SEMI-ISOTOPIC KNOTS

FREDRIC D. ANCEL

Abstract

A knot is a possibly wild simple closed curve in S^{3}. A knot J is semi-isotopic to a knot K if there is an annulus A in $S^{3} \times[0,1]$ such that $A \cap\left(S^{3} \times\{0,1\}\right)=\partial A=(J \times\{0\}) \cup(K \times\{1\})$ and there is a homeomorphism $e: S^{1} \times[0,1) \rightarrow A-(K \times\{1\})$ such that $e\left(S^{1} \times\{t\}\right) \subset S^{3} \times\{t\}$ for every $t \in[0,1)$.

Theorem. Every knot is semi-isotopic to an unknot.

1. Introduction

We fix some notation and terminology. Let $I=[0,1]$. A $k n o t$ is the image of an embedding $S^{1} \rightarrow S^{3}$. If the composition of this embedding with some homeomorphism of S^{3} is a piecewise linear embedding, then the knot is tame. Otherwise, it is wild. An annulus is a space that is homeomorphic to $S^{1} \times I$.

Knots J and K are ambiently isotopic if there is a level-preserving homeomorphism $h: S^{3} \times I \rightarrow S^{3} \times I$ such that $h(x, 0)=(x, 0)$ and $h(J \times\{1\})=K \times\{1\}$. Note that for such an $h, h(J \times\{0\})=J \times\{0\}$ and $h(J \times\{1\})=K \times\{1\}$. Of course, classical knot theory is the study of ambient isotopy classes of tame knots in S^{3}.

Knots J and K are (non-ambiently) isotopic if there is a level-preserving embedding $e: J \times I \rightarrow S^{3} \times I$ such that $e(J \times\{0\})=J \times\{0\}$ and $e(J \times\{1\})=K \times\{1\}$.

Observe that every knot that pierces a tame disk is isotopic to an unknot. The sequence of pictures in Figure 1 suggests a proof of this observation.

The Bing sling (Figure 2) [2] is a wild knot that pierces no disk. It is not known whether the Bing sling is isotopic to an unknot.

The following conjecture is well-known.
Conjecture. Every knot is isotopic to an unknot.
A knot J is semi-isotopic to a knot K if there is an annulus A in $S^{3} \times I$ such that $\partial A=(J \times\{0\}) \cup(K \times\{1\})$ and there is a homeomorphism $e: S^{1} \times[0,1) \rightarrow$ $A-(K \times\{1\})$ such that $e\left(S^{1} \times\{t\}\right) \subset S^{3} \times\{t\}$ for every $t \in[0,1)$. Note that e may not extend continuously to homeomorphism from $S^{1} \times[0,1]$ onto A.

The main result of this paper is:
Theorem. Every knot is semi-isotopic to an unknot.
Thus, the Bing sling is semi-isotopic to an unknot.
Knots J and K are (topologically) concordant or I-equivalent if there is an annulus A in $S^{3} \times I$ such that $A \cap\left(S^{3} \times\{0,1\}\right)=\partial A=(J \times\{0\}) \cup(K \times\{1\})$.

Note that: Isotopic \Rightarrow semi-isotopic \Rightarrow concordant.

[^0]

Figure 1. An isotopy of a knot to an unknot

Figure 2. The Bing sling

Example. There is a (wild) two-component link in S^{3} that is not concordant to any PL link! [7]

Observe that Melikhov's striking example shows that the method of proof of the Theorem won't extend to two-component links, and that the invariants which Melikhov exploits won't work for single component knots.

The Theorem is proved by applying the two main results of [1]. These results are a reinterpretation and formalization of a technique introduced by the topologist C. H. Giffen in the 1960s called shift-spinning. A consequence of Giffen's method is that the Mazur 4-manifold [6] has a disk pseudo-spine. (A pseudo-spine of a compact manifold M is a compact subset X of $\operatorname{int}(M)$ such that $M-X$ is homeomorphic to $\partial M \times[0,1)$.) After R. D. Edwards' groundbreaking proof that the double suspension of the boundary of the Mazur 4-manifold is homeomorphic to the 5 -sphere in 1975 , it was observed that had the existence of a disk pseudospine in the Mazur 4-manifold been observed before Edwards' proof, then a proof of Edwards' theorem using previously known results could have been given. However, no one made the connection between Giffen's technique and the existence of a disk pseudo-spine until after Edwards announced his proof. Shift-spinning, the existence of a disk pseudo-spine in the Mazur 4-manifold and why this leads to the conclusion that the double suspension of the boundary of the Mazur 4-manifold is homeomorphic to the 5 -sphere are clearly explained on pages 102-107 of [3]. In [1] the main results are applied to show that 4-manifolds like the Mazur manifold (constructed by attaching 2-handles to $B^{3} \times S^{1}$ have identifiable pseudo-spines. In particular, all the 4-manifolds constructed by attaching a single 2 -handle to $B^{3} \times S^{1}$ along a degree one curve have disk pseudo-spines, and therefore have the property that the double suspensions of their boundaries are homeomorphic to S^{5}.

Other topologists have explored Giffen shift-spinning in various contexts. (See pages 404-409 of [5] and pages 15-16 of [4].)

We gratefully acknowledge the artistic hand of Shayna Meyers in the creation of the figures for this article. We also thank Chris Hruska for a useful conversation.

2. MAPPING SWIRLS

The central concept of [1] is the mapping swirl. We recapitulate its definition and state the two main results of [1] in forms that are convenient for proving the Theorem.

