote the elementary
matrix with 1 in the (i, j)-th entry and zero elsewhere. Let b+ ⊂ g be the stan-
dard Borel subalgebra of upper triangular matrices and let e =

∑n

i=2 Ei,i−1

be the sum of the negative simple root vectors. We call elements of the affine
variety e+ b (upper) Hessenberg matrices:

e+ b =




a11 a12 · · · a1n−1 a1n
1 a22 · · · a2n−1 a2n
0 1 · · · a3n−1 a3n
...

...
. . .

...
...

0 0 · · · 1 ann



.

Kostant and Wallach prove the following remarkable fact ([24], Theorem 2.3).

Theorem 2.8. The restriction of the Kostant–Wallach map Φ|
e+b : e+ b →

C(
n+1
2 ) to the Hessenberg matrices e+ b is an isomorphism of algebraic vari-

eties.

Remark 2.9. For x ∈ g, let R(x) = {σ1(x1), . . . , σi(xi), . . . , σn(x)} be the
collection of

(
n+1
2

)
-eigenvalues of x1, . . . , xi, . . . , x counted with repetitions.



The Gelfand–Zeitlin integrable system and K-orbits on the flag variety 9

The numbers R(x) are called the Ritz values of x and play an important
role in numerical linear algebra (see for example [30],[29]). In this language,
Theorem 2.8 says that any

(
n+1
2

)
-tuple of complex numbers can be the Ritz

values of an x ∈ g and that there is a unique Hessenberg matrix having those
numbers as Ritz values. Contrast this with the Hermitian case in which the
necessarily real eigenvalues of xi must interlace those of xi−1 (see for example
[21]). This discovery has led to some new work on Ritz values by linear
algebraists [29],[34].

Theorem 2.8 suggests the following definition from [24].

Definition 2.10. We say that x ∈ g is strongly regular if the differentials
{(dfi,j)x : i = 1, . . . , n, j = 1, . . . , i} are linearly independent. We denote the
set of strongly regular elements of g by gsreg.

By Theorem 2.8, e + b ⊂ gsreg, and since gsreg is Zariski open, it is dense in
both the Zariski topology and the Hausdorff topology on g [27]. Hence, the

polynomials JGZ in (14) are independent. For c ∈ C(
n+1
2 ), let Φ−1(c)sreg :=

Φ−1(c) ∩ gsreg denote the strongly regular elements of the fiber Φ−1(c). It

follows from Theorem 2.8 that Φ−1(c)sreg is nonempty for any c ∈ C(
n+1
2 ).

By a well-known result of Kostant [23], if x is strongly regular, then xi ∈ gi
is regular for all i. We state several equivalent characterizations of strong
regularity.

Proposition 2.11 ([24], Proposition 2.7 and Theorem 2.14). The fol-
lowing statements are equivalent.

(i) x is strongly regular.
(ii) The tangent vectors {(ξfi,j )x; i = 1, . . . , n− 1, j = 1, . . . , i} are linearly

independent.
(iii) The elements xi ∈ gi are regular for all i = 1, . . . , n and zg

i
(xi) ∩

zg
i+1

(xi+1) = 0 for i = 1, . . . , n−1, where zg
i
(xi) denotes the centralizer

of xi in gi.

To see that the restriction of the functions JGZ to a regular adjoint orbit
G · x forms an integrable system, we first observe that G · x ∩ gsreg 6= ∅ for
any regular x. This follows from the fact that any regular matrix is conjugate
to a companion matrix, which is Hessenberg and therefore strongly regular.
Note that the functions fn,1, . . . , fn,n restrict to constant functions on G · x,
so we only consider the restrictions of {fi,j : i = 1, . . . , n − 1, j = 1, . . . , i}.
Let qi,j = fi,j |G·x for i = 1, . . . , n− 1 , j = 1, . . . , i and let U = G · x ∩ gsreg.
Then U is open and dense in G ·x. By Equation (12), part (ii) of Proposition
2.11 and Proposition 2.5 imply respectively that the functions {qi,j : i =
1, . . . , n−1, j = 1, . . . i} are independent and Poisson commute on U . Observe
that there are

n−1∑

i=1

i =
n(n− 1)

2
=

dim(G · x)
2
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such functions. Hence, they form an integrable system on regular G · x.
It follows from our work in Section 2.1 that the connected components of

the regular level sets of the moment map

y → (q1,1(y), . . . , qi,j(y), . . . , qn−1,n−1(y))

are the leaves of a polarization of G · x ∩ gsreg. It is easy to see that such
regular level sets coincide with certain strongly regular fibers of the Kostant–
Wallach map, namely the fibers Φ−1(c)sreg where c = (c1, . . . , cn), ci ∈ C

i

with cn = Φn(x) (see Equation (15)). This follows from Proposition 2.11 and
the fact that regular matrices which have the same characteristic polynomial
are conjugate (see Remark 2.7).

We therefore turn our attention to studying the geometry of the strongly
regular set gsreg and Lagrangian submanifolds Φ−1(c)sreg of regular G · x.

Remark 2.12. The Gelfand–Zeitlin system described here can be viewed as
a complexification of the one introduced by Guillemin and Sternberg [19]
on the dual to the Lie algebra of the unitary group. They show that the
Gelfand–Zeitlin integrable system on u(n)∗ is a geometric version of the clas-
sical Gelfand–Zeitlin basis for irreducible representations of U(n) [18]. More
precisely, they construct a geometric quantization of a regular, integral coad-
joint orbit of U(n) on u(n)∗ using the polarization from the Gelfand–Zeitlin
integrable system and show that the resulting quantization is isomorphic to
the corresponding highest weight module for U(n) using the Gelfand–Zeitlin
basis for the module.

There is strong empirical evidence (see [17]) that the quantum version of
the complexified Gelfand–Zeitlin system is the category of Gelfand–Zeitlin
modules studied by Drozd, Futorny, and Ovsienko [13]. These are Harish-
Chandra modules for the pair (U(g), Γ ), where Γ ⊂ U(g) is the Gelfand–
Zeitlin subalgebra of the universal enveloping algebra U(g) [16]. It would be
interesting to produce such modules geometrically using the geometry of the
complex Gelfand–Zeitlin system developed below and deformation quantiza-
tion.

2.4 Integration of the Gelfand–Zeitlin system and the

group A

We can study the Gelfand–Zeitlin integrable system on gl(n,C) and the struc-
ture of the fibers Φ−1(c)sreg by integrating the corresponding Hamiltonian

vector fields to a holomorphic action of C(
n
2) on g. The first step is the fol-

lowing observation.

Theorem 2.13. Let fi,j(x) = tr(xj
i ) for i = 1, . . . , n− 1, j = 1, . . . , i. Then

the Hamiltonian vector field ξfi,j is complete on g and integrates to a holo-
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morphic action of C on g whose orbits are given by

ti,j · x := Ad(exp(ti,jjx
j−1
i )) · x, (16)

for x ∈ g, ti,j ∈ C.

Proof. Denote the right side of Equation (16) by θ(ti,j , x). We show that
θ′(ti,j , x) = (−ξfi,j )θ(ti,j ,x) for any ti,j ∈ C, so that θ(−ti,j , x) is an integral
curve of the vector field ξfi,j . For the purposes of this computation, replace
the variable ti,j by the variable t. Then

d

dt

∣∣∣∣
t=t0

Ad(exp(t jxj−1
i )) · x = ad(jxj−1

i ) ·Ad(exp(t0 jxj−1
i )) · x

= ad(jxj−1
i ) · θ(t0, x).

Clearly, exp(t0jx
j−1
i ) centralizes xi, so that θ(t0, x)i = xi. This implies

ad(jxj−1
i ) · θ(t0, x) = ad(j(θ(t0, x)i)

j−1) · θ(t0, x).

Now it is easily computed that ∇fi,j(y) = jyj−1
i for any y ∈ g. Thus, Equa-

tion (11) implies that

ad(j(θ(t0, x)i)
j−1) · θ(t0, x) = −(ξfi,j )θ(t0,x). ⊓⊔

We now consider the Lie algebra of Gelfand–Zeitlin vector fields

a := span{ξfi,j : i = 1, . . . , n− 1, j = 1, . . . , i}. (17)

By Equation (8), a is an abelian Lie algebra, and since gsreg is nonempty,

dim a =
(
n
2

)
, by (ii) of Proposition 2.11. Let A be the corresponding simply

connected Lie group, so that A ∼= C(
n
2). We take as coordinates on A,

t = (t1, . . . , ti, . . . , tn−1) ∈ C× · · · × C
i × · · · × C

n−1 = C(
n
2),

where ti ∈ C
i with ti = (ti,1, . . . , ti,i), with ti,j ∈ C for i = 1, . . . , n − 1,

j = 1, . . . , i. Since a is abelian the actions of the various ti,j given in Equation
(16) commute. Thus, we can define an action of A on g by composing the
actions of the various ti,j in any order. For a = (t1, . . . , tn−1) ∈ A, a · x is
given by the formula:

a · x = Ad(exp(t1,1)) · . . . ·Ad(exp(jti,jxj−1
i )) · . . .

