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Abstract

We consider a function-valued trait z(t) whose pre-selection distribution is Gaussian, and
a fltness function W that models optimizing selection, subject to certain natural assump-
tions. We show that the post-selection distribution of z(t) is also Gaussian, compute the
selection difierential, and derive an equation that expresses the selection gradient in terms
of the parameters of W and of the pre-selection distribution. We make no assumptions on
the nature of the \time" parameter t.
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1 Introduction

Understanding the adaptive evolution of environmentally-sensitive traits such as thermal per-
formance curves, age-dependent traits such as growth trajectories, and morphological shapes
such as wings and leaves is central to addressing many major questions in biology (e.g.,
[10, 15, 23, 26, 27, 28, 30]). These are all examples of function-valued traits in that the pattern
of expression for each trait can be described by a function of a continuous index [16, 14]. The
study of function-valued traits in evolutionary biology is a developing fleld compared to the
well-established subject of flnite-dimensional traits, including single and multivariate traits,
which are described by flnite vectors of measurements.

Many flnite-dimensional traits have been found or are presumed to be subject to optimizing
selection, wherein selection favors an optimal phenotype and fltness is reduced relative to how
far an individual’s phenotype deviates from the optimum (e.g., [13, 29]). It is natural to expect
function-valued traits to be likewise subject to optimizing selection, with the optimal phenotype
being a function (such as an ideal morphological shape or an optimal gene expression proflle).

At the population level, it has been shown for both flnite- and function-valued traits that a
population’s mean phenotype will evolve according to the pattern of heritable genetic variances
and covariances underlying the trait as well as the selection gradient which describes the linear
efiects of selection [17, 18, 16, 4]. The selection gradient can be determined from the statistical
relationship between phenotype and fltness, where the latter may be measured directly or
modeled [17, 18, 1]. When phenotypes are normally distributed, Lande has shown that the
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selection gradient can also be computed in terms of the population’s mean fltness [17, 18].
This result has been extended to function-valued traits by the present authors [11], who call it
Lande’s Theorem.

Optimizing selection is often modeled using Gaussian fltness functions (e.g., [17, 18, 5]).
The primary objective of this paper is to derive the selection gradient of a function-valued
trait for which fltness is Gaussian. We show that the selection gradient for optimizing selection
on a function-valued trait contains an unforeseen component that does not arise for flnite-
dimensional traits.

1.1 Finite-dimensional traits

A flnite-dimensional quantitative trait is a random vector z in Rn which we will assume to be
normally distributed among newborns with mean z and phenotypic covariance P, in confor-
mity with notation in the biological literature. The N(z,P) distribution is the pre-selection
distribution of z, and we denote its probability density by pz(z). Its post-selection distribution
{ the distribution of the trait among surviving adults { has probability density given by

p∗z(z) =
W (z)pz(z)

EzW
, (1)

where W is the fitness function of the trait z. The selection differential is

s = z∗ − z,

where z∗ is the post-selection mean of z. The post-selection distribution of z need not be
normal in general.

The selection gradient β of the trait at z is the matrix product

β = P−1s. (2)

According to Lande and Arnold [20], its ith component quantifles the force of directional
selection acting on the ith component of z. Under appropriate assumptions β determines the
evolutionary (i.e., between-generation) change in the mean according to the Breeder’s equation
z′ − z = Gβ, where z′ is the mean of the trait z among newborns of the following generation
and G is the additive-genetic covariance matrix of the trait [18, 31]. Heckman [12] gives very
readable mathematical treatment of this equation.

For a flnite-dimensional trait z, Lande [18, p.407] discusses a \Gaussian" fltness function
of the form

W = exp{−(1/2)(z− θ)TV−1(z− θ)}. (3)

Here θ is an \ideal" phenotype, so that W measures closeness to an ideal, and V is a symmetric
matrix. If V is positive deflnite, then θ functions as an optimal phenotype, and an individual’s
fltness is higher the more similar its phenotype is to the optimum, which is the essence of
optimizing selection [13, 29]. Similarly, if V is negative deflnite then phenotypes more dissimilar
to θ will have higher fltness, which characterizes disruptive selection. In this paper we will
consider only the case that V is positive deflnite.

It is not di–cult to show that for the fltness (3) the post-selection distribution of z is also
normal and that we have

s = PV−1(θ − z∗). (4)
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and
(P + V)β = (θ − z) (5)

(see Section 3). The latter equation shows the explicit dependence of the selection gradient on
the pre-selection distribution and on the parameters of the fltness function. Our goal will be
to generalize these results to the function-valued case.

1.2 Function-valued traits

An inflnite-dimensional (or function-valued) trait is a random function z(t), that is, a family of
random variables z deflned on a measure space (›, A) and indexed by t in a set T . For example,
z(t) might be the response of an organism to environmental condition t, or its size at age t.
We will assume that the pre-selection distribution of z is Gaussian with mean function z(t)
and phenotypic covariance function P (s, t). We will denote by Pz the pre-selection probability
measure on (›, A) corresponding to the mean z. The study of function-valued traits was
initiated in [16]. Here we will follow the mathematical development given in [11].