Let X be a compact metric space. Identify the cone on $X, C X$, and the suspension of $X, \Sigma X$, as the quotient spaces $C X=([0, \infty] \times X) /(\{\infty\} \times X)$ and $\Sigma X=([-\infty, \infty] \times X) /\{\{-\infty\}\} \times X,\{\infty\} \times X\}$. Let $(t, x) \mapsto t x$ denote either of the quotient maps $[0, \infty] \times X \rightarrow C X$ or $[-\infty, \infty] \times X \rightarrow \Sigma X$. For each $t \in[0, \infty]$ or $[-\infty, \infty]$, let $t X$ denote the image of the set $\{t\} \times X$ under the appropriate quotient map. Thus, ∞X denotes the cone point of $C X$, and $(-\infty) X$ and ∞X denote the suspension points of ΣX.

Let $f: X \rightarrow Y$ be a map between compact metric spaces. Observe that, by exploiting the homeomorphism $x \mapsto(x, f(x))$ from X to the graph of f, the mapping cylinder of $f, C y l(f)$, can be identified with the subset

$$
\{(t x, f(x)) \in C X \times Y:(t, x) \in[0, \infty) \times X\} \cup(\infty X \times Y)
$$

of $C X \times Y$. Similarly, the double mapping cylinder of $f, \operatorname{DblCyl}(f)$, which is obtained by identifying two copies of $C y l(f)$ along their bases, can be identified
with the subset

$$
\{(t x, f(x)) \in \Sigma X \times Y:(t, x) \in(-\infty, \infty) \times X\} \cup(\{(-\infty) X, \infty X\} \times Y)
$$

of $\Sigma X \times Y$. For each $t \in(-\infty, \infty)$, the t-level of $\operatorname{DblCyl}(f)$ is the set

$$
L(f, t)=(t X \times Y) \cap \operatorname{DblCyl}(f)=\{(t x, f(x)): x \in X\}
$$

Furthermore, if $t \in[0, \infty)$, then $L(f, t)$ is also called the t-level of $C y l(f)$. Note that for each $t \in(-\infty, \infty), x \mapsto(t x, f(x)): X \rightarrow L(f, t)$ is a homeomorphism. The ∞-level of $C y l(f)$ is the set $L(f, \infty)=\{\infty X\} \times Y$. The $(-\infty)$-level and the ∞-level of $\operatorname{DblCyl}(f)$ are the sets $L(f,-\infty)=\{(-\infty) X\} \times Y$ and $L(f, \infty)=\{(\infty) X\} \times Y$.

Let X be a compact metric space and let $f: X \rightarrow S^{1}$ be a map. The mapping swirl of f is the subset

$$
S w l(f)=\left\{\left(t x, e^{2 \pi i t} f(x)\right) \in C X \times S^{1}:(t, x) \in[0, \infty) \times X\right\} \cup\left(\{\infty X\} \times S^{1}\right)
$$

of $C X \times S^{1}$. The double mapping swirl of f is the subset $\operatorname{DblSwl}(f)=$

$$
\left\{\left(t x, e^{2 \pi i t} f(x)\right) \in \Sigma X \times S^{1}:(t, x) \in(-\infty, \infty) \times X\right\} \cup\left(\{(-\infty) X, \infty X\} \times S^{1}\right)
$$

of $\Sigma X \times S^{1}$. For each $t \in(-\infty, \infty)$, the t-level of $\operatorname{DblSwl}(f)$ is the set

$$
\mathscr{L}(f, t)=\left(t X \times S^{1}\right) \cap \operatorname{DblSwl}(f)=\left\{\left(t x, e^{2 \pi i t} f(x)\right): x \in X\right\}
$$

Furthermore, if $t \in[0, \infty)$, then $\mathscr{L}(f, t)$ is also called the t-level of $S w l(f)$. Note that for each $t \in(-\infty, \infty), x \mapsto\left(t x, e^{2 \pi i t} f(x)\right): X \rightarrow \mathscr{L}(f, t)$ is a homeomorphism. The ∞-level of $S w l(f)$ is the set $\mathscr{L}(f, \infty)=\{\infty X\} \times S^{1}$. The $(-\infty)$-level and ∞-level of $\operatorname{DblSwl}(f)$ are the sets $\mathscr{L}(f,-\infty)=\{(-\infty) X\} \times S^{1}$ and $\mathscr{L}(f, \infty)=\{\infty X\} \times S^{1}$. For each $x \in X$, the x-fiber of $\operatorname{Swl}(f)$ is the set

$$
\mathscr{F}(f, x)=\left\{\left(t x, e^{2 \pi i t} f(x)\right): t \in[0, \infty)\right\}
$$

and the x - $f i b e r$ of $\operatorname{DblSwl}(f)$ is the set

$$
\mathscr{D} \mathscr{P} \mathscr{F}(f, x)=\left\{\left(t x, e^{2 \pi i t} f(x)\right): t \in(-\infty, \infty)\right\}
$$

We now state the two main results of [1].
Theorem 1. If X is a compact metric space and $f, g: X \rightarrow S^{1}$ are homotopic maps, then there is a homeomorphism $\Omega: \operatorname{Swl}(f) \rightarrow \operatorname{Swl}(g)$ with the following properties.

1) Ω is fiber-preserving: for every $x \in X, \Omega(\mathscr{F}(f, x))=\mathscr{F}(g, x)$.
2) Ω fixes the ∞-level: $\Omega \mid \mathscr{L}(f, \infty)=i d$.