·Ad(exp((n− 1)tn−1,n−1x
n−2
n−1)) · x.

(18)

Theorem 2.13 shows that this action integrates the action of a on g, so that

Tx(A · x) = span{(ξfi,j )x : i = 1, . . . , n− 1, j = 1, . . . , i}. (19)
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Since the functions JGZ Poisson commute, it follows from Equation (12) that
A·x ⊂ G·x is isotropic with respect to the KKS symplectic structure on G·x.
Note also that Equation (4) implies that ξfi,jfk,l = 0 for any i, j and k, l. It
follows that fk,l is invariant under the flow of ξfi,j for any i, j and therefore
is invariant under the action of A given in Equation (18). Thus, the action
of A preserves the fibers of the Kostant–Wallach map Φ defined in Equation
(15).

It follows from Equation (19) and Part (ii) of Proposition 2.11 that x ∈
gsreg if and only if dim(A · x) =

(
n
2

)
, which holds if and only if A · x ⊂

G · x is Lagrangian in regular G · x. Thus, the group A acts on the strongly
regular fibers Φ−1(c)sreg and its orbits form the connected components of
the Lagrangian submanifold Φ−1(c)sreg ⊂ G · x. Hence, the leaves of the
polarization of a regular adjoint orbit G · x constructed from the Gelfand–
Zeitlin integrable system are exactly the A-orbits on G · x ∩ gsreg. Moreover,
there are only finitely many A-orbits in Φ−1(c)sreg.

Theorem 2.14 ([24], Theorem 3.12). Let c ∈ C(
n+1
2 ) and let Φ−1(c)sreg

be a strongly regular fiber of the Kostant–Wallach map. Then Φ−1(c)sreg is
a smooth algebraic variety of dimension

(
n
2

)
whose irreducible components in

the Zariski topology coincide with the orbits of A on Φ−1(c)sreg.

Remark 2.15. Our definition of the Gelfand–Zeitlin integrable system in-
volved choosing the specific set of algebraically independent generators JGZ

for the algebra J(n) in Equation (13). However, it can be shown that if we
choose another algebraically independent set of generators, J ′

GZ, then their
restriction to each regular adjoint orbit G ·x forms an integrable system, and
the corresponding Hamiltonian vector fields are complete and integrate to
an action of a holomorphic Lie group A′ whose orbits coincide with those of
A, [24], Theorem 3.5. Our particular choice of generators JGZ is to facilitate
the easy integration of the Hamiltonian vector fields ξf , f ∈ JGZ in Theorem
2.13.

2.5 Analysis of the A-action on Φ−1(c)sreg

Kostant and Wallach [24] studied the action of A on a special set of regular
semisimple elements in g defined by:

gΩ = {x ∈ g : xi is regular semisimple and σi(xi) ∩ σi+1(xi+1) = ∅ for all i}.
(20)

Let Ω = Φ(gΩ) ⊂ C(
n+1
2 ). By Remark 2.7, we have gΩ = Φ−1(Ω). In [24], the

authors show that the action of A is transitive on the fibers Φ−1(c) for c ∈ Ω
and that these fibers are

(
n
2

)
-dimensional tori.

Theorem 2.16 ([24], Theorems 3.23 and 3.28). The elements of gΩ are
strongly regular, so that Φ−1(c) = Φ−1(c)sreg for c ∈ Ω. Moreover, Φ−1(c)
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is a homogeneous space for a free algebraic action of the torus (C×)(
n
2) and

therefore is precisely one A-orbit.

Remark 2.17. An analogous Gelfand–Zeitlin integrable system exists for
complex orthogonal Lie algebras so(n,C). One can also show that this system
integrates to a holomorphic action of C

d on so(n,C), where d is half the
dimension of a regular adjoint orbit in so(n,C). One can then prove the
analogue of Theorem 2.16 for so(n,C). We refer the reader to [8] for details.

The thesis of the first author generalizes Theorem 2.16 to an arbitrary fiber

Φ−1(c)sreg for c ∈ C(
n+1
2 ) (see [7]). The methods used differ from those used

to prove Theorem 2.16, but the idea originates in some unpublished work of
Wallach, who used a similar strategy to describe the A-orbit structure of the
set gΩ. We briefly outline this strategy, which can be found in detail in [9],
Section 4. The key observation is that the vector field ξfi,j acts via Equation
(16) by the centralizer ZGi

(xi) of xi in Gi. The problem is that the group
ZGi

(xi) is difficult to describe for arbitrary xi, so that the formula for the
A-action in Equation (18) is too difficult to use directly. However, if x ∈ gsreg
and Ji is the Jordan canonical form of xi, then the group Zi := ZGi

(Ji) is
easy to describe, since xi ∈ gi is regular for i = 1, . . . , n by (iii) of Proposition
2.11. Further, for x ∈ Φ−1(c)sreg, xi is in a fixed regular conjugacy class for
i = 1, . . . , n. This allows us to construct morphisms Φ−1(c)sreg → Gi, given
by x → gi(x), where Ad(gi(x)

−1) · x = Ji, with Ji a fixed Jordan matrix
(depending only on Φ−1(c)sreg). We can then use these morphisms to define
a free algebraic action of the group Z := Z1 × · · · × Zn−1 on Φ−1(c)sreg such
that the Z-orbits coincide with the A-orbits. The action of Z is given by

(z1, . . . , zn−1) · x = Ad(g1(x)z1g1(x)
−1) · . . . ·Ad(gi(x)zigi(x)−1) · . . .

· Ad(gn−1(x)zn−1gn−1(x)
−1) · x,

(21)

where zi ∈ Zi for i = 1, . . . , n− 1 and x ∈ Φ−1(c)sreg, (cf. Equation (18)).
The action of the group Z in Equation (21) is much easier to work with

than the action of A in Equation (18) and allows us to understand the struc-
ture of an arbitrary fiber Φ−1(c)sreg. The first observation is that we can
enlarge the set of elements on which the action of A is transitive on the fibers
of the Kostant–Wallach map from the set gΩ to the set gΘ defined by

gΘ = {x ∈ g : σi(xi) ∩ σi+1(xi+1) = ∅}.

Let Θ = Φ(gΘ). Note that by Remark 2.7, Φ−1(Θ) = gΘ.

Theorem 2.18 ([9], Theorem 5.15). The elements of gΘ are strongly reg-
ular. If c ∈ Θ, then Φ−1(c) = Φ−1(c)sreg is a homogeneous space for a free
algebraic action of the group Z = Z1 × · · · × Zn−1 given in Equation (21),
and thus is exactly one A-orbit. Moreover, gΘ is the maximal subset of g for
which the action of A is transitive on the fibers of Φ.
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For general fibers the situation becomes more complicated.

Theorem 2.19 ([9], Theorem 5.11). Let x ∈ gsreg be such that there are
ji distinct eigenvalues in common between xi and xi+1 for 1 ≤ i ≤ n − 1,
and let c = Φ(x). Then there are exactly 2j A-orbits in Φ−1(c)sreg, where

j =
∑n−1

i=1 ji. The orbits of A on Φ−1(c)sreg coincide with the orbits of a free
algebraic action of the group Z = Z1 × · · · × Zn−1 defined on Φ−1(c)sreg in
Equation (21).

Remark 2.20. After the proof of Theorem 2.19 was established in [7], a sim-
ilar result appeared in an interesting paper of Bielwaski and Pidstrygach [3].
Their arguments are independent and completely different from ours. It would
be interesting to study the relation between the two different approaches to
establishing the result of Theorem 2.19.

We highlight a special case of Theorem 2.19, which we will investigate in
much greater detail below in Section 3.

Corollary 2.21. Consider the strongly regular nilfiber

Φ−1(0)sreg := Φ−1(0, . . . , 0)sreg.

Then there are exactly 2n−1 A-orbits in Φ−1(0)sreg. These orbits coincide with

the orbits of a free algebraic action of (C×)n−1 × C(
n

2)−n+1 on Φ−1(0)sreg.

Proof. The first statement follows immediately from Remark 2.7 and Theo-
rem 2.19. For the second statement, we observe that in this case the group
Z = ZG1(e1) × · · · × ZGn−1(en−1), where ei ∈ gi is the principal nilpotent

Jordan matrix. It follows that Z = (C×)n−1 × C(
n

2)−n+1. ⊓⊔

Theorem 2.19 gives a complete description of the local structure of the
Lagrangian foliation of regular adjoint orbits of g by the Gelfand–Zeitlin
integrable system and shows the system is locally algebraically integrable,
giving natural algebraic “angle coordinates” coming from the action of the
group Z = Z1 × · · · × Zn−1. However, Theorem 2.19 does not say anything
about the global nature of the foliation. Motivated by Theorem 2.19, we
would like to extend the local Z-action on Φ−1(c)sreg given in (21) to larger
subvarieties of g. However, this is not possible, except in certain special cases.
The definition of the Z-action uses the fact that the Jordan form of each xi

for i = 1, . . . , n−1 is fixed on the fiber Φ−1(c)sreg. The problem with trying to
extend this action is that there is in general no morphism on a larger variety
which assigns to xi its Jordan form. The issue is that the ordered eigenvalues
of a matrix are not in general algebraic functions of the matrix entries.