We will assume that z is an element of the reproducing kernel Hilbert space H(P ) = H(P, T )
having kernel P . This assumes in particular that the constant function 0 is a possible mean,
and implies that any two pre-selection distributions are mutually absolutely continuous due to
the Gaussian Dichotomy Theorem (see Section 2.3). This allows the measure P0 (mean zero)
to assume the role ordinarily played by Lebesgue measure, which is no longer available in the
inflnite-dimensional setting.

The probability measure P∗z on (›, A) will denote the post-selection distribution of z(t),
and is connected to Pz by the analogue of (1), namely

dP∗z = (W/EzW )dPz, (6)

where W is the fitness of the trait z and Ez is expectation with respect to Pz . The fltness is
assumed to be a positive random variable belonging to L2(›, A, Pz) for every z ∈ H(P ). That
is,

VarzW < ∞ for all z ∈ H(P ). (7)

The selection differential s is the function

s = z∗ − z, (8)

where z∗ is the post-selection mean of z. It turns out that z∗ and s belong to H(P ) [11,
Proposition 4.1].

In generalizing the deflnition (2) of the selection gradient, we replace the matrix P by an
integral operator P. To do this, we will assume that T is a measure space carrying a σ-flnite
measure m, and we will denote the inner product of L2(T ) by (·, ·). We will also assume that
the covariance P is a measurable function on T × T having flnite trace (see Section 2.1). P is
then the kernel of an integral operator P deflned on L2(T ) which we assume is one-to-one.

If s is in range(P), then we deflne the selection gradient β by the formal generalization of
(2), that is, β = P−1s. To cover the case when s /∈ range(P), we extend L2(T ) slightly to
its weak P-completion L = LP , whose elements may be viewed as linear functionals on H(P),
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possibly unbounded with respect to the L2(T ) norm, and we deflne P to be the L-extension of
P (see Section 2.5). Then the selection gradient β is the element of L satisfying

Pβ = s. (9)

The linear functional β may be evaluated at any η ∈ H(P ) by

(β, η) = 〈 s, η 〉,

〈 ·, · 〉 denoting the inner product in H(P ).
To generalize the fltness function (3), we begin by noting that if the matrix V in (3) is

positive deflnite, then (apart from the factor −1/2) the quadratic exponent is actually the
square of a norm given by an inner product on Rn. In fact, this inner product makes Rn into
a flnite-dimensional reproducing kernel Hilbert space H(V, S) where S = {1, . . . , n}.

The generalization of the fltness function (3) for inflnite-dimensional characters is thus

W = exp{−(1/2)‖z − θ‖2
V }, (10)

where V (·, ·) is a positive symmetric kernel and ‖ ‖V is the norm in the reproducing kernel
Hilbert space H(V, T ). This obviously requires that θ ∈ H(V, T ) and that z have its trajectories
in H(V, T ) with probability one. The latter requires some conditions relating the kernel P to
V , as we shall see in Section 2.4.

In [4] β was computed for a number of fltness functions of biological interest. In those
examples we could call on some relatively straightforward arguments that do not carry over to
the present case. Instead, we will show that the post-selection distribution is Gaussian, find the
post-distribution mean z and compute s, and then show that β must satisfy the analog of (5).

This goal requires a large array of mathematical tools, which we review and develop in
Section 2. The reader may prefer to skip this material on flrst reading, referring back to it as
necessary. Section 3 derives the flnite-dimensional results referred to above, which we generalize
in Section 4.

2 Mathematical background

Throughout this section we will use K (rather than P ) to represent the covariance function
of the given process, so as to allow it to stand for either P or V , and to make it easier to
distinguish from the probability measure P.

2.1 Reproducing kernel Hilbert spaces

A kernel K(s, t) on a set T is said to be positive resp. positive definite if for any t1, . . . , tn ∈ T
the matrix [K(ti, tj)] is positive semideflnite resp. positive deflnite. Since a positive semideflnite
matrix is deflnite ifi it is nonsingular, we may refer to positive deflnite kernels as nonsingular.

Note that any covariance function is positive and symmetric.
For any set T and any positive symmetric kernel K on T , there exists a reproducing kernel

Hilbert space (RKHS) H(K,T ) with kernel K. We will denote the inner product of H(K, T )
by 〈 ·, · 〉. This Hilbert space is a set of functions on T characterized by two properties:
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• Kt ∈ H(K, T ) for all t ∈ T , where Kt is the function deflned by

Kt(·) = K(t, ·); (11)

and

• the reproducing property

〈Kt, g 〉 = g(t) for all t ∈ T, g ∈ H(K,T ). (12)

We will refer to the function Kt as a section of K. When the underlying set T is understood,
we will write H(K) for H(K, T ). A general reference for such spaces is [2].

Two important cases are the following:

T finite. Let T = {1, . . . , n}. If the matrix K K (



The notation H(K, T ) indicates the dependence of the RKHS on both the kernel K and the
index set T . Since we will be allowing both to vary, we will index norms and inner products
by either the kernel or the set (e.g., 〈 f, g 〉V , ‖f‖S). It will be clear from context what the
subscript stands for and thus what RKHS is meant.