Compare Theorem 1 to the fact that, in general, there is no homeomorphism between mapping cylinders of homotopic maps.

Note that Theorem 1 holds with S^{1} replaced by any space homeomorphic to S^{1}. Also note that the conclusions of the theorem imply that for any subset Y of X, $\Omega(S w l(f \mid Y))=\operatorname{Swl}(g \mid Y), \Omega(\mathscr{L}(f \mid Y, 0)=\mathscr{L}(g \mid Y, 0)$ and $\Omega(\mathscr{L}(f, \infty))=\mathscr{L}(g, \infty)$.

Theorem 2. If Y is a compact metric space, n is a non-zero integer and f : $X \times S^{1} \rightarrow S^{1}$ is the map satisfying $f(y, z)=z^{n}$, then there is a homeomorphism $\Theta: C y l(f) \rightarrow S w l(f)$ with the following properties.

1) Θ is level-preserving: for every $t \in[0, \infty], \Theta(L(f, t))=\mathscr{L}(f, t)$.
2) Ω fixes the 0 - and ∞-levels: $\Theta \mid L(f, 0) \cup L(f, \infty)=i d$.

Note that Theorem 2 holds for any map $f: X \rightarrow J$ for which there is a commutative diagram:

We will need one other elementary fact:
Proposition 3. If X is a compact metric space, $f: X \rightarrow S^{1}$ a map and $\lambda:[0,1) \rightarrow$ $[0, \infty)$ is a homeomorphism, then there is a homeomorphism $\Lambda: X \times[0,1) \rightarrow$ $S w l(f)-\mathscr{L}(f, \infty)$ such that for every $t \in[0,1), \Lambda(X \times\{t\}))=\mathscr{L}(f, \lambda(t))$.

Proofs of Theorems 1 and 2 are found in [1]. Because we have modified the statements of these theorems for their use in this paper, we will provide outlines of these proofs as well as a proof of Proposition 3 in section 4 below.

3. The proof of the Theorem

Let J be a knot. We will prove that J is semi-isotopic to an unknot.
Step 1: There is an unknotted solid torus T in S^{3} such that $J \subset \operatorname{int}(T)$ and the inclusion $J \hookrightarrow T$ is a homotopy equivalence.

We can assume $J \subset \mathbb{R}^{3}=S^{3}-\{\infty\}$. Let p and q be distinct points of J. Let \mathscr{V} be an uncountable family of parallel planes in \mathbb{R}^{3} that separate p from q. Since J has a countable dense subset, J does not contain an uncountable pairwise disjoint collection of non-empty open sets. Hence, there is a $V \in \mathscr{V}$ such that $J \cap V$ contains no non-empty open subset of J. It follows that $J \cap V$ is a totally disconnected subset of V. Let J_{1} and J_{2} be arcs such that $J_{1} \cup J_{2}=J$ and $J_{1} \cap J_{2}=\partial J_{1}=\partial J_{2}=\{p, q\}$. Then $J_{1} \cap V$ and $J_{2} \cap V$ are disjoint compact totally disconnected subsets of V . It follows that there is a disk D in V such that $J_{1} \cap V \subset \operatorname{int}(D)$ and $\left(J_{2} \cap V\right) \cap D=\emptyset$. To see this, let D^{\prime} be a disk in V, let A_{1} be a subset of $\operatorname{int}\left(D^{\prime}\right)$ that is homeomorphic to $J_{1} \cap V$, and let A_{2} be a subset of $V-D^{\prime}$ that is homeomorphic to $J_{2} \cap V$. Then according to Theorem 13.7 on pages 93-95 of [8], there is a homeomorphism $\phi: V \rightarrow V$ such that $\phi\left(A_{i}\right)=J_{i} \cap V$ for $i=1,2$. Simply let $D=\phi\left(D^{\prime}\right)$.

We can assume D is a piecewise linear disk in V. Let U be a regular neighborhood of ∂D in S^{3} such that $U \cap V$ is a regular neighborhood of ∂D in V and $U \cap J=\emptyset$, and let $T=\operatorname{cl}\left(S^{3}-U\right)$. Then U and, hence, T are unknotted solid tori in S^{3}, and $J \subset \operatorname{int}(T)$. Let $\bar{V}=V \cup\{\infty\}$, and let E_{1} and E_{2} be the components of $\operatorname{cl}(\bar{V}-U)$ such that $E_{1} \subset \operatorname{int}(D)$ and $\infty \in E_{2}$. Then E_{1} and E_{2} are disjoint meridional disks of T such that $T \cap \bar{V}=E_{1} \cup E_{2}, J_{1} \cap \bar{V} \subset \operatorname{int}\left(E_{1}\right)$ and $J_{2} \cap \bar{V} \subset \operatorname{int}\left(E_{2}\right)$. Thus, $J_{1} \cap E_{2}=\emptyset=J_{2} \cap E_{1}$.