For the set gΩ , Kostant and Wallach resolve this issue by producing an
étale covering gΩ(e) of gΩ on which the eigenvalues are algebraic functions
[25]. They then lift the Lie algebra a of Gelfand–Zeitlin vector fields in Equa-
tion (17) to the covering where they integrate to an algebraic action of the
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torus (C×)(
n
2). In our paper [10], we extend this to the full strongly regular

set using the theory of decomposition classes [4] and Poisson reduction [15].

3 The geometry of the strongly regular nilfiber

In recent work [11], we take a very different approach to describing the ge-
ometry of gsreg by studying the Borel subalgebras that contain elements of
gsreg. We develop a new connection between the orbits of certain symmetric
subgroups Ki on the flag varieties of gi for i = 2, . . . , n and the Gelfand–
Zeitlin integrable system on g. We use this connection to prove that every
Borel subalgebra of g contains strongly regular elements, and we determine
explicitly the Borel subalgebras which contain elements of the strongly regu-
lar nilfiber Φ−1(0)sreg = Φ−1(0, . . . , 0)sreg. We show that there are 2n−1 such
Borel subalgebras, and that the subvarieties of regular nilpotent elements of
these Borel subalgebras are the 2n−1 irreducible components of Φ−1(0)sreg
given in Corollary 2.21. This description of the nilfiber is much more explicit

than the one given in Corollary 2.21, since the Z = (C×)n−1 × C(
n
2)−n+1-

action of Equation (21) is not easy to compute explicitly. We refer the reader
to our paper [11] for proofs of the results of this section.

3.1 K-orbits and Φ−1(0)sreg

We begin by considering the strongly regular nilfiber Φ−1(0)sreg of the
Kostant–Wallach map. By Remark 2.7 and (iii) of Proposition 2.11, we note
that x ∈ Φ−1(0)sreg if and only if the following two conditions are satisfied
for every i = 2, . . . , n:

(a) xi−1, xi are regular nilpotent.

(b) zg
i−1

(xi−1) ∩ zg
i
(xi) = 0.

(22)

We proceed by finding the Borel subalgebras in gi which contain elements
satisfying (a) and (b), and we then use these Borel subalgebras to construct
the Borel subalgebras of g which contain elements of Φ−1(0)sreg.

Let Ki := GL(i − 1,C) ×GL(1,C) ⊂ GL(i,C) be the group of invertible
block diagonal matrices with an (i − 1) × (i − 1) block in the upper left
corner and a 1× 1 block in the lower right corner. Let Bi be the flag variety
of gi. Then Ki acts on Bi by conjugation with finitely many orbits (see
for example [35]). We observe that the conditions (a) and (b) in (22) are
Ad(Ki)-equivariant. Thus, the problem of finding the Borel subalgebras of
gi containing elements satisfying these conditions reduces to the problem of
studying the conditions for a representative in each Ki-orbit. In this section,
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we find all Ki-orbits Qi through Borel subalgebras containing such elements,
and in the process reveal some new facts about the geometry of Ki-orbits on
Bi. In the following sections, we explain how to link the orbits Qi together
for i = 2, . . . , n to produce the Borel subalgebras of g that contain elements
of Φ−1(0)sreg and use these Borel subalgebras to study the geometry of the
fiber Φ−1(0)sreg.

For concreteness, let us fix i = n, so that Kn = GL(n− 1,C)×GL(1,C)
and Bn is the flag variety of gl(n,C). For b ∈ Bn, let Kn · b denote the
Kn-orbit through b. We analyze each of the conditions in (22) in turn.

Theorem 3.1 ([11], Proposition 3.6). Suppose x ∈ g satisfies condition
(a) in (22) and that x ∈ b, with b ⊂ g a Borel subalgebra of g. Then b ∈ Q,
where Q is a closed Kn-orbit.

Theorem 3.1 follows from a stronger result. The group Kn is the group
of fixed points of the involution θ on G, where θ(g) = cgc−1 with c =
diag[1, . . . , 1,−1]. Let kn = Lie(Kn), so that kn is the Lie algebra of block di-
agonal matrices kn = gl(n−1,C)⊕gl(1,C). Then g = kn⊕pn, where pn is the
−1-eigenspace for the involution θ on g. Let πkn : g → kn be the projection
of g onto kn along pn, and let Nkn be the nilpotent cone in kn.

Theorem 3.2 ([11], Theorem 3.7). Let b ⊂ g be a Borel subalgebra and let
n = [b, b], with nreg the regular nilpotent elements in b. Suppose that b ∈ Q
with Q a Kn-orbit in Bn which is not closed. Then πkn(n

reg) ∩ Nkn
= ∅.

Remark 3.3. By the Kn-equivariance of the projection πkn : g → kn, it
suffices to prove Theorem 3.2 for a representative of the Kn-orbit Q. Stan-
dard representatives are given by the Borel subalgebras bi,j discussed later
in Notation 4.23 and Example 4.30. Let b = bi,j be such a representative. To
compute πkn(n

reg), one needs to understand the action of θ on the roots of b

with respect to a θ-stable Cartan subalgebra h′ ⊂ b. In general, this action
is difficult to compute. It is easier to replace the pair (b, θ) with an equiv-
alent pair (b+, θ

′) where b+ ⊂ g is the standard Borel subalgebra of upper
triangular matrices and θ′ is an involution of g which stabilizes the standard
Cartan subalgebra of diagonal matrices h ⊂ b+. We then prove the statement
of the theorem for the pair (b+, θ

′). The construction and computation of the
involution θ′ is explained in detail in Equation (31) and Example 4.30, where
it is denoted by θv̂ and θv̂i,j respectively.

Theorem 3.1 permits us to focus only on closed Kn-orbits. There are n
such orbits in Bn, two of which are Q+,n = Kn · b+, the orbit of the n × n
upper triangular matrices, and Q−,n = Kn · b−, the orbit of the n× n lower
triangular matrices (see Example 4.16). We now study the second condition
in (22).

Proposition 3.4. Let Q = Kn · b be a closed Kn-orbit and let x ∈ n = [b, b]
satisfy condition (b) in (22). Then Q = Q+,n or Q = Q−,n.
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This is an immediate consequence of the following result. Recall the projection
πn−1 : g → gn−1 defined by πn−1(x) = xn−1.

Proposition 3.5 ([11], Proposition 3.8). Let b ⊂ g be a Borel subalgebra
that generates a closed Kn-orbit Q, which is neither the orbit of the upper
nor the lower triangular matrices. Let n = [b, b] and let nn−1 := πn−1(n).
Let zg(n) denote the centralizer of n in g and let zg

n−1
(nn−1) denote the

centralizer of nn−1 in gn−1. Then

zg
n−1

(nn−1) ∩ zg(n) 6= 0. (23)

Remark 3.6. We note that the projection πn−1 : g → gn−1 is Kn-equivariant,
so that it suffices to prove Equation (23) for a representative b of the closed
Kn-orbit Q. We can take b to be one of the representatives given below in
Example 4.16.

For any i = 2, . . . , n, let Q+,i denote the Ki-orbit of the i×i upper triangular
matrices in Bi and let Q−,i denote the Ki-orbit of the i × i lower triangular
matrices in Bi. Combining the results of Theorem 3.1 and Proposition 3.4,
we obtain:

Theorem 3.7. Let x ∈ gi satisfy the two conditions in (22) and suppose that
x ∈ b, with b ⊂ gi a Borel subalgebra. Then Ki · b = Q+,i or Ki · b = Q−,i.

3.2 Constructing Borel subalgebras out of Ki-orbits

In this section we explain how to link together the Ki-orbits Q+,i and Q−,i

for i = 2, . . . , n to construct all the Borel subalgebras containing elements of
Φ−1(0)sreg. The key to the construction is the following lemma.

Lemma 3.8 ([11], Proposition 4.1). Let Q be a closed Kn-orbit in Bn and
let b ∈ Q. Then πn−1(b) ⊂ gn−1 is a Borel subalgebra.

We can use Lemma 3.8 to give an inductive construction of special subva-
rieties of Bn by linking together closed Ki-orbits Qi for i = 2, . . . , n. For this
construction, we view Ki ⊂ Ki+1 by embedding Ki in the upper left corner
of Ki+1. We also make use of the following notation. If m ⊂ g is a subalgebra,
we denote by mi the image of m under the projection πi : g → gi.

