
Summary of Publications

This document aims to be a convenient guide to the papers in this file. Articles are grouped
by topic rather than strict chronological order. Not all papers in the file are mentioned in
this summary.

Topic 1: Spines of Compact Contractible Manifolds
A subset A of the interior of a compact n-manifoldMn is a spine if there is a map f : ∂Mn →
A such that (Mn, A) is homeomorphic to (Map (f) , A). A still-open question asks whether
Mazur’s compact contractible 4-manifolds contains disjoint pair of spines. Motivated by this
problem, I wrote three papers (two joint with Ric Ancel) about spines of compact contractible
manifolds.

[1] Compact contractible n-manifolds have arc spines (n ≥ 5), Pacific J. Math. 168(1995),
1-10 (w/ Ancel).

[2] Some compact contractible manifolds containing disjoint spines, Topology 34(1995),
99-108.

[3] Mapping swirls and pseudo-spines of compact 4-manifolds, Topology Appl. 71(1996),
277-293 (w/ Ancel).

Paper [1] shows that, in high dimensions, compact contractible manifolds always have
(wild) arc spines. As a by-product, we found a new proof of Kervaire’s theorem which
guarantees that homology (n− 1)-spheres bound compact contractible n-manifolds. Paper
[2] solved a high-dimensional version of the Mazur manifold problem.
A subset B of intMn is a pseudo-spine if Mn − B ≈ ∂Mn × [0, 1). Every spine is a

pseudo-spine, but not conversely. In [3], Ancel and I generalized a construction by Giffen to
show that many compact contractible 4-manifolds contain (wild) disk pseudo-spines. These
can be shrunk to arc pseudo-spines if desired. In dimension 4, that is the best one can hope
for; the only 4-manifold with an arc spine is B4.

Topic 2: CAT(0) and CAT(-1) Structures on Manifolds
In [4], we applied the arc spine construction to place CAT (−1) metrics on interiors of
compact contractible n-manifolds (n > 4), making each a counterexample to a question by
Gromov, who asked whether metrically convex geodesic open manifolds are topologically
Euclidean spaces. Earlier counterexamples were constructed by Mike Davis and Tadeusz
Januszkiewicz.
Item [5] also uses [1], this time to place equivariant CAT (0) metrics on many of the exotic

coverings from Davis’celebrated Annals paper.
Paper [6] is a broad study of “trees of manifolds”. One construction presented there uses

a hybrid of [4] and [5] to place CAT (−1) metrics on the Davis manifolds (and on topological
generalizations of those manifolds). These metrics are not equivariant.

[4] Interiors of compact contractible n-manifolds are hyperbolic (n ≥ 5), J. Diff. Geom.
45(1997), 1-32 (w/ Ancel).

[5] CAT(0) reflection manifolds, Geometric Topology, W.H. Kazez editor, American
Math. Soc./International Press Studies in Advanced Mathematics, Vol. 2, Part 1,
1997, 441-445 (w/ Ancel and Davis).



[6] On the fundamental groups of trees of manifolds, Pacific J. Math., 221, No.1(2005),
49-79 (w/ Fischer).

Topic 3: Ends of Manifolds
A long-time passion is the study of ends of manifolds. The work in this section began
with a goal: Develop a theory of ends– in the spirit of Siebenmann’s thesis– that applies
to manifolds with non-stable fundamental groups at infinity. A manifold V n with compact
boundary is an open collar of V n ≈ ∂V n × [0,∞); it is a homotopy collar if ∂V n ↪→ V n is a
homotopy equivalence. A manifold is collarable if it contains an open collar neighborhood of
infinity; it is pseudo-collarable if it contains arbitrarily small homotopy collar neighborhoods
of infinity. Collarable manifolds are precisely those which can be compactified by the addition
of a manifold boundary; they were characterized by Siebenmann in his dissertation. Davis’
exotic covering spaces are examples of pseudo-collarable (but not collarable) open manifolds.
The main question: “When is an open n-manifold pseudo-collarable?”was answered in the
following series of papers.

[7] Manifolds with non-stable fundamental groups at infinity, Geom. Topol. 4(2000),
537-579.

[8] Manifolds with non-stable fundamental groups at infinity, II, Geom. Topol. 7(2003),
255-286 (w/ Tinsley).