Clearly, there is a simple closed curve $K \subset \operatorname{int}(T)$ such that the inclusion $K \hookrightarrow T$ is a homotopy equivalence, p and $q \in K, K_{1}$ and K_{2} are arcs such that $K_{1} \cup K_{2}=K$, $K_{1} \cap K_{2}=\partial K_{1}=\partial K_{2}=\{p, q\}$, and $K_{1} \cap E_{2}=\emptyset=K_{2} \cap E_{1}$. At this point we will stretch conventional terminology slightly by saying that for subsets $Z \subset Y$ and $Z \subset Y^{\prime}$ of a space X, the inclusions $Y \hookrightarrow X$ and $Y^{\prime} \hookrightarrow X$ are homotopic in X rel Z if there is a homotopy $\xi: Y \times I \rightarrow X$ such that $\xi_{0}=i d_{Y}, \xi_{1}: Y \rightarrow Y^{\prime}$ is a homeomorphism and $\xi_{t} \mid Z=i d_{Z}$ for every $t \in I$. Since $T-E_{2}$ is contractible, then the inclusions $J_{1} \hookrightarrow T-E_{2}$ and $K_{1} \hookrightarrow T-E_{2}$ are homotopic rel $\{p, q\}$. Similarly,
since $T-E_{1}$ is contractible, the inclusions $J_{2} \hookrightarrow T-E_{1}$ and $K_{2} \hookrightarrow T-E_{1}$ are homotopic rel $\{p, q\}$. Therefore, the inclusions $J \hookrightarrow T$ and $K \hookrightarrow T$ are homotopic. It follows that the inclusion $J \hookrightarrow T$ is a homotopy equivalence.

Step 2: Consider a homeomorphism $\psi: B^{2} \times S^{1} \rightarrow T$, let $o \in \operatorname{int}\left(B^{2}\right)$ and let $K=\psi\left(\{o\} \times S^{1}\right)$. Define the homeomorphism $\psi_{o}: S^{1} \rightarrow K$ by $\psi_{o}(z)=\psi(o, z)$. Define the map $\tau: B^{2} \times S^{1} \rightarrow S^{1}$ by $\tau(y, z)=z$, and define the map $\pi: T \rightarrow K$ by $\pi=\psi_{o} \circ \tau \circ \psi^{-1}$. Then we have a commutative diagram in which the vertical arrows are homeomorphisms:

We can now invoke Theorem 2 to obtain a level-preserving homeomorphism Θ : $\operatorname{Cyl}(\pi) \rightarrow \operatorname{Swl}(\pi)$ that fixes the 0 - and ∞-levels. Also observe that since τ : $B^{2} \times S^{1} \rightarrow S^{1}$ is a homotopy equivalence, then so is $\pi: T \rightarrow K$.

Step 3: Let $\lambda: I \rightarrow[0, \infty]$ be an order-preserving homeomorphism. Clearly, there is an embedding $j: C y l(\pi) \rightarrow S^{3} \times I$ with the following properties.

1) j maps $L(\pi, 0)$ "identically" onto $T \times\{0\}$; i.e., $j(0 x, \pi(x))=(x, 0)$ for every $x \in T$.
2) For every $t \in I, j\left(L(\pi, \lambda(t)) \subset S^{3} \times\{t\}\right.$, and $j(L(\pi, \lambda(t))$ is a copy of T that is "squeezed" toward K.
3) j maps $L(\pi, \infty)$ "identically" onto $K \times\{1\}$; i.e., for every $y \in K, j(\{\infty T\} \times\{y\})=$ $\{(y, 1)\}$.
Thus, $j \circ \Theta^{-1}: S w l(\pi) \rightarrow S^{3} \times I$ is an embedding with the following properties.
4) $j \circ \Theta^{-1} \operatorname{maps} \mathscr{L}(\pi, 0)$ "identically" onto $T \times\{0\}$; i.e., $j \circ \Theta^{-1}(0 x, \pi(x))=(x, 0)$ for every $x \in T$.
5) For every $t \in I, j \circ \Theta^{-1}\left(\mathscr{L}(\pi, \lambda(t)) \subset S^{3} \times\{t\}\right.$.
6) $j \circ \Theta^{-1}$ maps $\mathscr{L}(\pi, \infty)$ "identically" onto $K \times\{1\}$; i.e., for every $y \in K, j \circ$ $\Theta^{-1}(\infty T \times\{y\})=\{(y, 1)\}$.

Step 4: Since $\pi \mid J \rightarrow K$ is the composition of the inclusion $J \hookrightarrow T$ and π : $T \rightarrow K$, both of which are homotopy equivalences, then $\pi \mid J \rightarrow K$ is a homotopy equivalence. Hence, $\pi \mid J \rightarrow K$ is homotopic to an homeomorphism $\chi: J \rightarrow K$. Therefore, Theorem 1 provides a 0 - and ∞-level preserving homeomorphism ω : $S w l(\pi \mid J) \rightarrow S w l(\chi)$. Thus, $j \circ \Theta^{-1}: S w l(\chi) \rightarrow S^{3} \times I$ is an embedding that maps $\mathscr{L}(\chi, 0)$ into $S^{3} \times\{0\}$ and maps $\mathscr{L}(\chi, 1)$ onto $K \times\{1\} \subset S^{3} \times\{1\}$.

Step 5: Since $\chi: J \rightarrow K$ is a homeomorphism, then Theorem 2 provides a level-preserving homeomorphism from $\operatorname{Cyl}(\chi)$ to $\operatorname{Swl}(\chi)$. Also, since $\chi: J \rightarrow K$ is a homeomorphism, then $C y l(\chi)$ is an annulus with boundary $L(\chi, 0) \cup L(\chi, 1)$. Therefore, $S w l(\chi)$ is an annulus with boundary $\mathscr{L}(\chi, 0) \cup \mathscr{L}(\chi, 1)$. Since ω : $S w l(\pi \mid J) \rightarrow S w l(\chi)$ is a 0 - and ∞-level preserving homeomorphism, then if follows that $S w l(\pi \mid J)$ is an annulus with boundary $\mathscr{L}(\pi \mid J, 0) \cup \mathscr{L}(\pi \mid J, \infty)$. Let $A=j \circ \Theta^{-1}(S w l(\pi \mid J))$. Then A is an annulus in $S^{3} \times I$ with boundary $j \circ$ $\Theta^{-1}(\mathscr{L}(\pi \mid J, 0) \cup \mathscr{L}(\pi \mid J, \infty))=(J \times\{0\}) \cup(K \times\{1\})$.