Suppose we are given a sequence Q = (Q2, . . . , Qn) with Qi a closed Ki-
orbit in Bi. We call Q a sequence of closed Ki-orbits. For b ∈ Qn, bn−1 is a
Borel subalgebra by Lemma 3.8. Since Kn acts transitively on Bn−1, there is
k ∈ Kn such that Ad(k)bn−1 ∈ Qn−1 and the variety

XQn−1,Qn
:= {b ∈ Bn : b ∈ Qn, bn−1 ∈ Qn−1}
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is nonempty. Lemma 3.8 again implies that (Ad(k)bn−1)n−2 = (Ad(k)b)n−2

is a Borel subalgebra in gn−2, so that there exists an l ∈ Kn−1 such that
Ad(l)(Ad(k)b)n−2 ∈ Qn−2. Since Kn−1 ⊂ Kn, the variety

XQn−2,Qn−1,Qn
:= {b ∈ Bn : b ∈ Qn, bn−1 ∈ Qn−1, bn−2 ∈ Qn−2}

is nonempty. Proceeding in this fashion, we can define a nonempty closed
subvariety of Bn by

XQ := {b ∈ Bn : bi ∈ Qi, 2 ≤ i ≤ n}. (24)

Theorem 3.9 ([11], Theorem 4.2). Let Q = (Q2, . . . , Qn) be a sequence
of closed Ki-orbits. Then the variety XQ is a single Borel subalgebra of g

that contains the standard Cartan subalgebra of diagonal matrices. Moreover,
if b ⊂ g is a Borel subalgebra which contains the diagonal matrices, then
b = XQ for some sequence of closed Ki-orbits Q.

Notation 3.10. In light of Theorem 3.9, we refer to the Borel subalgebras
XQ as bQ for the remainder of the discussion.

3.3 Borel subalgebras containing elements of Φ−1(0)sreg

Now we can at last describe the Borel subalgebras of g that contain elements
of Φ−1(0)sreg and use these to determine the irreducible component decom-
position of Φ−1(0)sreg explicitly. Since x ∈ Φ−1(0)sreg if and only if xi ∈ gi
satisfies the two conditions in (22) for all i = 2, . . . , n, Theorem 3.7 implies:

Proposition 3.11 ([11], Theorem 4.5). Let x ∈ Φ−1(0)sreg. Then x ∈ bQ,
where the sequence of closed Ki-orbits Q = (Q2, . . . , Qn) has Qi = Q+,i or
Qi = Q−,i for each i = 2, . . . , n.

Example 3.12. It is easy to describe explicitly these Borel subalgebras. For
example, for g = gl(3,C) there are four such Borel subalgebras:

bQ−,Q−
=




h1 0 0
a1 h2 0
a2 a3 h3


 bQ+,Q+ =




h1 a1 a2
0 h2 a3
0 0 h3




bQ+,Q−
=




h1 a1 0
0 h2 0
a2 a3 h3


 bQ−,Q+ =




h1 0 a1
a2 h2 a3
0 0 h3




,

where ai, hi ∈ C.

We can use these Borel subalgebras to describe the fiber Φ−1(0)sreg. Let
n
reg
Q be the subvariety of regular nilpotent elements of bQ. Proposition 3.11
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implies that

Φ−1(0)sreg ⊆
⊔

Q
n
reg
Q , (25)

where Q = (Q2, . . . , Qn) ranges over all 2n−1 sequences where Qi = Q+,i

or Q−,i. We note that the union on the right side of (25) is disjoint, since
a regular nilpotent element is contained in a unique Borel subalgebra (see
for example [6], Proposition 3.2.14). We claim that the inclusion in (25) is
an equality and that the right side of (25) is an irreducible component de-
composition of the variety Φ−1(0)sreg. The key observation is the converse to
Proposition 3.11.

Proposition 3.13 ([11], Prop. 3.11, Thm. 4.5). Let Q = (Q2, . . . , Qn)
be a sequence of closed Ki-orbits with Qi = Q+,i or Q−,i. Then n

reg
Q ⊂

Φ−1(0)sreg.

Thus, the variety n
reg
Q is an irreducible subvariety of Φ−1(0)sreg of dimen-

sion dim nQ =
(
n
2

)
. It follows from Theorem 2.14 that n

reg
Q is an open subva-

riety of a unique irreducible component Y of Φ−1(0)sreg. But then by (25),
we have

Y =
⊔

Q′

n
reg
Q′ ,

where the disjoint union is taken over a subset of the set of all sequences
(Q′

2, . . . , Q
′
n) with Q′

i = Q+,i or Q−,i. Since Y is irreducible, we must have
n
reg
Q = Y. This yields the main theorem of [11].

Theorem 3.14 ([11], Theorem 4.5). The irreducible component decompo-
sition of the variety Φ−1(0)sreg is

Φ−1(0)sreg =
⊔

Q
n
reg
Q , (26)

where Q = (Q2, . . . , Qn) ranges over all 2n−1 sequences where Qi = Q+,i

or Q−,i. The A-orbits in Φ−1(0)sreg are exactly the varieties n
reg
Q , for Q as

above.

The description of Φ−1(0)sreg in Equation (26) is much more explicit than
the one given in Corollary 2.21, where the components are described as orbits

of the group Z = (C×)n−1 × C(
n

2)−n+1 where Z acts via the formula in
Equation (21). In fact, we can describe easily the varieties nregQ

∼= (C×)n−1 ×
C(

n
2)−n+1.

Example 3.15. For g = gl(3,C), Theorem 3.14 implies that the four A-orbits
in Φ−1(0)sreg are the regular nilpotent elements of the four Borel subalgebras
given in Example 3.12.
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n
reg
Q−,Q−

=




0 0 0
a1 0 0
a3 a2 0


 n

reg
Q+,Q+

=




0 a1 a3
0 0 a2
0 0 0




n
reg
Q+,Q−

=




0 a1 0
0 0 0
a2 a3 0


 n

reg
Q−,Q+

=




0 0 a1
a2 0 a3
0 0 0




,

where a1, a2 ∈ C
× and a3 ∈ C.

Remark 3.16. We note that the 2n−1 Borel subalgebras appearing in Theo-
rem 3.14 are exactly the Borel subalgebras b with the property that each pro-
jection of b to gi for i = 2, . . . , n is a Borel subalgebra of gi whose Ki-orbit in
Bi is related via the Beilinson–Bernstein correspondence to Harish-Chandra
modules for the pair (gi,Ki) coming from holomorphic and anti-holomorphic
discrete series. It would be interesting to relate our results to representation
theory, especially to work of Kobayashi [22]. For more on the relation between
geometry of orbits of a symmetric subgroup and Harish-Chandra modules,
see [38], [20], [12].

3.4 Strongly Regular Elements and Borel subalgebras

It would be interesting to study strongly regular fibers Φ−1(c)sreg for arbitrary

c ∈ C(
n+1
2 ) using the geometry of Ki-orbits on Bi. The following result is a

step in this direction.

Theorem 3.17 ([11], Theorem 5.3). Every Borel subalgebra b ⊂ g con-
tains strongly regular elements.

We briefly outline the proof of Theorem 3.17. For complete details see [11],
Section 5. For ease of notation, we denote the flag variety Bn of gl(n,C) by
B. Let h ⊂ g denote the standard Cartan subalgebra of diagonal matrices
and let H be the corresponding Cartan subgroup. Define

Bsreg = {b ∈ B : b ∩ gsreg 6= ∅}.

We want to show that Bsreg = B. Consider the variety Y = B \ Bsreg. We
show that Y is closed and H-invariant. Let b ∈ Y and consider its H-orbit,
H · b. Since Y is closed, H · b ⊂ Y . We know that H · b contains a closed
H-orbit. But the closed H-orbits on B are precisely the Borel subalgebras b

which contain the Cartan subalgebra h ([6], Lemma 3.1.10). Thus, it suffices
to show that no Borel subalgebra b with h ⊂ b can be contained in Y . This
can be shown using the characterization of such Borel subalgebras as bQ,
with Q = (Q2, . . . , Qn) a sequence of closed Ki-orbits (see Theorem 3.9) and
properties of closed Ki-orbits (see [11], Proposition 5.2).
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4 The geometry of K-orbits on the flag variety

Proofs of the results discussed in Section 3 require an understanding of as-
pects of the geometry and parametrization of Kn-orbits on the flag variety
Bn of gl(n,C). In this section, we develop the theory of orbits of a symmetric
subgroup K of an algebraic group G acting on the flag variety B of G, as de-
veloped by Richardson, Springer, and others. Our aim is to apply this theory
in the specific example of G = GL(n,C) and K = GL(n− 1,C)×GL(1,C),
which provides the details behind the computations of [11], Section 3.1. We
hope our exposition will make this important theory more accessible. See the
papers [32], [33], and [38] for results concerning orbits of a general symmetric
subgroup on the flag variety.

4.1 Parameterization of K-orbits on G/B

Let G be reductive group over C such that [G,G] is simply connected. Let
θ : G → G be a holomorphic involution, and we also refer to the differential
of θ as θ : g → g. Since θ : g → g is a Lie algebra homomorphism, it preserves
[g, g] and the Killing form < ·, · > of g. Let K = Gθ and assume that the
fixed set (Z(G)0)θ is connected, where Z(G)0 is the identity component of
the center of G. Then by a theorem of Steinberg ([36], Corollary 9.7), K is
connected.