Dominance. Suppose the (positive, symmetric) kernels K and V are deflned on the same
set T and

H(K) ⊂ H(V ). (18)

Then H(K) is a sub-vector space of H(V ), though not a Hilbert subspace as the inner products
of H(K) and H(V ) are difierent. Following [9] we say that the kernel V dominates K if (18)
holds, and we may write V ≥ K.

Theorem 2.1. [2, pp. 351-352] Let V ≥ K. Then ‖g‖V ≤ ‖g‖K for all g ∈ H(K). Moreover,
there exists a unique linear operator “ : H(V ) → H(V ) whose range is contained in H(K) and
such that

〈 f, g 〉V = 〈“f, g 〉K , ∀f ∈ H(V ), g ∈ H(K).

In particular,
“Vt = Kt for all t ∈ T. (19)

As an operator into H(V ), “ is bounded, positive and symmetric.

We will refer to the map “ as the dominance operator of V over K. If “ has flnite trace,
we say [8] that V n-dominates (or nuclear-dominates) K, and we will write V À K.

The following lemma, which will be useful later, may be viewed as a generalization of the
reproducing property.

Lemma 2.1. Let V ≥ K, with dominance operator “. For all f ∈ H(V, T ) and t ∈ T ,

〈 f, Kt 〉V = “f(t).

Proof. 〈 f,Kt 〉V = 〈 f, “Vt 〉V = 〈“f, Vt 〉V , which equals “f(t) by the reproducing property
of V in H(V, T ).

When T = {t1, . . . , tn}, “ is given by the matrix KV−1. When K and V are measurable
kernels, then, “ might be thought heuristically of as an operator KV −1. In fact, (19) shows
that “ satisfles

“V = K,

where V is the integral operator with kernel V .
Deflne

dV (s, t) = ‖Vs − Vt‖V , s, t ∈ T.

Lemma 2.2. [22, Lemmas 3.2 and 3.3] Assume the kernel V is nonsingular (= positive defi-
nite). Then

a. the set {Vt, t ∈ T} is linearly independent,

b. dV is a metric on T , and every element of H(V, T ) is continuous with respect to dV , and

c. (T, dV ) is a separable metric space iff H(V, T ) is a separable Hilbert space.
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The fact that the metric dV makes the map t 7→ Vt continuous means that the kernel V is
itself continuous on T × T [24, page 41]. In efiect, the introduction of dV allows us to avoid
having to assume that T is a topological space and V is continuous.

We will henceforth assume that V is nonsingular and that H(V, T ) is separable for simplicity.
This is probably a reasonable assumption in practice. The theory may be extended to singular
kernels by use of Hamel sets; see [22], especially Section 3.

Let T ′ = {ti : i = 1, 2, . . . , } be a flxed countable dV -dense set in T . For each initial segment
Tn = {ti : i = 1, . . . , n} of T ′ and any function f : T → R let fn be the restriction of f to
Tn. Similarly, for any kernel K on T we let Kn be the restriction of K to Tn × Tn, and let
Kn = [K(ti, tj) : i, j ≤ n]. The reproducing kernel Hilbert space H(V, Tn) may be viewed as
Rn with inner product given by

〈 c,d 〉 = cTV−1
n d =

∑∑
aijcidj , (20)

where Vn is the n × n matrix [V (ti, tj) : 1 ≤ i, j ≤ n] and V−1
n = [aij ]. (The entries aij also

depend on n.)

Proposition 2.1. If f ∈ H(V, T ), then fn ∈ H(V, Tn), and

‖fn‖Tn ≤ ‖fn+1‖Tn+1 → ‖f‖. (21)

If also g ∈ H(V, T ), then
〈 fn, gn 〉Tn → 〈 f, g 〉. (22)

If K ¿ V with dominance map “ and if τ = tr(“), then

τ = lim
n

tr(KnV−1
n ). (23)

Here tr denotes the trace. Proof of (21) and (23) are given in [22, Lemma 3.6 and Proposition
3.10]. The limit (22) may be proved from (21) by the polarization identity.

2.2 Hilbert spaces of random variables

In this section we assume that the process z, deflned on the probability space (›, A, P), has
mean zero and covariance function K. Thus we have z(t) ∈ L2(P) = L2(›, A, P) for each t ∈ T .
We need to introduce the Hilbert spaces H and H2¯ and the map ⁄.

2.2.1 The space H and the Loève map ⁄

We let H ⊂ L2(P) be the subspace generated by the set {z(t), t ∈ T}. It consists of all the
random variables z(t) along with flnite linear combinations of them and mean-square limits
with respect to P. In H, covariance = inner product:

Cov(X, Y ) = (X, Y ). (24)

(We use the same notation for the inner product of H as for that of L2(›, A, P).) We call H
the Hilbert space spanned by the process.

The connection between reproducing kernel Hilbert spaces and second-order (flnite-variance)
stochastic processes is the following. It does not assume anything about the set T , and does
not assume that the process is Gaussian:
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Lemma 2.3. Let the process z have covariance K. The map ⁄ : H → H(K, T ) taking X to
the function g defined by

g(t) = (X, z(t))

is a Hilbert space isomorphism.