Step 6: Recall that for every $t \in I, j \circ \Theta^{-1}\left(\mathscr{L}(\pi \mid J, \lambda(t)) \subset S^{3} \times\{t\}\right.$. Proposition 3 implies that there is a homeomorphism $\Lambda: J \times[0,1) \rightarrow \operatorname{Swl}(\pi \mid J)-\mathscr{L}(\pi \mid J, \infty)$ such that $\Lambda(J \times\{t\})=\mathscr{L}(\pi \mid J, \lambda(t))$ for every $t \in[0,1)$. Therefore, $j \circ \Theta^{-1} \circ \Lambda: J \times[0,1) \rightarrow$ $A-(K \times\{1\})$ is a homeomorphism such that $j \circ \Theta^{-1} \circ \Lambda(J \times\{t\}) \subset S^{3} \times\{t\}$ for every $t \in[0,1)$.

Figure 3. Double helix with vertical shift $-\sigma(x)$

4. Proofs of Theorems 1 and 2 and Proposition 3

Proof of Theorem 1. Let X be a compact metric space and let $f, g: X \rightarrow S^{1}$ be homotopic maps.

Step 1: There is a homeomorphism $\Phi:(\Sigma X) \times S^{1} \rightarrow(\Sigma X) \times S^{1}$ that carries $\operatorname{DblSwl}(f)$ onto $\operatorname{DblSwl}(g)$.

For each $x \in X$, observe that $\mathscr{D} \not \subset \mathscr{F}(f, x) \cup \mathscr{D} \not \subset \mathscr{F}(g, x)$ is a double helix in the cylinder $(\mathbb{R} x) \times S^{1} \subset(\Sigma X) \times S^{1}$. We will construct a map $\sigma: X \rightarrow \mathbb{R}$ such that for each $x \in X$, a first-coordinate shift of $(\mathbb{R} x) \times S^{1}$ through a distance of $-\sigma(x)$ slides $\mathscr{D} \mathfrak{b} \mathscr{F}(f, x)$ onto $\mathscr{D} \bullet \bullet \mathscr{F}(g, x)$. (See Figure 3.)

Begin the construction of σ by choosing a homotopy $h: X \times I \rightarrow S^{1}$ such that $h_{0}=f$ and $h_{1}=g$. Using complex division in S^{1}, define $k: X \times I \rightarrow S^{1}$ by $k(x, t)=h(x, t) / h(x, 0)$. Then for every $x \in X, k(x, 0)=1$ and $k(x, 1) f(x)=g(x)$. Let $e: \mathbb{R} \rightarrow S^{1}$ be the exponential covering map $e(t)=e^{2 \pi i t}$. The homotopy $\underset{\sim}{k}: X \times I \rightarrow S^{1}$ lifts to a homotopy $\widetilde{k}: X \times I \rightarrow \mathbb{R}$ such that $e \circ \widetilde{k}=k$ and $\widetilde{k}(x, 0)=0$ for every $x \in X$. Define $\sigma: X \rightarrow \mathbb{R}$ by $\sigma(x)=\widetilde{k}(x, 1)$. Therefore, for every $x \in X$,

$$
e^{2 \pi i \sigma(x)} f(x)=e \circ \sigma(x) f(x)=e \circ \widetilde{k}(x, 1) f(x)=k(x, 1) f(x)=g(x)
$$

Since X is compact, there is a $b>0$ such that $\sigma(X) \subset(-b, b)$.
Define $\Phi:(\Sigma X) \times S^{1} \rightarrow(\Sigma X) \times S^{1}$ by

$$
\left\{\begin{array}{l}
\Phi(t x, z)=((t-\sigma(x)) x, z) \text { for }(t, x) \in \mathbb{R} \times X \text { and } z \in S^{1}, \text { and } \\
\Phi=i d \text { on }\{(-\infty) X, \infty X\} \times S^{1}
\end{array}\right.
$$

Φ is the first-coordinate shift of $(\mathbb{R} x) \times S^{1}$ through a distance of $-\sigma(x)$ mentioned above. It remains to show that Φ is a homeomorphism of $(\Sigma X) \times S^{1}$ which slides $\mathscr{D} \mathscr{\ell} \mathscr{F}(f, x)$ onto $\mathscr{D} \mathscr{C} \mathscr{F}(g, x)$ for each $x \in X$.
Φ is continuous at points of $\{(-\infty) X, \infty X\} \times S^{1}$ because for every $x \in X$ and every $z \in S^{1}, \Phi(([t, \infty] x) \times\{z\}) \subset((t-b, \infty] x) \times\{z\}$ and $\Phi(([-\infty, t] x) \times\{z\}) \subset$ $([-\infty, t+b) x) \times\{z\}$.
Φ is a homeomorphism because its inverse $\bar{\Phi}$ can be defined explicitly by the equations

$$
\left\{\begin{array}{l}
\bar{\Phi}(t x, z)=((t+\sigma(x)) x, z) \text { for }(t, x) \in \mathbb{R} \times X \text { and } z \in S^{1}, \text { and } \\
\bar{\Phi}=i d \text { on }\{(-\infty) X, \infty X\} \times S^{1} .
\end{array}\right.
$$