Let B be the flag variety of g, and recall that if B is a Borel subgroup
of G, the morphism G/B → B, gB 7→ Ad(g)b, where b = Lie(B), is a G-
equivariant isomorphism G/B ∼= B. The involution θ acts on the variety T
of Cartan subalgebras of g by t 7→ θ(t) for t ∈ T , and the fixed set T θ is the
variety of θ-stable Cartan subalgebras. We consider the variety

C = {(b, t) ∈ B × T : t ⊂ b}.

Then G acts on C through the adjoint action, and the subvariety Cθ = C ∩
(B × T θ) is K-stable. Consider the G-equivariant map π : C → B given by
projection onto the first coordinate, π(b, t) = b. It induces a map

γ : K\Cθ → K\B, γ(K · (b, t)) = K · b (27)

from the set of K-orbits on Cθ to the set of K-orbits on B.

Proposition 4.1. The map γ is a bijection.

For a proof of this proposition, we refer the reader to [33], Proposition 1.2.1.
We summarize the main ideas. To show the map γ is surjective, it suffices to
show that every Borel subalgebra contains a θ-stable Cartan subalgebra. This
follows from [36], Theorem 7.5. To show that the map is injective, it suffices
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to show that if t, t′ are θ-stable Cartan subalgebras of a Borel subalgebra b,
then t and t′ are K ∩B-conjugate, which is verified in [33].

Throughout the discussion, we will fix a θ-stable Borel subalgebra b0 and
θ-stable Cartan subalgebra t0 ⊂ b0. Such a pair exists by [36], Theorem
7.5, and is called a standard pair. Let N = NG(T0) be the normalizer of
T0, where T0 is the Cartan subgroup with Lie algebra t0. We consider the
map ζ0 : G → C given by ζ0(g) = (Ad(g)b0,Ad(g)t0), which is clearly G-
equivariant with respect to the left translation action on G and the adjoint
action on C. It is easy to see that ζ0 is constant on left T0-cosets, and induces
an isomorphism of varieties

ζ : G/T0 → C. (28)

To parameterize the K-orbits on B using Proposition 4.1, we introduce the
variety V = ζ−1

0 (Cθ). It is easy to show that V is the set

V = {g ∈ G : g−1θ(g) ∈ N}. (29)

By Equation (28) and the G-equivariance of the map ζ0, it follows that the
morphism ζ induces a bijection,

ζ : K\V/T0 → K\Cθ, (30)

which we also denote by ζ. Combining Equation (30) with Proposition 4.1,
we obtain the following useful parametrization of K-orbits on B (cf. [33],
Proposition 1.2.2).

Proposition 4.2. There are natural bijections

K\V/T0 ↔ K\Cθ ↔ K\B ↔ K\G/B0.

Let V denote the set of (K,T0)-double cosets in V . By [35], Corollary 4.3,
V is a finite set and hence

The number of K-orbits on B is finite.

Notation 4.3. For v ∈ V , let v̂ ∈ V denote a representative, so that v =
Kv̂T . Denote the corresponding K-orbit in B by K ·bv̂, where bv̂ = Ad(v̂)b0.

We end this section with a discussion of how θ acts on the root decompo-
sition of g with respect to a θ-stable Cartan subalgebra t.

Definition 4.4. For (b, t) ∈ Cθ and α ∈ Φ = Φ(g, t), let eα ∈ gα be a root
vector in the corresponding root space. We say that α is positive for (b, t) if
gα ⊂ b. We define the type of α for the pair (b, t) with respect to θ as follows.

(1) If θ(α) = −α, then α is said to be real.
(2) If θ(α) = α, then α is said to be imaginary. In this case, there are two

subcases:
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(a) If θ(eα) = eα, then α is said to be compact imaginary.
(b) If θ(eα) = −eα, then α is said to be noncompact imaginary.

(3) If θ(α) 6= ±α, then α is said to complex. If also α and θ(α) are both
positive, we say α is complex θ-stable.

Remark 4.5. Let α be a positive root. Then θ(α) is positive if and only if α
is imaginary or complex θ-stable.

For v ∈ V with representative v̂ ∈ V , we define a new involution by the
formula,

θv̂ = Ad(v̂−1) ◦ θ ◦Ad(v̂) = Ad(v̂−1θ(v̂)) ◦ θ. (31)

Note that θv̂(t0) = t0, and consider the induced action of θv̂ on Φ(g, t0).

Definition 4.6. Let α ∈ Φ(g, t0), v ∈ V , and v̂ ∈ V be a representative for
v. We define the type of the root α for v to be the type of the root α for the
pair (b0, t0) with respect to the involution θv̂.

For example, a root α is imaginary for v if and only if θv̂(α) = α. Note
that if kv̂t is a different representative for v, then θkv̂t = Ad(t−1)◦θv̂ ◦Ad(t).
It follows easily that the type of α for v does not depend on the choice of
a representative v̂. Further, the involution θv̂ of Φ(g, t0) does not depend on
the choice of v̂, and we refer to θv̂ as the involution associated to the orbit v.

For v ∈ V and bv̂ = Ad(v̂)b0, consider the θ-stable Cartan subalgebra t′ =
Ad(v̂)t0 ⊂ bv̂. For α ∈ Φ(g, t0), we define Ad(v̂)α := α ◦Ad(v̂−1) ∈ Φ(g, t′).

Proposition 4.7. For α ∈ Φ(g, t0), the type of α for v is the same as the
type of Ad(v̂)α for the pair (bv̂, t

′) with respect to θ.

Proof. This follows easily from the identity θ ◦Ad(v̂) = Ad(v̂) ◦ θv̂. ⊓⊔

By Proposition 4.7, we may compute the action of θ on the positive roots
in Φ(g, t′) for the pair (bv̂, t

′) using the involution θv̂ on our standard positive
system Φ+(g, t0) in Φ(g, t0).

Remark 4.8. We also denote the corresponding involution on G by θv̂.
By abuse of notation, we denote conjugation on G by Ad, i.e., for g, h ∈
G; Ad(g)h = ghg−1. Thus θv̂ : G → G is also given by the formula in
Equation (31). Its differential at the identity is θv̂ : g → g.

4.2 The W -action on V

The fact that K-orbits on the flag variety have representatives coming from
V was used by Springer [35] to associate a Weyl group element φ(v) to the
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K-orbit indexed by v ∈ V . The element φ(v) plays a crucial role in under-
standing the action of the involution θv̂ associated to v on the roots for the
standard pair Φ(g, t0).

We first consider the map τ : G → G given by τ(g) = g−1θ(g). Note that
τ−1(N) = V . Then following [35], Section 4.5, we define for v = Kv̂T0

φ(v) = τ(v̂)T0 ∈ N/T0 = W. (32)

We refer to the map φ as the Springer map and φ(v) as the Springer invari-
ant of v ∈ V . It is easy to check that φ(v) is independent of the choice of
representative v̂.

The Springer map is not injective, but we can study its fibers using an
action of W on V , which we now describe. The group N acts on V on the
left by n · v̂ = v̂n−1 for v̂ ∈ V and n ∈ N . This action induces a W -action on
V given by

w × v := Kv̂ẇ−1T0, (33)

where v̂ ∈ V is a representative of v ∈ V and ẇ ∈ N is a representative of
w ∈ W . It is easy to check that the formula in Equation (33) does not depend
on the choice of representatives ẇ or v̂. We refer to this action as the cross
action of W on V . The Springer map intertwines the cross action of W on V
with a certain twisted action of W on itself. We note that since T0 is θ-stable,
θ acts on N and hence on W . We define the twisted conjugation action of W
on itself by:

w′ ∗ w = w′wθ((w′)−1), for w,w′ ∈ W. (34)

Proposition 4.9. (1) The Springer map φ : V → W is W -equivariant with
respect the cross action on V and the twisted W -action on W .

(2) ([32], Proposition 2.5) Suppose for v, v′ ∈ V , we have φ(v) = φ(v′).
Then v′ = w × v for some w ∈ W .

Part (1) is an easy calculation using the definition of φ. Part (2) is nontrivial
and relies on many of the results of [32], Section 2.

4.3 Closed K-orbits on B

In this section we use the properties of the Springer map developed in the
previous section to find representatives for the closed K-orbits on B and
describe the involution θv̂ associated to such orbits.

Since θ acts on W , we can consider the W -fixed point subgroup, W θ. By
[31], Lemma 5.1, T0∩K is a maximal torus of K, and by [31], Lemma 5.3, the
subgroup NK(T0 ∩K) ⊂ NG(T0). It follows that the group homomorphism
NK(T0 ∩K)/(T0 ∩K) → NG(T0)/T0 is injective. Hence, we may regard WK

as a subgroup of W , and it is easy to see that it has image in W θ.
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Theorem 4.10. There is a one-to-one correspondence between the set of
closed K-orbits on B and the coset space W θ/WK . The correspondence is
given by

wWK → Kẇ−1T0, (35)

for ẇ ∈ N a representative of w ∈ W θ.

To prove Theorem 4.10, we describe equivalent conditions for a K-orbit
on B to be closed. We begin with the following lemma (see [5], Lemma 3).

Lemma 4.11. Let B ⊂ G be a Borel subgroup. Then the following statements
are equivalent.