This result, due to Loµeve, is well known; ⁄ has been called the Loève map [3]. In particular,

⁄(z(t)) = Kt for all t ∈ T, (25)

where Kt is a section of K (see (11)).

2.2.2 The spaces H2¯ and Hn¯

In this section, H represents an arbitrary Hilbert space. Its application to stochastic processes
will be made clear in Section 2.3.

The tensor product of Hilbert spaces is a general construction that is treated in a number
of texts. One takes the vector-space tensor product, deflnes an inner product, and then takes
the closure with respect to the resulting norm. We refer the reader to the literature for details.
We will summarize the results we need from Chapters 6{8 of [24].

The symmetric tensors in H⊗H are those like f ⊗f and f ⊗g + g⊗f that are unafiected
by interchanging the two arguments. Formally, we extend the map f ⊗ g 7→ g ⊗ f to a linear
operator H⊗H → H⊗H and deflne the symmetric tensors to be the elements of H⊗H which
are invariant under this operator. The set of symmetric tensors is a subspace H ¯H, or H2¯,
whose inner product in H2¯ can be computed as follows: [24, p. 121]:

(U1 ¯ U2, V1 ¯ V2) = (U1, V1)(U2, V2) + (U1, V2)(U2, V1), (26)

if we deflne U1 ¯ U2 = (U1 ⊗ U2 + U2 ⊗ U1)/
√

2.
A similar construction holds for other \tensor powers". The Hilbert space Hn¯ is the n-th

symmetric tensor power or n-th Wiener chaos of H.
We may form the symmetric Hilbert space of H as the direct Hilbert sum ⊕n≥0H

n¯, where
Hn¯ is the n-th symmetric tensor power or n-th Wiener chaos of H (H0¯ = R).

Given X ∈ H2¯ there exists a unique symmetric Hilbert-Schmidt operator ~X : H → H
such that

( ~XU1, U2) = (U1 ¯ U2, X) (27)

for any U1, U2 in H (cf. [24, Proposition 6.16]). (Technically, ~X maps H to its dual H ′; it maps
H to H if we identify H with its dual in the usual way.)

2.3 Gaussian random variables

A process z is Gaussian if any flnite linear combination of the variables z(t) has a normal
distribution. This is equivalent to saying that these variables are jointly normal. If the process
has zero mean under P, then the elements of H are normally distributed with mean zero under
P.

Theorem 2.2 (N. Wiener). Assume the process z is Gaussian, and let A be the σ-algebra
generated by the random variables z(t), t ∈ T , and the sets of probability zero. Then there is
an isometric isomorphism φ mapping ⊕n≥0H

n¯ onto L2(›, A, P ).
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We refer the reader to [24, Proposition 7.3] for the deflnition of the map φ. Evaluation of
φ at a speciflc element of the component Hn¯ is given in [24, Proposition 7.5]. In particular,
φ(X) = X for any X ∈ H, and for an element U1 ¯ U2 ∈ H2¯ we have

φ(U1 ¯ U2) = U1U2 − (U1, U2). (28)

Thus the random variable corresponding to z(t1)¯ z(t2) is z(t1)z(t2)−K(t1, t2). In particular,
φ(z(t)2¯) = z(t)2 −K(t, t).

The so-called Gaussian Dichotomy Theorem [7], or GDT, asserts that if a process is Gaus-
sian with respect to probability measures P and Q, then the measures are either mutually
singular (P ⊥ Q) or equivalent (P ∼ Q). Here equivalent means mutually absolutely continu-
ous. The theorem is essentially composed of two cases. In the following, the subscript P or Q
means \with respect to the measure" P or Q. The Hilbert space H is deflned with respect to
P.

Theorem 2.3 (GDT for means). Suppose the process z is Gaussian with covariance K with
respect to both P and Q, with mean functions 0 and m, respectively. Then P ∼ Q or P ⊥ Q.
We have P ∼ Q iff m ∈ H(K), in which case

a. the density of Q with respect to P is dQ/dP = exp Y/EP(exp Y ), and

b. EQX = (X,Y )P for every X ∈ H,

where Y = ⁄−1m. Conversely, if Q satisfies (a) for some Y ∈ H then z is Gaussian with
covariance K with respect to Q, and EQ is given by (b).

Theorem 2.3 is adapted from [24, Proposition 8.1 and Corollary 8.3]. The following is taken
from [24, Propositions 8.4 and 8.6]; φ is the map given above.

Theorem 2.4 (GDT for covariances). Suppose the process z is Gaussian with mean zero with
respect to both P and Q. Then P ∼ Q or P ⊥ Q. We have P ∼ Q iff there is a U ∈ H2¯ such
that

CovQ(Z, Y )− CovP(Z, Y ) = (Z ¯ Y, U)P for every Z, Y ∈ H, (29)

and such that the eigenvalues of the operator ~U are all ≥ c for some c > −1. In this case, the
density of Q with respect to P is

dQ/dP = exp X/EP(exp X), (30)

where X is the element of φ(H2¯) whose Hilbert-Schmidt operator ~X satisfies

(I − ~X)(I + ~U) = (I + ~U)(I − ~X) = I. (31)

Conversely, if Q is a measure on (›, A) satisfying (30) where X is an element of φ(H2¯) such
that the eigenvalues of ~X are all less than 1, then the process z is Gaussian with respect to Q,
and CovQ(Z, Y ) satisfies (29) where U is an element of H2¯ satisfying (31).