The verification that $\bar{\Phi} \circ \Phi=i d=\Phi \circ \bar{\Phi}$ is straightforward.
For each $x \in X$, a typical point of $\mathscr{D} \mathscr{C} \mathscr{F}(f, x)$ has the form $\left(t x, e^{2 \pi i t} f(x)\right)$, and

$$
\begin{aligned}
& \Phi\left(\left(t x, e^{2 \pi i t} f(x)\right)=\left((t-\sigma(x)) x, e^{2 \pi i t} f(x)\right)=\right. \\
& \left((t-\sigma(x)) x, e^{2 \pi i(t-\sigma(x))} e^{2 \pi i \sigma(x)} f(x)\right)= \\
& \left((t-\sigma(x)) x, e^{2 \pi i(t-\sigma(x))} g(x)\right) \in \mathscr{D} \bullet \mathscr{F}(g, x) .
\end{aligned}
$$

Hence, $\Phi(\mathscr{D} \notin \mathscr{F}(f, x)) \subset \mathscr{D} \notin \mathscr{F}(g, x)$. A similar calculation shows

$$
\bar{\Phi}(\mathscr{D} \mathscr{A} \mathscr{F}(g, x)) \subset \mathscr{D} \not \subset \mathscr{F}(f, x)
$$

for every $x \in X$. Thus,

$$
\mathscr{D} \not \subset \mathscr{F}(g, x) \subset \Phi(\mathscr{D} \notin \mathscr{F}(f, x))
$$

for every $x \in X$. We conclude that

$$
\Phi(\mathscr{D} \mathscr{A} \mathscr{F}(f, x))=\mathscr{D} \notin \mathscr{F}(g, x)
$$

for every $x \in X$.
We have shown that $\Phi:(\Sigma X) \times S^{1} \rightarrow(\Sigma X) \times S^{1}$ is a homeomorphism with the property that $\Phi \mid \operatorname{DblSwl}(f): \operatorname{DblSwl}(f) \rightarrow \operatorname{DblSwl}(g)$ is a fiber-preserving homeomorphism that fixes the $(-\infty)$ - and ∞-levels. Unfortunately, we can't conclude that $\Phi(S w l(f))$ and $S w l(g)$ are equal subsets of $\operatorname{DblSwl}(g)$. This completes Step 1.

Step 2: There is a homeomorphism $\Psi:(\Sigma X) \times S^{1} \rightarrow(\Sigma X) \times S^{1}$ that maps $\operatorname{DblSwl}(g)$ onto itself and twists $\Phi(\operatorname{Swl}(f)$ onto $\operatorname{Swl}(g)$.

Observe that for every $x \in X, \Phi(\mathscr{F}(f, x))$ and $\mathscr{F}(g, x)$ are contained in the helix $\mathscr{D} \notin \mathscr{F}(g, x)$ which lies in the cylinder $(\mathbb{R} x) \times S^{1}$. For each $x \in X, \Psi$ will map this cylinder to itself with a screw motion that preserves $\mathscr{D} \not \mathscr{\mathscr { F }}(g, x)$ and twists $\Phi(\mathscr{F}(f, x))$ onto $\mathscr{F}(g, x)$.

Recall that $\sigma(X) \subset(-b, b)$. Hence, there is clearly a map $\tau: \mathbb{R} \times X \rightarrow \mathbb{R}$ such that for each $x \in X, \tau \mathbb{R} \times\{x\}: \mathbb{R} \times\{x\} \rightarrow \mathbb{R}$ is a homeomorphism such that $\tau(-\sigma(x))=0$ and $\tau(t, x)=t$ for $t \in(-\infty,-b] \cup[b, \infty)$.

Define $\Psi:(\Sigma X) \times S^{1} \rightarrow(\Sigma X) \times S^{1}$ by

$$
\left\{\begin{array}{l}
\Psi(t x, z)=\left(\left(\tau(t, x) x, e^{2 \pi i(\tau(t, x)-t)} z\right) \text { for }(t, x) \in \mathbb{R} \times X \text { and } z \in S^{1},\right. \text { and } \\
\Psi=i d \text { on }\{(-\infty) X, \infty X\} \times S^{1} .
\end{array}\right.
$$

Ψ is continuous at points of $\{(-\infty) X, \infty X\} \times S^{1}$ because $\Psi=i d$ on $\{t x:|t| \geq$ b and $x \in X\} \times S^{1}$.
Ψ is a homeomorphism because its inverse $\bar{\Psi}$ can be defined explicitly as follows. First observe that there is a map $\bar{\tau}: \mathbb{R} \times X \rightarrow \mathbb{R}$ so that for every $x \in X$, $t \mapsto \bar{\tau}(t, x): \mathbb{R} \rightarrow \mathbb{R}$ is the inverse of the homeomorphism $t \mapsto \tau(t, x): \mathbb{R} \rightarrow \mathbb{R}$. Now
define $\bar{\Psi}:(\Sigma X) \times S^{1} \rightarrow(\Sigma X) \times S^{1}$ by

$$
\left\{\begin{array}{l}
\bar{\Psi}(t x, z)=\left(\left(\bar{\tau}(t, x) x, e^{2 \pi i(\bar{\tau}(t, x)-t)} z\right) \text { for }(t, x) \in \mathbb{R} \times X \text { and } z \in S^{1},\right. \text { and } \\
\bar{\Psi}=i d \text { on }\{(-\infty) X, \infty X\} \times S^{1}
\end{array}\right.
$$