[9] Manifolds with non-stable fundamental groups at infinity, III, Geom. Topol., 10(2006)
541-556 (w/ Tinsley).

In the process of characterizing pseudo-collarable open manifolds, Tinsley and I discovered
some interesting examples and surprising properties of inward tame open manifolds. This
led to a pair of sequels, with a theme: “What can be said about an open manifold if we only
assume inward tameness?”
[10] Spherical alterations of handles: embedding the manifold plus construction, Algebr.

Geom. Topol. 13 (2013) 35-60 (w/ Tinsley).
[11] Noncompact manifolds that are inward tame, Pacific J. Math. 288 (2017), no. 1,

87—128. (w/ Tinsley).
One surprising discovery was that, for open manifolds, inward tame implies semistable π1.

By using a variation on that observation, I answered a question by Belegradek regarding
products of manifolds with R. That work improved upon a result in Siebenmann’s disserta-
tion that applies to products with R2.
[12] Products of open manifolds with R, Fund. Math. 197 (2007), 197-214.
The above papers focused on open manifolds and, more generally, manifolds with compact

boundary. Eventually, it was time to take on manifolds with noncompact boundaries, where
the classical literature was incomplete. The main open problem was a characterization of
“completable”n-manifolds, i.e., those which may be compactified to a compact manifold with
boundary by extending the existing boundary. Siebenmann did some work on that topic,
and Gary O’Brien completed the 1-ended case. But (unlike the compact case) a manifold
with noncompact boundary can be inward tame and still have infinitely many ends. As a
consequence, the 1-ended version does not imply a general theorem. In a joint paper with
my PhD student Shijie Gu, a full characterization of completable manifolds was obtained.
[13] Compactifications of manifolds with boundary, Topol. Anal. 12 (2020), no. 4, 1073—

1101. (w/ Gu).



In his dissertation, Gu went on to characterize pseudo-collarable manifolds with noncom-
pact boundaries.

Topic 4: Z-compactifications of Manifolds and Complexes
An alternative point perspective on generalizing Siebenmann’s thesis is to look for more
flexible compactifications. A Z-compactification of X is a compactification X̂ = X tZ such
that Z is a Z-set in X̂. For many reasons, this turns out to be an appropriate generalization
of the addition of a boundary to a manifold. Moreover, the idea plays an important role
in some attacks on the Borel and Novikov Conjectures. The following papers deal with
Z-compactifications of manifolds and complexes.
[14] Z-compactifications of open manifolds, Topology 38(1999), 1265-1280 (w/ Ancel).
[15] A non-Z-compactifiable polyhedron whose product with the Hilbert cube is Z-com-

pactifiable, Fund. Math. 168 (2001), 165-197.
Article [14] demonstrates the usefulness of Z-compactifications when applied to open

manifolds. For example, if two contractible n-manifolds admit homeomorphic Z-boundaries,
then they are homeomorphic and their union along those boundaries is an n-sphere. It
follows that, if G is CAT (0) or word hyperbolic (or simply admits a Z-structure), then
any two aspherical manifolds with fundamental group G (or even quasi-isometric to G) have
homeomorphic universal covers. We view this as a weak version of the Borel Conjecture.
A key question becomes: When is a manifold Z-compactifiable? In 1976, Chapman and

Siebenmann characterized Z-compactifiable Hilbert cube manifolds, then asked whether
their conditions are suffi cient for Z-compactifiability of arbitrary ANRs. A “yes” answer
would, of course, handle finite-dimensional manifolds. Their problem remained open until,
in [15], when I constructed a counterexample. The example is a non-manifold 2-dimensional
polyhedron, so the Chapman-Siebenmann question remains open for manifolds.
By applying our characterization of completable manifolds and tools from [5]-[7] , Gu and