If z has covariances KP and KQ with respect to P and Q, then (29) means that KQ(s, t)−
KP(s, t) = (z(s)¯ z(t), U).
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Technically the operator ~X is attached not to X (an element of L2(P)) but to φ−1(X) (an
element of H2¯), and so the notation ~X is slightly at variance with its use in the deflning
equation (27). Thus (27) should be understood here as

( ~XU1, U2) = (U1 ¯ U2, φ
−1(X)) (32)

for any U1, U2 in H. We note that Neveu [24] drops all references to φ once he has established
Theorem 2.2, evidently viewing φ as an identiflcation. It seems prudent for us to make references
to φ explicit, as needed.

2.4 Some sample-path results.

When a stochastic process {z(t), t ∈ T} has its sample paths almost surely in a Hilbert space
H, a sample path may be viewed as a random element z in H. That is, the inner product
〈 z, h 〉 is a random variable for every h ∈ H (see [22, Lemma 2.1]). When H = H(V, T ) is a
RKHS, we have in particular that z(t) = 〈 z, Vt 〉 for all t ∈ T .

A random element in H is Gaussian if the random variable 〈 z, h 〉 is normally distributed
for every h ∈ H.

Theorem 2.5. [22, Theorem 7.1] Let {z(t), t ∈ T} be a Gaussian process with mean function
z and covariance function K. Let H = H(V, T ) be a RKHS with z ∈ H. If the sample paths of
z belong almost surely to H, then the random element defined by the process z is Gaussian. In
particular, V À K.

Conversely, if z ∈ H and V À K, then a version of z has its sample paths almost surely in
H, even without the Gaussian assumption. See [22, Theorem 5.1].

Theorem 2.6. [21, Theorem 7.2.1] If z is a zero-mean Gaussian process with sample paths in
a separable RKHS H, then E(‖z‖k) < ∞ for k = 1, 2, 3 . . ..

We now assume that V is a positive deflnite kernel and that H(V, T ) is separable. Let ‖ · ‖
and 〈 ·, · 〉 denote its norm and inner product. Following Lemma 2.2 we let dV be the metric
on T deflned by V , and let T ′ = {t1, t2, . . . , } be a countable dV -dense set T ′ in T . As in
Section 2.1, for each initial segment Tn = {t1, . . . , tn} of T ′ and any function f : T → R we let
fn be the restriction of f to Tn.

Lemma 2.4. Let z(t) be Gaussian with mean zero with respect to the probability measure P.
Assume the sample paths of z are in H(V, T ) with probability 1. Then the random variables
‖z‖2, 〈 z, θ 〉, and (for each n) ‖zn‖2

Tn
and 〈 zn, θn 〉Tn are in L2(P). Moreover, the following

limits hold pointwise and in L2(P):

‖zn‖2
Tn

→ ‖z‖2 (33)

and

〈 zn, θn 〉Tn → 〈 z, θ 〉. (34)
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Proof. From Theorem 2.6 we see that ‖z‖ has moments of all orders. In particular, ‖z‖2 ∈
L2(P), while |〈 z, θ 〉| ≤ ‖z‖‖θ‖ implies that 〈 z, θ 〉 ∈ L2(P). From

‖zn‖2
Tn
≤ ‖z‖2 (35)

(Proposition 2.1) and

|〈 zn, θn 〉Tn | ≤ ‖zn‖Tn‖θn‖Tn ≤ ‖z‖‖θ‖ (36)

we see that both ‖zn‖2
Tn

and 〈 zn, θn 〉Tn are in L2(P) as well.
By Proposition 2.1 the limits (33) and (34) hold pointwise. But convergence in L2(P)

follows from inequalities (35) and (36) and a slight variant of the Dominated Convergence
Theorem.

2.5 Weak limits

In this section we summarize and extend some results from [11].
Let X be a vector space and let F be a set of linear functionals on X. The σ(X, F) topology

on X is the weakest topology with respect to which all the functionals in F are continuous. If
X is a Hilbert space and F its dual, then σ(X, F) is called the weak topology on X.

In the weak topology on any reproducing kernel Hilbert space, convergence turns out to be
pointwise convergence [2, p. 344]. We let H(K,T ) denote the completion of H(K, T ) in its
weak topology.

Assume now that K is a measurable kernel on T with flnite trace. We deflne L = LK

to be the completion of L2(T, T, µ) in the σ(L2(T ), F) topology where F is the set of linear
functionals F = {(·, η) : η ∈ H(K, T )}. Let us call LK the weak K-completion of L2(T ). A
sequence {βn} in L2(T ) is convergent in this topology if

(βn, η) is convergent for every η ∈ H(K, T ).

A limit β of such a sequence may be viewed as a linear functional (possibly unbounded) on
H(K,T ). We may write such a functional as (β, ·).