The verification that $\bar{\Psi} \circ \Psi=i d=\Psi \circ \bar{\Psi}$ is straightforward.
Let $x \in X$. To prove that $\Psi(\mathscr{D} \not \subset \mathscr{F}(g, x))=\mathscr{D} \ell \mathscr{F}(g, x)$, note that a typical point of $\mathscr{D} \bullet \subset \mathscr{F}(g, x)$ has the form $\left(t x, e^{2 \pi i t} g(x)\right)$, and

$$
\begin{aligned}
& \Psi\left(\left(t x, e^{2 \pi i t} g(x)\right)=\left(\tau(t, x) x, e^{2 \pi i(\tau(t, x)-t)} e^{2 \pi i t} g(x)\right)=\right. \\
& \left(\tau(t, x) x, e^{2 \pi i \tau(t, x)} g(x)\right) \in \mathscr{D} \notin \mathscr{F}(g, x)
\end{aligned}
$$

Therefore, $\Psi(\mathscr{D} \not \subset \mathscr{F}(g, x)) \subset \mathscr{D} \mathscr{C} \neq \mathscr{F}(g, x)$. A similar calculation shows

$$
\bar{\Psi}(\mathscr{D} \not \subset \mathscr{F}(g, x)) \subset \mathscr{D} \notin \mathscr{F}(g, x) .
$$

Hence,

$$
\mathscr{D} \ell \mathscr{F}(g, x) \subset \Psi(\mathscr{D} b \ell \mathscr{F}(g, x)) .
$$

We conclude that

$$
\Psi(\mathscr{D} \not \subset \mathscr{F}(g, x))=\mathscr{D} \not \subset \mathscr{F}(g, x)
$$

We have shown that $\Psi:(\Sigma X) \times S^{1} \rightarrow(\Sigma X) \times S^{1}$ is a homeomorphism with the property that $\Psi \mid \operatorname{DblSwl}(g): \operatorname{DblSwl}(g) \rightarrow \operatorname{DblSwl}(g)$ is a fiber-preserving homeomorphism that fixes the $(-\infty)$ - and ∞-levels.

Again let $x \in X$. To prove that $\Psi(\Phi(\mathscr{F}(f, x)))=\mathscr{F}(g, x)$, note that a typical point of $\Phi(\mathscr{F}(f, x))$ has the form $\left(t x, e^{2 \pi i t} g(x)\right.$ where $t \geq-\sigma(x)$, and a typical point of $\mathscr{F}(g, x)$ has the form $\left(t x, e^{2 \pi i t} g(x)\right)$ where $t \geq 0$. Also note that τ maps $[-\sigma(x), \infty)$ onto $[0, \infty)$. Since

$$
\Psi\left(\left(t x, e^{2 \pi i t} g(x)\right)=\left(\tau(t, x) x, e^{2 \pi i(\tau(t, x)-t)} e^{2 \pi i t} g(x)\right)=\left(\tau(t, x) x, e^{2 \pi i \tau(t, x)} g(x)\right),\right.
$$

then clearly $\Psi(\Phi(\mathscr{F}(f, x)))=\mathscr{F}(g, x)$.
It follows that $\Psi \circ \Phi(S w l(f))=S w l(g)$, completing Step 2.
We conclude that $\Psi \circ \Phi \mid \operatorname{Swl}(f): \operatorname{Swl}(f) \rightarrow \operatorname{Swl}(g)$ is a fiber-preserving homeomorphism that fixes the ∞-level.

Proof of Theorem 2. Let Y be a compact metric space, n a non-zero integer and $f: Y \times S^{1} \rightarrow S^{1}$ the map satisfying $f(y, z)=z^{n}$. We will construct a homeomorphism $\Theta: C\left(Y \times S^{1}\right) \times S^{1} \rightarrow C\left(Y \times S^{1}\right) \times S^{1}$ that carries $C y l(f)$ onto $S w l(f)$.