(i) The Borel subgroup B is θ-stable.
(ii) The subgroup (B∩K)0 is a Borel subgroup of K, where (B∩K)0 denotes

the identity component of B ∩K.

Let v0 ∈ V correspond to the K-orbit K · b0 so that v0 = KT0, and we
choose the representative v̂0 = 1. Define V0 := {v ∈ V : K · bv̂ is closed}.
Proposition 4.12. The following statements are equivalent.

(i) v ∈ V0.
(ii) For any representative v̂ ∈ V of v ∈ V , the Borel subalgebra bv̂ =

Ad(v̂)b0 is θ-stable.
(iii) φ(v) = 1.
(iv) v ∈ W θ × v0.

Proof. We first show that (i) implies (ii). Let v ∈ V0, and let Bv̂ ⊂ G be
the Borel subgroup of G corresponding to the Borel subalgebra bv̂. Then
K ·bv̂ ⊂ B is projective, so that the homogeneous space K/(K∩Bv̂) ∼= K ·bv̂
is projective, and hence K ∩ Bv̂ is parabolic. Since K ∩ Bv̂ is solvable, it
follows that K ∩ Bv̂ is a Borel subgroup of K. Part (ii) now follows from
Lemma 4.11.

We now prove that (ii) implies (iii). Suppose that v ∈ V and that bv̂ =
Ad(v̂)b0 is θ-stable. Thus, Ad(θ(v̂))θ(b0) = Ad(v̂)b0. But b0 is itself θ-stable,
implying that v̂−1θ(v̂) ∈ B0. But then v̂−1θ(v̂) = τ(v̂) ∈ B0 ∩ N = T0 by
definition of V . Thus, φ(v) = τ(v̂)T0 = 1.

We next show that (iii) implies (iv). Suppose that φ(v) = 1. Clearly,
φ(v0) = 1. It then follows from part (2) of Proposition 4.9 that v = w × v0
for some w ∈ W . But then part (1) of Proposition 4.9 implies

1 = φ(v) = φ(w × v0) = wφ(v0)θ(w
−1) = wθ(w−1),

whence w ∈ W θ and v ∈ W θ × v0.
Lastly, we show that (iv) implies (i). If v ∈ W θ × v0, then v = KẇT0,

where ẇ ∈ N is a representative of w ∈ W θ. We note that since w ∈ W θ,
θ(ẇ) = ẇt for some t ∈ T0. It follows that bv̂ = Ad(ẇ)b0 is θ-stable, since
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t0 ⊂ b0. Let Bv̂ be the Borel subgroup corresponding to bv̂, so that Bv̂ is θ-
stable. It follows from [31], Lemma 5.1 that Bv̂∩K is connected and therefore
is a Borel subgroup by Lemma 4.11. Since (Bv̂ ∩K) is a Borel subgroup, the
variety K/(Bv̂ ∩ K) is complete, and the orbit K · bv̂ ∼= K/(Bv̂ ∩ K) is a
complete subvariety of B and is therefore closed. ⊓⊔

We now prove Theorem 4.10.

Proof (of Theorem 4.10). It follows from Proposition 4.12 that

V0 = W θ × v0. (36)

By [32], Proposition 2.8, the stabilizer of v0 in W is precisely WK ⊂ W θ.
Thus, the elements of the orbit W θ × v0 are in bijection with the coset space
W θ/WK . Equation (35) then follows from the definition of the cross action
of V on W . ⊓⊔

Recall the notion of the type of a root α ∈ Φ(g, t0) for v from Definition
4.6, and note that by Equation (31),

θv̂ = Ad(v̂−1θ(v̂)) ◦ θ = Ad(τ(v̂)) ◦ θ. (37)

Proposition 4.13. For v ∈ V0, every positive root α ∈ Φ+(g, t0) is imaginary
or complex θ-stable for v. Moreover, a positive root α ∈ Φ+(g, t0) is imaginary
(resp. complex) for v if and only if it is imaginary (resp. complex) for v0.

Proof. By Equation (37), for v ∈ V , θv̂(α) = φ(v)(θ(α)) for α ∈ Φ(g, t0).
Since v ∈ V0, then φ(v) = 1 by Proposition 4.12, so

θv̂(α) = θ(α) (38)

for any α ∈ Φ(g, t0). Since b0 ⊂ g is θ-stable, Remark 4.5 implies that any
α ∈ Φ+(g, t0) is complex θ-stable or imaginary for v0. Both statements of the
proposition now follow immediately from Equation (38). ⊓⊔

Remark 4.14. Let v ∈ V0 and let θv̂ be the involution associated to the orbit
v. To determine the action of θv̂ on Φ(g, t0), Proposition 4.13 implies that
it suffices to find which roots are compact (resp. noncompact) imaginary for
v. By Theorem 4.10, we may take v̂ = ẇ−1, where ẇ is a representative for
w ∈ W θ. By Proposition 4.7, it follows that a root α ∈ Φ(g, t0) is compact
(resp. noncompact) imaginary for v if and only if w−1(α) is compact (resp.
noncompact) for the pair (Ad(w−1)b0, t0) with respect to θ.

Notation 4.15. We will make use of the following notation for flags in C
n.

Let
F = (V0 = {0} ⊂ V1 ⊂ · · · ⊂ Vi ⊂ · · · ⊂ Vn = C

n)

be a flag in C
n, with dimVi = i and Vi = span{v1, . . . , vi}, with each vj ∈ C

n.
We will denote this flag F by
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F = (v1 ⊂ v2 ⊂ · · · ⊂ vi ⊂ vi+1 ⊂ · · · ⊂ vn).

We denote the standard ordered basis of Cn by {e1, . . . , en}. For 1 ≤ i, j ≤ n,
let Ei,j be the matrix with 1 in the (i, j)-entry and 0 elsewhere.

Example 4.16. Let G = GL(n,C) and let θ be conjugation by the diagonal
matrix c = diag[1, 1, . . . , 1,−1]. Then K = GL(n − 1,C) × G(1,C) and k =
gl(n − 1,C) ⊕ gl(1,C). Since this involution is inner, W θ = W = Sn, the
symmetric group on n letters and WK = Sn−1. We can take b0 to be the
standard Borel subalgebra of n × n upper triangular matrices and t0 ⊂ b0
to be the diagonal matrices. By Theorem 4.10, the n closed orbits are then
parameterized by the identity permutation and the n−1 cycles {(n−1n), (n−
2n− 1n), . . . , (i . . . n), . . . , (1 . . . n)}. We consider the closed K-orbit v ∈ V0

corresponding to the cycle w = (i . . . n). By Equation (35), it is generated by
the Borel subalgebra bi := Ad(w−1)b0, which is the stabilizer of the flag:

Fi := (e1 ⊂ · · · ⊂ ei−1 ⊂ en︸︷︷︸
i

⊂ ei ⊂ · · · ⊂ en−1). (39)

Notice that Fn is the standard flag in C
n and F1 is K-conjugate to the

opposite flag. We denote Qi := K · bi, so Q1, . . . , Qn are the n closed orbits.
Let ǫi ∈ t∗0 be the linear functional ǫi(t) = ti for t ∈ t0, where t =

diag[t1, . . . , ti, . . . , tn] with each ti ∈ C. According to [26], any root of the
form ǫi − ǫk or ǫk − ǫi is noncompact imaginary for v while all other roots
are compact imaginary, and the involution θv̂ associated to v acts on the
functionals by θv̂(ǫi) = ǫi for all i. The second assertion follows easily from
Equation (38). By Remark 4.14, α = ǫk − ǫj is compact (resp noncompact)
imaginary for v if and only if w−1(α) is compact (resp. noncompact) imagi-
nary with respect to θ. The first assertion then follows from the observation
that roots of the form ǫn − ǫk and ǫk − ǫn are noncompact imaginary with
respect to θ and all other roots are compact imaginary.

4.4 The case of general K-orbits in B

In this section we compute τ(v̂) and φ(v) inductively based on the closed
orbit case in Section 4.3. We thus obtain a formula for θv̂ for any K-orbit in
B.

For the first step, we take a K-orbit Q and a simple root α and construct a
K-orbit denoted m(sα) ·Q which either coincides with Q or contains Q in its
closure as a divisor. Let Q = K · bv̂ ⊂ B for v ∈ V , let α ∈ Φ(g, t0) be a simple
root, and let pα be the minimal parabolic subalgebra generated by α. Let Pα

denote the corresponding parabolic subgroup, and let πα : G/B0 → G/Pα

denote the canonical projection, which is a Pα/B0 = P1-bundle.
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Lemma-Definition 4.17. The variety π−1
α πα(Q) is irreducible and K acts

on π−1
α πα(Q) with finitely many orbits. The unique open K-orbit in π−1

α πα(Q)
is denoted by m(sα) ·Q.