The integral operator K has a unique extension to a linear operator K on L as follows:
if βn ∈ L2(T ) and βn → β ∈ L, then sn = Kβn is weakly Cauchy in H(K, T ) with limit
s ∈ H(K, T ), and we deflne Kβ = s. The range of K is larger than H(K,T ), as the following
proposition shows.

Proposition 2.2 ([11], Proposition 2).



H(V, T ) ⊃ H(P, T ) then LV ⊂ LP . P has an extension P to LP . We investigate the extension
of V to LP .

Let β ∈ LP and let {βn} be a sequence in L2(T ) converging in LP to β. Certainly rn = Vβn

is deflned and is an element of H(V, T ) as rangeV ⊂ H(V, T ). Moreover, for all η ∈ H(V, T )
we have

〈 rn, η 〉V = 〈Vβn, η 〉V = (βn, η),

by (17). Thus this holds for all η ∈ H(P, T ); but for such η the sequence (βn, η) is Cauchy
(converging to (β, η)). Thus

〈 rn, η 〉V is Cauchy for all η ∈ H(P, T ). (39)

In efiect we are deflning a new weak topology on H(V, T ) in which a sequence {rn} is
Cauchy if it satisfles (39). (It is the σ(H(V, T ), F) topology of H(V, T ) where F is the set of
linear functionals F = {〈 ·, η 〉V : η ∈ H(P, T )}.) We denote the completion of H(V, T ) in this
topology by H(V, T ). If r = limn rn in this topology, then we deflne the desired extension V of
V to B by

Vβ = r

Note: We use the double bar to distinguish H(V, T ) from \the" weak completion of H(V, T ),
and V from the extension of V to LV .

Now as we saw following Theorem 2.1,

“V = P (40)

is interpreted to mean “Vs = Ps for each s ∈ T . We have seen how to extend V and P to LP ,
and we wish to extend “ so that equation (40) is still valid, that is, so that

“Vβ = Pβ (41)

for all β ∈ LP . To this end, let βn ∈ L2(T ) converging in LP to β. then “Vβn = Pβn.
Say Vβn = rn ∈ H(V ) and Pβn = sn ∈ H(P ) (in fact, ∈ range(P)). Then “rn = sn. But
sn → s ∈ H(P ) and rn → r ∈ H(V ), so we deflne “r = s. Thus “ maps H(V ) to H(P ).

3 Optimizing selection for finite-dimensional traits

Assume a flnite-dimensional trait z has a N(z,P) pre-selection distribution, so that its density
is pz(z) = K exp{−(1/2)(z− z)TP−1(z− z)}, where K is the normalizing constant. Assuming
that the fltness function W has the form (3), let us flnd the post-selection distribution of z.
The post-selection density function is

p∗z(z) ∝ W (z)pz(z)

∝ exp (−1/2)[(z− θ)TV−1(z− θ) + (z− z)TP−1(z− z)]
∝ exp (−1/2)[zTQ−1z− 2zTc],

where ∝ denotes \proportional to" and where

Q−1 = V−1 + P−1 (42)
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and
c = V−1θ + P−1z.

In writing (42), we are assuming that V−1 + P−1 is invertible (it is symmetric and at least
positive semideflnite), with inverse Q. Completing the square in the exponent, then, we have

p∗z(z) ∝ exp (−1/2)[(z−Qc)TQ−1(z−Qc)],

so that the post-selection distribution of z is N(Qc,Q). In particular, the selection difierential
is

s = Qc− z. (43)

We can get a simpler form for s by multiplying through by Q−1 and simplifying, so that

V−1s + P−1s = V−1θ −V−1z.

Multiplying through by V and using s =



we must have H(P ) ⊂ H(V ), and the dominance operator must have flnite trace τ . We will
also assume that the kernel V is nonsingular and that H(V, T ) is separable.

We let dV be the metric on T deflned by V (Section 2.1), and let T ′ = {t1, t2, . . . , } be a
countable dV -dense set T ′ in T . For each initial segment Tn = {t1, t2, . . . , tn} of T ′ and any
function f : T → R we let fn be the restriction of f to Tn. The norm and inner product of
H(V, Tn) will be indexed by Tn.

Consider the exponent of W in (10). Expanding the squared norm and adding and sub-
tracting τ , we easily see that the exponent has the form

W = eX+Y +c (44)

where

X = (−1/2)(‖z‖2 − τ), (45)
Y = 〈 z, θ 〉,

and c is a constant (the norm and inner product are in H(V, T )). Let us deflne

Xn = (−1/2)(‖zn‖2
Tn
− tr(PnV−1

n )) (46)
Yn = 〈 zn, θn 〉Tn ,

where Pn and Vn are as deflned in Section 2.1.
For the remainder of this section let P = P0, the measure which gives the trait z a

Gaussian distribution with mean 0 and covariance P (the pre-selection phenotypic covariance).
Let L2(P) = L2(›, A, P). The following is essentially a restatement of Lemma 2.4:

Lemma 4.1. The random variables X, Y , Xn and Yn are in L2(P). Moreover, Xn → X and
Yn → Y both pointwise and in L2(P)-norm.