I showed (in [13]) that, ifMn satisfies the Chapman-Siebenmann conditions and n ≥ 5, then
Mn × [0, 1] is Z-compactifiable (in fact, completable). Previously, Ferry had shown that
Mn × [0, 1]2k+5 is Z-compactifiable. It remains to shave off that final interval!
Topic 5: Topological Properties of CAT(0) Group Boundaries
After the discovery of a CAT(0) group with non-homeomorphic boundaries, Bestvina ob-
served that all such boundaries must be shape equivalent. He then asked whether they
satisfy the stronger property of being cell-like equivalent. Roughly speaking, Z and Z ′ are

cell-like equivalent if there is a space Y , and cell-like maps Z
f1←− Y

f2−→ Z ′. In posing this
problem, he asked specifically about the Croke-Kleiner boundaries.
My former PhD student Christopher Mooney and I attacked this problem with good

success. In [16], we laid out a program for attacking Bestvina’s question, and illustrated its
effectiveness in some simple situations. In [17] we proved that, for a larger class of “Croke-
Kleiner groups”, all boundaries of a given group are equivariantly cell-like equivalent. Both
Bestvina and the coauthors were enthusiastic about the inclusion of equivariance in the
theorem.
[16] Cell-like equivalences for boundaries of certain CAT(0) groups, Geom. Dedicata 160

(2012), 119—145 (w/ Mooney).
[17] Boundaries of Croke—Kleiner-admissible groups and equivariant cell-like equivalence,

J. Topol. (2014), no. 3, 849—868. (w/ Mooney).



Topic 6: Z-boundaries of groups
This set of papers involves Z-boundaries of groups– a notion introduced by Bestvina and
expanded upon by Dranishnikov. The idea is to provide an axiomatic setting for group
boundaries that includes boundaries of hyperbolic and CAT(0) groups as special cases. My
involvement is a natural offshoot of my interest in Z-compactifications. It has also given
me the opportunity to aid in bringing powerful ideas from the Bing-Borsuk-Anderson school
of topology to the field of geometric group theory. It has been a good topic for my PhD
students as well. Carrie Tirel, Molly Moran, and Brian Pietsch all wrote dissertations in
this area. Several of the following papers involve joint work with these students after they
completed their degrees.

[18] On the dimension of Z-sets, Topology Appl. 160 (2013) 1849-1852. (w/ Tirel).
[19] Weak Z-structures for some classes of groups, Algebr. Geom. Topol. 14 (2014), no.

2, 1123—1152.
[20] A comparison of large scale dimension of a metric space to the dimension of its

boundary, Topology Appl. 199 (2016), 17—22. (w/ Moran).
[21] Proper homotopy types and Z-boundaries of spaces admitting geometric group ac-

tions, Expo. Math. 37 (2019), no. 3, 292—313 (w/ Moran).
[22] Z-structures on Baumslag-Solitar groups, Algebr. Geom. Topol. 19 (2019), no. 4,

2077—2097 (with Moran and Tirel).

To be a candidate for a Z-structure, G must have a finite K(G, 1)– or at least admit a
proper cocompact action on an AR (call G type F or type F ∗, accordingly). A question
posed by Bestvina asks whether all type F (or type F∗) groups admit Z-structures. Aside
from groups with geometric structures (hyperbolic, CAT(0), systolic), there are few general
theorems. In [19], I made some progress by looking for “weak Z-structures”. For example,
I showed that an extension of a type F by a type F always admits a weak Z-structure.
Bestvina, Mess, Dranishnikov, and others have established relationships between topolog-

ical dimension of a Z-boundary Z and the cohomological dimension of G. Paper [18] made
those results less technical by giving an elementary proof that dimZ is strictly less that of
the space it compactifies. [20] contains a similar result, but instead compares dimZ to the
large-scale dimension of the space.
In [21], we cleaned up and unified the theory of Z-boundaries. We also generalized some

foundational results about large-scale geometry, boundary swapping, and shapes of bound-
aries, by allowing for groups with torsion and for actions on a more general class of spaces. By
contrast, in [22], we got very specific, proving that all generalized Baumslag-Solitar groups
admit Z-boundaries

Topic 7: pro-π1 and the semistability conjecture
In [22], Ross Geoghegan and I published strengthened a famous theorem by David Wright,
who had shown that: If a simply connected space X with pro-monomorphic fundamental
group at infinity admits a proper Z-action, then pro-π1 is an inverse sequence of finitely
generated free groups. We showed that the inverse sequence is also stable.

[22] Topological properties of spaces admitting free group actions, J. Topology 5 (2) (2012),
249-275 (w/ Geoghegan).

In [23], Geoghegan and I teamed with Mike Mihalik to improve upon that work. Using an
entirely different approach, we obtained a stronger theorem with weaker hypotheses. The



new argument replaces both Wright and [22]. It seems that we have discovered the “real
reasons”for those theorems.