Proof. Note that π−1
α πα(Q) = Kv̂Pα/B0, and it follows easily that π−1

α πα(Q)
is irreducible, since it is the image of the double coset KvPα under the pro-
jection p : G → G/B0. The variety Kv̂Pα/B0 is clearly K-stable. It follows
that it has a unique open orbit, since the set of K-orbits in Kv̂Pα/B0 is a
subset of the set of K-orbits on B, and hence is finite. ⊓⊔

The orbit m(sα) ·Q may be equal to Q itself. However, in the case where
m(sα) ·Q 6= Q, then dimm(sα) ·Q = dimQ+1, since the map πα : G/B0 →
G/Pα is a P1-bundle. To compute m(sα) ·Q explicitly (following [38], Lemma
5.1), we recall first some facts about involutions for SL(2,C).

Let Π ⊂ Φ+(g, t0) denote the set of simple roots and let α ∈ Π . Let
hα = 2Hα

<α,α>
with Hα ∈ t0 such that < Hα, x >= α(x) for x ∈ t0, and let

eα ∈ gα, fα ∈ g−α be chosen so that [eα, fα] = hα. Hence, the subalgebra
s(α) = span{eα, fα, hα} forms a Lie algebra isomorphic to sl(2,C). Let φα :
sl(2,C) → s(α) be the map

φα :

[
0 1
0 0

]
→ eα, φα :

[
0 0
1 0

]
→ fα, φα :

[
1 0
0 −1

]
→ hα. (40)

Then φα : sl(2,C) → s(α) is a Lie algebra isomorphism, which integrates to
an injective homomorphism of Lie groups φα : SL(2,C) → G, which we will
also denote by φα. We let S(α) be its image.

To perform computations, it is convenient for us to choose specific rep-
resentatives for the Cayley transform uα with respect to α and the simple
reflection sα. Let

uα = φα

(
1√
2

[
1 ı
ı 1

])
. (41)

Note that g = 1√
2

[
1 ı
ı 1

]
∈ SL(2,C) is the Cayley transform which con-

jugates the torus in SL(2,C) containing the diagonal split maximal torus
of SL(2,R) to a torus of SL(2,C) containing a compact maximal torus of
SL(2,R). Let

ṡα = φα

([
0 ı
ı 0

])
. (42)

Then ṡα is a representative for sα ∈ W . Note that u2
α = ṡα.

Let θ1,1 : SL(2,C) → SL(2,C) be the involution on SL(2,C) given by

θ1,1(g) =

[
1 0
0 −1

]
g

[
1 0
0 −1

]

for g ∈ SL(2,C).
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Lemma 4.18. Suppose α ∈ Π is compact (resp noncompact) imaginary for
v. Then −α is compact (resp noncompact) imaginary for v.

Proof. Since θv̂(gα) = gα, it follows easily that θv̂(g−α) = g−α. The rest of
the proof follows since θv̂ preserves the Killing form. ⊓⊔

Lemma 4.19. If α is noncompact imaginary for v, then

θv̂ ◦ φα = φα ◦ θ1,1. (43)

Proof. It suffices to verify Equation (43) on the Lie algebra sl(2,C). On
sl(2,C) the maps in Equation (43) are linear, and we need only check the
equation on a basis for sl(2,C). Since α is noncompact imaginary for v, we
have θv̂(eα) = −eα, θv̂(fα) = −fα, and θv̂(hα) = hα by Lemma 4.18, and the
result follows. ⊓⊔

Remark 4.20. It follows from the proof of Lemma 4.19 that s(α)θv̂ = Chα.

Proposition 4.21. Let Q = K · bv̂ with v ∈ V and let α ∈ Φ+(g, t0) be a
simple root. Then m(sα) · Q 6= Q if and only if α is noncompact imaginary
for v or α is complex θ-stable for v. If α is noncompact imaginary, then
m(sα) ·Q = K · b′, with b′ = Ad(v̂uα)b0, where uα is the Cayley transform
with respect to α. If α is complex θ-stable, then m(sα) · Q = K · b′, with
b′ = Ad(v̂sα)b0.

Proof. Let Kv̂ = K ∩ Ad(v̂)Pα be the stabilizer in K of πα(v̂B0/B0). Let
Lv̂ = π−1

α πα(v̂B0/B0), which is identified with Ad(v̂)Pα/Ad(v̂)B0
∼= P1. We

claim that the map χ from the set of Kv̂-orbits in Lv̂ to the set of K-orbits
in Kv̂Pα/B0 given by χ(Q̂) = K · Q̂ is bijective. Indeed, if Q1 ⊂ Kv̂Pα/B0 is
a K-orbit, then for z1, z2 ∈ Q1 ∩Lv̂, we have z2 = k · z1 for some k ∈ K, and
πα(z1) = πα(z2). It follows that k stabilizes πα(v̂B0/B0), so k ∈ Kv̂. Hence,
Q1∩Lv̂ is a Kv̂-orbit, and it is routine to check that Q1 7→ Q1∩Lv̂ is inverse to
χ, giving the claim. Let Uα be the unipotent radical of Pα, and let Z(Mα)

0 be
the identity component of the center of a Levi subgroup of Pα. Then Ad(v̂)Pα

acts on the fiber Lv̂ through its quotient S̃v̂ := Ad(v̂)Pα/Ad(v̂)(Z(Mα)
0Uα),

which is locally isomorphic to Ad(v̂)S(α). Hence Kv̂ acts on Lv̂ through
its image K̃v̂ in S̃v̂. For α noncompact imaginary for v, it follows from Re-
mark 4.20 that K̃v̂ has Lie algebra Ad(v̂)(Chα), and hence K̃v̂ is either a
torus of S̃v̂ normalizing v̂B0/B0 or the normalizer of such a torus. Hence,
the points v̂B0/B0 and v̂sαB0/B0 are in zero-dimensional K̃v̂-orbits, and
the complement Lv̂ − (v̂B0/B0 ∪ v̂sαB0/B0) is a single K̃v̂-orbit containing
v̂uαB0/B0. From the definition of the bijection χ, it follows that Kv̂B0/B0

is a proper subset of Kv̂uαB0/B0, where the closure is taken in the variety
Kv̂Pα/B0. Since dim(Kv̂Pα/B0) = dim(Kv̂B0/B0) + 1, we conclude that
m(sα) · Q = Kv̂uαB0/B0. This verifies the proposition in the case of non-
compact imaginary roots, and the other cases are similar, and discussed in
detail in section 2 of [33]. ⊓⊔
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Remark 4.22. In [38], the author discriminates between two types of non-
compact roots. For G = GL(n,C) and K = GL(p,C) × GL(n − p,C), all
noncompact roots for all orbits are type I.

Notation 4.23. We let G = GL(n,C) and K = GL(n − 1,C) × G(1,C) as
in Example 4.16. We let bi,j be the Borel subalgebra stabilizing the flag

Fi,j = (e1 ⊂ · · · ⊂ ei + en︸ ︷︷ ︸
i

⊂ ei+1 ⊂ · · · ⊂ ej−1 ⊂ ei︸︷︷︸
j

⊂ ej ⊂ · · · ⊂ en−1),

and we let Qi,j = K · bi,j .

Example 4.24. We let G and K be as in Example 4.16 and compute m(sα) ·
Qc for each closed K-orbit Qc. By Example 4.16, Qc = Qi = K · bi, where bi
is the stabilizer of the flag Fi from Equation (39). Let vi be the corresponding
element of V . By Example 4.16, the simple roots αi−1 = ǫi−1 − ǫi and αi =
ǫi − ǫi+1 are the only noncompact imaginary simple roots for vi, and all
other simple roots are compact (for i = 1 and i = n, one of these two roots
does not exist). Since Qi = K · Ad(ẇ)b0, where ẇ is a representative for
the element (n . . . i) of W , it follows from Proposition 4.21 that m(sαi−1) ·
Qi = K · Ad(ẇuαi−1)b0. A routine computation shows that the K-orbit K ·
Ad(ẇuαi−1)b0 contains the stabilizer of the flag

Fi−1,i = (e1 ⊂ · · · ⊂ ei−1 + en︸ ︷︷ ︸
i−1

⊂ ei−1 ⊂ · · · ⊂ en−1).

Hence,
m(sαi−1) ·Qi = Qi−1,i. (44)

A similar calculation shows that

m(sαi
) ·Qi = Qi,i+1. (45)

Let Qc = K ·bv̂ be a closed K-orbit and let Bv̂ ⊂ G be the Borel subgroup
with Lie(Bv̂) = bv̂. We observed in the proof of Proposition 4.12 that K∩Bv̂

is a Borel subgroup of K so that Qc
∼= K/(K ∩Bv̂) is isomorphic to the flag

variety BK of K.

Definition-Notation 4.25. For a K-orbit Q on B, we let l(Q) := dim(Q)−
dim(BK). The number l(Q) is called the length of the K-orbit Q.

Proposition 4.26. Let Q be any K-orbit in B. Then there exists a sequence
of simple roots αi1 , . . . , αik ∈ Φ+(g, t0) and a closed orbit Qc such that Q =
m(sαik

) · . . . · m(sαi1
) · Qc. We let Qj = m(sαij

) · . . . · m(sαi1
) · Qc. If for

j = 1, . . . , k, the root αij is complex θ-stable or noncompact imaginary for
Qj−1, then l(Q) = k.