In fact, we can make a stronger statement about Xn and Yn:

Lemma 4.2. Let V−1
n = [aij ], and let φ be the map given by Theorem 2.2. Then

Yn =
∑ ∑

aijz(ti)θ(tj) (47)

and
Xn = φ( (−1/2)

∑

i

∑

j

aijz(ti)¯ z(tj) ). (48)

In particular, Yn ∈ H and Xn ∈ φ(H2¯).

Proof. The form of Yn = 〈 zn, θn 〉Tn is simply the inner product (20) in H(V, Tn), while

−2Xn = ‖zn‖2
Tn
− tr(PnV−1

n ) =
∑

i

∑

j

aijz(ti)z(tj)−
∑

i

∑

j

P (ti, tj)aij

=
∑

i

∑

j

aij{z(ti)z(tj)− P (ti, tj)}

= φ(
∑

i

∑

j

aijz(ti)¯ z(tj) ).
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Proposition 4.1. Assume that the kernel V is nonsingular, that H(V ) is separable, and that
assumptions (A1)–(A3) above are satisfied. Let H be the Hilbert space spanned by the process
{z(t), t ∈ T} under the probability measure P = P0, and let φ be the map given in Theorem 2.2.
Then X ∈ φ(H2¯) and Y ∈ H.

Proof. By Lemma 4.2, the random variables Xn and Yn are elements of φ(H2¯) and H, respec-
tively. But Lemma 4.1 asserts that X and Y are in L2(P), and that the limits Xn → X and
Yn → Y hold in L2(P). Since φ(H2¯) and H are closed in L2(P), this implies that X ∈ φ(H2¯)
and Y ∈ H.

We now compute the post-selection distribution of the trait z for a fltness of form (44). Let
~X be the symmetric Hilbert-Schmidt operator associated to X { or more precisely, to φ−1(X)

{ deflned by (27).

Proposition 4.2. Assume the fitness function W has the form given in (44), and let Q∗ = P∗z
be the post-selection probability measure (6). Assume further that

the eigenvalues of ~X are less than 1. (49)

Let Y ′′ = Y + Y ′ where Y ′ = ⁄−1(z) and ⁄ is the Loeve map from H to H(P). Then the
distribution of {z(t), t ∈ T} under Q∗ is Gaussian with mean function

z∗ = ⁄(S) (50)

where S ∈ H is the solution of the operator equation

(I − ~X)S = Y ′′. (51)

Proof. From (44) and Theorem 2.3 we see that with respect to the measure P,

dQ∗

dP
=

dQ∗

dPz

dPz
dP

∝ eX+Y eY ′ = eX+Y ′′ .

For the moment, introduce the measure P∗ such that dP∗/dP = eX/EP(eX), so that

dQ∗

dP
=

dQ∗

dP∗
dP∗

dP
.

By the \converse" part of Theorem 2.4 the process z is zero-mean Gaussian with respect to P∗,
and the covariances under P and P∗ are related by (29); that is, there is a U ∈ H2¯ such that

(Z, Y ′′)P∗ = (Z, Y ′′) + (Z ¯ Y ′′, U) for all Z ∈ H

(inner products on the right-hand-side computed with respect to P).
On the other hand, dQ∗/dP∗ = eY ′′/EP∗(eY ′′), and so by Theorem 2.3 the process is

Gaussian under Q∗ with the same covariance as under P∗, and with

EQ∗(Z) = (Z, Y ′′)P∗ for all Z ∈ H.
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Thus the mean of any Z ∈ H with respect to Q∗ is given by

EQ∗(Z) = (Z, Y ′′) + (Z ¯ Y ′′, U) = (Y ′′, Z) + (Y ′′ ¯ Z,U).

By (27) this

= (Y ′′, Z) + ( ~UY ′′, Z) = ([I + ~U ]Y ′′, Z) = (S, Z),

where
S = (I + ~U)Y ′′.

But (31) asserts that the inverse of I + ~U is I − ~X, from which we see that S satisfles (51).
Finally, letting Z = z(t), we have z∗(t) = EQ∗ [z(t)] = (S, z(t)) = ⁄(S)(t) by Lemma 2.3, so
that (50) holds.

We now flnd expressions for the post-selection mean z∗ and the selection difierential s in
terms of the population and selection parameters. We will assume that the random variable X
given by (45) satisfles the eigenvalue condition (49).

Proposition 4.2 tells us that the post-selection distribution of z(t) is Gaussian with mean
function z∗ = ⁄(S) where S is given by (51). We seek an equivalent form of (51) in terms of
functions of t.

We begin by rewriting equation (51) in the form

S − ~X(S) = Y + Y ′.

Applying ⁄ to both sides, we have

z∗ − ⁄( ~X(S)) = ⁄(Y ) + z. (52)

Thus we need to evaluate ⁄( ~X(S)) and ⁄(Y ).

Proposition 4.3. We have ⁄( ~X(S)) = −“z∗ and ⁄(Y ) = “θ, where “ is the dominance
operator of V over P .