[23] Topological properties of spaces admitting a coaxial homeomorphism, Algebr. Geom.
Topol. 20 (2020), no. 2, 601—642 (w/ Geoghegan and Mihalik).

Next, we pushed those ideas further in an attack on a topic of common interest: the Semi-
stability Conjecture for groups. The rough idea of our approach is to find an appropriately
chosen J ≤ G, then break the G-action down into the J-direction, and a direction orthogonal
to J . Under the right circumstances (including some previously unsolved cases), we are able
to prove semistability of G.:

[24] Non-cocompact Group Actions and π1-Semistability at Infinity, Canad. J. Math. 72
(2020), no. 5, 1275—1303. (w/ Geoghegan and Mihalik).

Topic 8: Some miscellaneous projects
The Absolute Cone Conjecture (de Groot, 1971”) posed that: If X is an n-dimensional
compactum and ∀x ∈ X, X can be expressed as a cone with cone-point x, then X ≈
Bn. By applying some famous work by Cannon and Edwards, I was able to construct
counterexamples in dimensions ≥ 5; then, with a well-timed assist from Perelman, I was
able to use powerful techniques from the theory of homology manifolds prove the conjecture
when n ≤ 4.
[25] A solution to de Groot’s absolute cone conjecture, Topology, 46(2007), 89-102.
I got hooked on finding an elementary proof of the Topological Radon Theorem. Eventu-

ally, I succeeded; this paper was the result.

[26] An elementary deduction of the Topological Radon Theorem from Borsuk-Ulam, Dis-
crete & Computational Geometry, 43 (2010), no. 4, 951—954.

In an Annals paper from 1975, D. Edwards and R. Geoghegan characterized compacta
with the shape of a finite complex. I found my own self-contained proof, which I later
contributed to a conference proceedings in Geoghegan’s honor.

[27] Compacta with shapes of finite complexes: A direct approach to the Edwards-Geoghegan-
Wall obstruction, Topological methods in group theory, 92—110, London Math. Soc.
Lecture Note Ser., 451.

After giving a series of talks at the workshop on Geometrical Methods in High-dimensional
Topology (Ohio State University, 2011), I contributed a paper to the proceedings of that
conference– a lengthy survey of the interlocking aspects of my favorite areas of topology
and group theory. The article has generated a fair amount of interest; I am considering
expanding it into a book.

[28] Ends, shapes and boundaries in manifold topology and geometric group theory, Top.
and Geom. Group Theory, Springer Proc. Math. Stat., 184, Springer, Cham, 2016.

Topic 9: Very recent work
To close, I will describe some recently accepted and submitted work.
End-sum is an analog of the connected sum operation for manifolds which is appropriate

in the proper category. For a pair of suffi ciently nice open manifolds, the operation is well-
defined, but in [29], Jack Calcut, Patrick Haggerty and I show that it is possible for the



end-sum of a pair of 1-ended open manifolds to yield uncountably many distinct results.
Our use of the theory of infinitely generated abelian groups seems novel.
[29] Extreme nonuniqueness of end-sum, J. Topol. Anal., (online ready; final version to

appear), (w/ Calcut and Haggerty).
Items [30]-[32] return to the topic of Z-boundaries of groups. In [30] we define and develop

the notion of a coarse Z-boundary; we show that nearly all theorems about Z-structures
remain true; and (most significantly) we show that admitting coarse Z-structure is a quasi-
isometry invariant. Papers [31] and [32] (with new collaborators, Kevin Schreve and Burns
Healy) identify new groups that admit Z-structures and find EZ-structures (E for equi-
variant) whenever possible. This is important since EZ-structures are useful in attacking
the Novikov Conjecture. [31] analyzes a specific type of group– high-dimensional analogs
of generalized Baumslag-Solitar groups– while [32] is much broader, with theorems covering
all closed 3-manifold groups and all groups of polynomial growth.
[30] Coarse Z-boundaries for groups, Mich. Math. J. (to appear), (w/ Moran).
[31] Compressible spaces and EZ-structures, Fund. Math. (to appear), (w/ Moran and

Schreve).
[32] Group boundaries for semidirect products with Z, submitted, (w/ Healy and Pietsch).