Proof. This follows easily from [32], Theorem 4.6 . ⊓⊔
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Let Qv be the K-orbit corresponding to v ∈ V . We now compute the
involution associated to the orbit m(sα) · Qv when α is complex θ-stable or
noncompact imaginary for v from the involution for the orbit Qv. We denote
the parameter v′ ∈ V for m(sα)·Qv by v′ = m(sα)·v. By results from Section
4.3 and Proposition 4.26, we can then determine θ

v̂′ for any v′ in V .
There are two different cases we need to consider.

Case 1: α is noncompact imaginary for v. Let v′ = m(sα) · v. Then by
Proposition 4.21, K · b

v̂′
= K ·Ad(v̂uα)b0, where uα is the representative for

the Cayley transform with respect to α given in Equation (41).
We can now compute θ

v̂′ in terms of θv̂.

Proposition 4.27. Let v′ = m(sα) ·v, where α is noncompact imaginary for
v.

(1) Then v̂uα ∈ V is a representative of v′, and

τ(v̂′) = τ(v̂uα) = ṡα
−1τ(v̂),

and
φ(v′) = sαφ(v).

(2) The involution for v′ is given by

θ
v̂′ = Ad(τ(v̂′)) ◦ θ = Ad(ṡα

−1)Ad(τ(v̂)) ◦ θ = Ad(ṡα
−1) ◦ θv̂,

and θ
v̂′ acts on the roots Φ(g, t0) by:

θ
v̂′

= sαθv̂.

Proof. It is easy to verify that if g = 1√
2

[
1 ı
ı 1

]
, then θ1,1(g) = g−1.

Hence, by Lemma 4.19, it follows that θv̂(uα) = u−1
α . Thus, by Equation

(37), θ(uα) = Ad(τ(v̂)−1)(u−1
α ). It follows that

τ(v̂uα) = u−1
α τ(v̂)θ(uα) = u−1

α τ(v̂)τ(v̂)−1u−1
α τ(v̂) = u−2

α τ(v̂).

Since u−2
α = ṡα

−1, it follows that τ(v̂uα) = ṡα
−1τ(v̂). By Equation (29) and

Proposition 4.21, it follows that v̂uα ∈ V is a representative of m(sα) · v. By
Equation (32), we have φ(m(sα) · v) = sαφ(v). Part (2) of the proposition
now follows from part (1) and Equation (37). ⊓⊔

Case 2: α is complex θ-stable for v.

Proposition 4.28. Let α be complex θ-stable for v.

(1) Let v′ = m(sα) · v. Then v′ has representative v̂′ = v̂ṡα, so that v′ =
sα × v ∈ V and

τ(v̂ṡα) = ṡα
−1τ(v̂)θ(ṡα),
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whence
φ(v′) = sαφ(v)θ(sα).

(2) The involution θ
v̂′

on g associated to v′ is given by

θ
v̂′ = Ad(ṡα

−1τ(v̂)θ(ṡα)) ◦ θ = Ad(ṡα
−1) ◦ θv̂ ◦Ad(ṡα),

so that the action of θ
v̂′ on the roots Φ(g, t0) is given by

θ
v̂′

= sαφ(v)θ(sα)θ = sαθv̂sα.

Proof. By Proposition 4.21, we have b
v̂′ = Ad(v̂ṡα)b0 so that v′ = sα × v by

Equation (33). The rest of the proof follows by definitions. ⊓⊔
Lemma 4.29. Let Qv be the K-orbit corresponding to v ∈ V , and let α be
a complex θ-stable simple root for v. Let β be a root of Φ+(g, t0). Then β is
noncompact imaginary for v if and only if sα(β) is noncompact imaginary
for m(sα) · v.
Proof. Let v′ = m(sα) · v. Then by Proposition 4.28 (2), θ

v̂′
(sα(β)) =

sα(θv̂(β)). Hence, β is imaginary for v if and only if sα(β) is imaginary for
v′. To prove the noncompactness assertion, it suffices to apply Proposition
4.28 (2) to a root vector Ad(ṡα

−1)(xβ), where xβ is a nonzero root vector in
gβ . ⊓⊔
Example 4.30. We show how this theory helps describe the K-orbits Qi,j

in the case when G = GL(n,C) and K = GL(n − 1,C) × G(1,C). We let
vi,i+1 ∈ V parametrize the orbit Qi,i+1. By Equation (45) and Propositions
4.12 and 4.27 (1), the Springer invariant φ(vi,i+1) = (i i+1) = sαi

, and using
also Example 4.16, vi,i+1 has representative v̂i,i+1 = (nn− 1 . . . i)uαi

, where
uαi

is the Cayley transform from Equation (41). Hence, αi is real for vi,i+1,
while αi−1 and αi+1 are the only θ-stable complex simple roots (as before,
in the case i = 1 or n− 1, only one of these complex roots exists). Further,
the imaginary roots for vi,i+1 are the roots ǫj − ǫk with j, k 6∈ {i, i + 1}
and have root vectors Ej,k. Then by Proposition 4.27 (2), θv̂i,i+1

(Ej,k) =

Ad( ˙sαi

−1)θv̂i(Ej,k), where ˙sαi
is the representative for sαi

∈ W given in
Equation (42). But by Example 4.16, θv̂i(Ej,k) = Ej,k, so the roots ǫj − ǫk
are compact. Hence, there are no noncompact imaginary roots for Qi,i+1.

We now consider all orbits Qi,j with i < j. We let vi,j ∈ V denote the
corresponding parameter, and we let si = (i i + 1) with representative ṡi
given by the corresponding permutation matrix.

Claim. (1) Qi,j = m(sj−1) · . . . ·m(si) ·Qi and l(Qi,j) = j − i.
(2) φ(vi,j) is the transposition (i j), θv̂i,j = (i j) on roots, and Qi,j has

representative given by the element v̂i,j = (nn−1 . . . i)uαi
ṡi+1 . . . ṡj−1.

(3) The simple roots αi−1 = ǫi−1 − ǫi and αj = ǫj − ǫj+1 are the only
complex θ-stable simple roots for vi,j , and there are no noncompact
imaginary roots for vi,j .
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We prove these claims by induction on j− i. Example 4.24 and our discussion
in the first paragraph proves the claim when j − i = 1. It suffices to show
that (1)–(3) of the claim for Qi,j imply the claim for Qi,j+1. By Proposition
4.21 and Claims (2) and (3) for Qi,j, it follows that m(sj) ·Qi,j 6= Qi,j and
m(sj) ·Qi,j has representative v̂i,j+1. A routine computation with flags then
shows that K · Ad(v̂i,j+1)b0 = Qi,j+1. Hence,

m(sj) ·Qi,j = Qi,j+1. (46)

Claim (1) for Qi,j+1 then follows by induction. Claim (2) for Qi,j and Propo-
sition 4.28 (1) imply that φ(vi,j+1) is the transposition (i j+1). The formula
for θv̂i,j+1

in Claim (2) follows from Proposition 4.28 part (2). Claim (3) now
follows by Lemma 4.29 and an easy computation. This verifies Claims (1)–(3)
for the orbit Qi,j+1.

We remark that a computation similar to the one above verifies that

m(si−1) ·Qi,j = Qi−1,j . (47)

Example 4.31. We retain the notation from the last example. We assert
that every K-orbit Q in B is either of the form Qi or Qi,j with i < j and
that these orbits are all distinct. We prove the first assertion by induction on
l(Q). If l(Q) = 0, then Q is closed, so Q = Qi by Example 4.16. If l(Q) = 1,
then by Proposition 4.26, Q = m(si) · Qc for some closed orbit Qc, so by
Example 4.24 and Equations (44) and (45), it follows that Q = Qi,i+1 for

some i. If l(Q) = k > 1, then Proposition 4.26 implies Q = m(si) · Q̃, where
l(Q̃) = k − 1, so by induction Q̃ = Qj,j+k−1 for some j, and by Claim (3) of
Example 4.30, the simple root αi is either αj−1 or αj+k−1. The first assertion
now follows by Equations (46) and (47). By Example 4.16, the orbits Qi are
distinct. By Claim (2) of Example 4.30, the Springer invariant for Qi,j is (i j),
so that Qi,j = Qi′,j′ if and only if i = i′ and j = j′. We now have a complete
classification of the K-orbits on B.

Example 4.32. We claim that Q1,n is the unique open orbit of K on B,
where we retain notation from the previous two examples. Indeed, by Claim
(1) from Example 4.30, l(Q1,n) = n − 1 = dimQ1,n − dim(BK), so that
dimQ1,n = n− 1 + dim(BK) = dim(B). It follows that Q1,n is open in B.

Remark 4.33. The last three examples verify the assertions of [40], Section
2, and [26] for the case G = GL(n,C) and K = GL(n− 1,C)×GL(1,C). In
particular, they justify the statements made in [11], Section 3.1. Example 4.30
explains the definition of the element v in Equation (3.3) and the construction
of the involution θ′ in [11], Section 3.1, which is the critical ingredient in the
proof of Theorem 3.2 above (see Remark 3.3).
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