Proof. The value of ⁄( ~X(S)) at t is deflned to be ( ~X(S), z(t)) (Lemma 2.3). But since Xn → X
in L2(P) (Lemma 4.1), the property (32) of ~X implies that

( ~X(S), z(t)) = (S ¯ z(t), φ−1(X)) = lim
n

(S ¯ z(t), φ−1(Xn)),

where φ is the map given in Theorem 2.2. From the expansion for Xn given by (48), the inner
products in this sequence may be evaluated using (26), (50), (25) and (20):

(S ¯ z(t), φ−1(Xn)) = (−1/2)
∑∑

aij(S ¯ z(t), z(ti)¯ z(tj))

= (−1/2)
∑∑

aij [(S, z(ti))(z(t), z(tj)) + (S, z(tj))(z(ti), z(t))]

= (−1/2)
∑∑

aij [z∗(ti)P (t, tj) + z∗(tj)P (ti, t)]

= −
∑ ∑

aijz
∗(ti)P (t, tj)

= −〈 z∗n, Pt 〉Tn .
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Thus, taking the limit as n →∞, we have

( ~X(S), z(t)) = −〈 z∗, Pt 〉V = −“z∗(t),

by Proposition 2.1 and Lemma 2.1. That is,

⁄( ~X(S)) = −“z∗.

The value of ⁄(Y ) at t is given similarly by

(Y, z(t)) = (〈 z, θ 〉V , z(t)) = lim
n

(〈 zn, θn 〉Tn , z(t)).

From the expansion (47) for Yn and application of (20) and (25), we have

(〈 zn, θn 〉Tn , z(t)) = (
∑∑

aijz(ti)θ(tj), z(t))

=
∑∑

aijθ(tj)(z(ti), z(t))

=
∑∑

aijθ(tj)Pt(ti)

= 〈 θn, Pt 〉Tn .

Thus, taking the limit as n →∞, we have

(Y, z(t)) = 〈 θ, Pt 〉V = “θ(t)

again by Proposition 2.1 and Lemma 2.1. That is,

⁄(Y ) = “θ.

Theorem 4.1. Let the pre-selection distribution of the trait z(t), t ∈ T, be Gaussian with mean
function z and covariance function P , where z ∈ H(P, T ). Let the fitness function be given by
(10), where we assume that the kernel V is nonsingular, that H(V, T ) is separable, and that
conditions (A1)–(A3) are satisfied. Let “ be the dominance operator of V over P , with trace
τ . Finally, let X be given by (45), and assume that the operator ~X satisfies the eigenvalue
condition (49).

Then the post-selection distribution of z is also Gaussian and the selection differential is

s = “(θ − z∗). (53)

Moreover, the selection gradient β satisfies

(P + V)β = θ − z + η, (54)

where P and V are the extensions of the integral operators P and V to LP , the weak P -completion
of L2(T ), and where η ∈ nullspace(“).
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Proof. From (52) and Proposition 4.3, we see that equation (51) can be rewritten as

(I + “)z∗ = z + “θ. (55)

Rearranging (55) shows that s satisfles (53).
The steps from this to (54) are more delicate than in the flnite-dimensional case, as the map

“ is not invertible in general. From (53) and the deflning equation of the selection gradient
(9), we have Pβ = “(θ − z∗). By (41), we can write this as

“Vβ = “(θ − z∗),

which implies that
Vβ = θ − z∗ + η

where η is in the nullspace of “. Adding z∗ − z = s = Pβ to both sides gives us (54), as
desired.

5 Conclusion

Phenotypes subject to optimizing selection experience directional selection whenever a popu-
lation’s mean phenotype deviates from the optimum. For a function-valued trait subject to
Gaussian optimizing selection we have derived the selection gradient (54), which quantifles this
directional selection. In the course of doing so, we have also derived the corresponding selection
difierential (53), which describes the within-generation change in mean phenotype. Equations
(53) and (54) are the function-valued generalizations of the corresponding equations (4) and
(5) for a flnite-dimensional trait. In particular, (54) expresses the selection gradient completely
in terms of the given population and selection parameters, as desired.

If we delete the eigenvalue assumption (49), the post-selection distribution may no longer
be Gaussian. In this case, it may be possible to derive (53) and (54) by application of the
generalization of Lande’s Theorem given in [11], as may be done in the flnite-dimensional case.

As noted after Lemma 2.1, the operator “ in (53) is the function-valued analog of the matrix
PV−1 in (4), so that the selection difierentials for flnite-dimensional and function-valued traits
have essentially the same form. This suggests that the latter could have been postulated
from the former (cf. [4]). However, the function-valued selection gradient (54) contains an
ingredient that does not appear in the flnite-dimensional case, since the element η belonging to
the nullspace of “ has no counterpart for flnite-dimensional traits. The biological interpretation
of η is not yet clear and hence, neither is its biological signiflcance.

Nevertheless, (54) shows that the component of linear selection on a function-valued trait
under optimizing selection is determined by more than just the simple difierence between the
optimal and mean phenotypes. In particular, it may be possible for two populations with
mean functions that lie at difierent distances from the optimum to experience exactly the
same directional selection. Important challenges for future work will be to characterize the
component η more fully and, indeed, to develop statistical methods to detect it in empirical
studies of function-valued traits.
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