Define $\zeta:[0, \infty) \rightarrow S^{1}$ by $\zeta(t)=e^{-2 \pi i t / n}$, and define $\Theta: C\left(Y \times S^{1}\right) \times S^{1} \rightarrow$ $C\left(Y \times S^{1}\right) \times S^{1}$ by
$\left\{\begin{array}{l}\Theta(t(y, z), w)=(t(y, \zeta(t) z), w) \text { for } t \in[0, \infty),(y, z) \in Y \times S^{1} \text { and } w \in S^{1}, \text { and } \\ \Theta=i d \text { on }\left\{\infty\left(Y \times S^{1}\right)\right\} \times S^{1} .\end{array}\right.$
Θ is clearly level-preserving and fixes the 0 - and ∞-levels.
We argue that Θ is continuous at points of $\left\{\infty\left(Y \times S^{1}\right)\right\} \times S^{1}$. For $a>0$, let $V_{a}=\bigcup_{t \in(a, \infty]} t\left(Y \times S^{1}\right)$; and for $w \in S^{1}$, let \mathscr{M}_{w} be a basis for the topology on S^{1} at w. Then for each $w \in S^{1},\left\{V_{a} \times M: a>0\right.$ and $\left.M \in \mathscr{M}_{w}\right\}$ is a basis for the topology on $C\left(Y \times S^{1}\right) \times S^{1}$ at $\left(\infty\left(Y \times S^{1}\right), w\right)$. Since for each $a>0$ and each $M \in \mathscr{M}_{w}, \Theta$ maps $V_{a} \times M$ into itself, then Θ is continuous at $\left(\infty\left(Y \times S^{1}\right), w\right)$.
Θ is a homeomorphism because its inverse $\bar{\Theta}$ can be defined explicitly as follows. First define the map $\bar{\zeta}:[0, \infty) \rightarrow S^{1}$ by $\bar{\zeta}(t)=e^{2 \pi i t / n}$. Then define $\bar{\Theta}: C(Y \times$
$\left.S^{1}\right) \times S^{1} \rightarrow C\left(Y \times S^{1}\right) \times S^{1}$ by
$\left\{\begin{array}{l}\bar{\Theta}(t(y, z), w)=(t(y, \bar{\zeta}(t) z), w) \text { for } t \in[0, \infty),(y, z) \in Y \times S^{1} \text { and } w \in S^{1}, \text { and } \\ \bar{\Theta}=i d \text { on }\left\{\infty\left(Y \times S^{1}\right)\right\} \times S^{1}\end{array}\right.$
The verification that $\bar{\Theta} \circ \Theta=i d=\Theta \circ \bar{\Theta}$ is straightforward.
To prove that $\Theta(C y l(f))=S w l(f)$, note that a typical point of $C y l(f)$ has the form $(t(x, z), f(x, z))$, a typical point of $S w l(f)$ has the form $\left(t(x, z), e^{2 \pi i t} f(x, z)\right)$, and

$$
\begin{aligned}
& \Theta(t(x, z), f(x, z))=(t(x, \zeta(t) z), f(x, z))= \\
& \left(t(x, \zeta(t) z), z^{n}\right)=\left(t(x, \zeta(t) z),(\zeta(t))^{-n}(\zeta(t) z)^{n}\right)= \\
& \left(t(x, \zeta(t) z), e^{2 \pi i t}(\zeta(t) z)^{n}\right)=\left(t(x, \zeta(t) z), e^{2 \pi i t} f(x, \zeta(t) z)\right) \in \operatorname{Swl}(f)
\end{aligned}
$$

Therefore, $\Theta(C y l(f)) \subset S w l(f)$. A similar calculation shows $\bar{\Theta}(S w l(f)) \subset C y l(f)$. Hence, $S w l(f) \subset \Theta(C y l(f))$. We conclude that $\Theta(C y l(f))=S w l(f)$.

It follows that $\Theta \mid C y l(f): C y l(f) \rightarrow S w l(f)$ is a level-preserving homeomorphism that fixes the 0 - and ∞-levels.

Proof of Proposition 3. A compact metric space X, a map $f: X \rightarrow S^{1}$ and a homeomorphism $\lambda:[0,1) \rightarrow[0, \infty)$ are given. Define $\Lambda: X \times[0,1) \rightarrow S w l(f)-$ $\mathscr{L}(f, \infty)$ by $\Lambda(x, t)=\left(\lambda(t) x, e^{2 \pi i \lambda(t)} f(x)\right)$. We show that Λ is a homeomorphism by exhibiting its inverse. Let $q: X \times[0, \infty] \rightarrow C X$ denote the quotient map $q(x, t)=t x$. Then $q \mid X \times[0, \infty): X \times[0, \infty) \rightarrow C X-\{\infty X\}$ is a homeomorphism; let $r: C X-\{\infty X\} \rightarrow X \times[0, \infty)$ denote its inverse. Let $p:(C X-\{\infty X\}) \times S^{1} \rightarrow$ $C X-\{\infty X\}$ denote projection. Define $\tau:(C X-\{\infty X\}) \times S^{1} \rightarrow X \times[0,1)$ by $\tau=\left(i d_{X} \times \lambda^{-1}\right) \circ r \circ p$. It is easily verified that $\tau \circ \Lambda=i d_{X \times[0,1)}$ and $\Lambda \circ(\tau \mid(S w l(f)-$ $\mathscr{L}(f, \infty)))=i d_{S w l(f)-\mathscr{L}(f, \infty)}$. Hence, $\tau \mid(S w l(f)-\mathscr{L}(f, \infty))$ is the inverse of Λ.

References

[1] Fredric D Ancel and Craig R Guilbault. "Mapping swirls and pseudo-spines of compact 4-manifolds". In: Topology and its Applications 71.3 (1996), pp. 277293.
[2] R H Bing. "A simple closed curve that pierces no disk". In: J. Math. Pures Appl.(9) 35 (1956), pp. 337-343.
[3] Robert J Daverman. Decompositions of manifolds. Academic Press, 1986.
[4] Jonathan Arthur Hillman. Algebraic invariants of links. World Scientific, 2012.
[5] Yukio Matsumoto. "Wild embeddings of piecewise linear manifolds in codimension two". In: Geometric Topology. Elsevier, 1979, pp. 393-428.
[6] Barry Mazur. "A note on some contractible 4-manifolds". In: Annals of Mathematics (1961), pp. 221-228.
[7] Sergey A Melikhov. "Topological isotopy and Cochran's derived invariants". In: arXiv preprint arXiv:2011.01409 (2020).
[8] Edwin E Moise. Geometric topology in dimensions 2 and 3. Vol. 47. Springer Science \& Business Media, 2013.

[^0]: 2010 Mathematics Subject Classification. 54B17, 57K10, 57K30, 57M30, 57N37.

