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Abstract.  In work by Freedman [F2] and Freedman-Quinn [FQ] on the topology of 4-
manifolds, null decompositions whose non-singleton elements are, in the terminology of 
[MOR], recursively starlike-equivalent sets of filtration length 1 arise and are shown to 
be shrinkable.  The main result of [MOR] is a general theorem covering these types of 
decompositions.  It establishes the shrinkability of null decompositions whose non-
singleton elements are recursively starlike-equivalent sets whose filtration lengths have 
a uniform finite upper bound.  That result is the inspiration for this article.  Here it is 
shown that the hypothesis of a uniform finite upper bound on filtration lengths is 
unnecessary.  In outline: notions of squeezable subsets and squashable subsets of a 
compact metric space are defined.  It is observed that starlike-equivalent sets are 
squeezable, and that any null decomposition of a compact metric space whose non-
singleton elements are squeezable is shrinkable.  It is also proved that a set is 
squeezable if and only if it is squashable, and that every recursively squashable set is 
squashable.  It follows that any null decomposition of a compact metric space whose 
non-singleton elements are recursively squeezable is shrinkable.  The latter theorem 
has as a corollary the main result of [MOR] with the hypothesis of a uniform finite upper 
bound on filtration lengths removed. 
 
 
1. Introduction.   
 
An upper semi-continuous decomposition of a topological space X is a partition 𝒢 of X 
into compact subsets such that the associated quotient map X → X/𝒢 is a closed map.  
The quotient space X/𝒢 is called a decomposition space.  A central question of 
decomposition space theory is: under what conditions is the associated quotient map X 
→ X/𝒢 a near homeomorphism (i.e., approximable by homeomorphisms)?  
Decomposition space theory has played a key role in the effort to understand 
topological manifolds.  A prime example is M. H. Freedman’s proof in the 1980’s of the 
4-dimensional Poincaré Conjecture in the topological category [F1].  In that proof, a 
variant of traditional handlebody theory is performed in a 5-dimensional smooth proper 
h-cobordism using objects called Casson handles rather than topological open  
2-handles.  The proof succeeds in establishing that the h-cobordism is a product 
provided that Casson handles are homeomorphic to open 2-handles.  It is then proved 
that such homeomorphisms exist.  These homeomorphisms arise as approximations to 
quotient maps associated to decompositions.  The homeomorphisms are outputs of 
limiting processes that fail in any obvious way to preserve the ambient differentiable 
structure, which explains why Freedman’s result belongs to the topological category, 
and which perhaps sheds light on why the 4-dimensional Poincaré Conjecture in the 
differential category remains unresolved.   
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Subsequent work in [F2] and [FQ] extending Freedman’s original theorems modified the 
sorts of decompositions under consideration and provided proofs that the associated 
quotient maps are near homeomorphisms.  The new decompositions are of the type 
described in the abstract – null decompositions whose non-singleton elements are 
recursively starlike equivalent sets whose filtration lengths have a uniform finite upper 
bound.  These are exactly the types of decompositions to which the main result of 
[MOR] applies.  This article introduces the notions of squeezable and squashable sets 
and uses them to prove a theorem that generalizes the main result of [MOR] and 
requires no assumption of a finite upper bound on filtration lengths. 
 
The author thanks Arunima Ray for a correspondence which led to improvements in the 
exposition. 
 
 
2. Basic properties of decompositions. 
 
Notation.  Suppose X and Y are metrizable spaces with metrics ρ and σ, respectively.  
For S ⊂ X and ϵ > 0, let 𝒩ρ(S,ϵ) = { x ∈ X : ρ(x,y) < ϵ for some y ∈ S }.  Let C(X,Y) 
denote the set of all maps from X to Y, and let σ% denote the supremum metric on C(X,Y) 
determined by σ.  In particular, let C(X,X) denote the set of all maps from X to itself, and 
let ρ% denote the supremum metric on C(X,X) determined by ρ.  For C ⊂ X, let ℋC(X) 
denote the set of all homeomorphisms h : X → X such that h│C = idC, and let cl(ℋC(X)) 
denote the closure of ℋC(X) in C(X,X).  If π : X → Y is a map and C ⊂ Y such that  
π│π –1(C) : π –1(C) → C is injective, we say that π injects over C.   
 
Definition.  An upper semi-continuous decomposition of a topological space X is a 
partition 𝒢 of X such that each element of 𝒢 is compact and the quotient map π : X → 
X/𝒢 is closed. (Here, X/𝒢 is given the quotient topology: a subset U of X/𝒢 is open if and 
only if π –1(U) is an open subset of X.)  Note that the condition that the quotient map π : 
X → X/𝒢 is closed is equivalent to the condition that the inverse of the quotient map 
satisfies the following continuity property: for every y ∈ X/𝒢 and every open 
neighborhood U of π –1(y) in X, there is an open neighborhood V of y in X/𝒢 such that  
π –1(V) ⊂ U.  From this point on, we will abbreviate the statement “𝒢 is an upper semi-
continuous decomposition of X” to simply “𝒢 is a decomposition of X”.  For further 
information about decomposition spaces, we suggest the encyclopedic text [D].  
 
Remark.  If 𝒢 is a decomposition of a (separable) metrizable space X, then X/𝒢 is also 
(separable) metrizable.  This can be proved by showing that X/𝒢 satisfies the 
hypotheses of the relevant metrization theorem of Urysohn or Bing or Nagata-Smirnov. 
For further details, see Proposition 2 on page 13 of [D].  For the sake of simplicity, in 
this article we will focus on decompositions of compact metric spaces. 
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As noted in the introduction, a principal concern of decomposition space theory is 
determining whether the quotient map associated to a decomposition is a near 
homeomorphism.  The main tool for identifying quotient maps that are near 
homeomorphisms is the Bing Shrinking Theorem.  We now state the strong version of 
this result, first defining the relevant concepts. 
 
Definition. Let π : X → Y be an onto map between compact metric spaces X and Y with 
metrics ρ and σ, respectively, and let σ% denote the supremum metric on C(X,Y) 
determined by σ.  We say that π satisfies the (strong) shrinking criterion if: 

for every δ > 0 (and for every closed subset C of Y such that π injects over C), there 
is a homeomorphism h : X → X such that diamρ(h(π–1(y))) < δ for every y ∈ Y, 

 σ%(π,π∘h–1) < δ (and h│π–1(C) = idπ–1(C)). 

We say that π is a (strong) near homeomorphism if for every ϵ > 0 (and for every closed 
subset C of Y such that π injects over C), there is a homeomorphism f : X → Y such that 
σ%(π,f) < ϵ (and f│π–1(C) = π│π–1(C)).  Observe that since the limit in C(X,Y) of onto 
maps must be onto, then each near homeomorphism is onto. 
 
The (Strong) Bing Shrinking Theorem.  An onto map π : X → Y between compact 
metric spaces is a (strong) near homeomorphism if and only if it satisfies the (strong) 
shrinking criterion.  
 
Remark.  R. H. Bing was the first to observe and exploit the fact that the shrinking 
criterion is a sufficient condition for π to be a near homeomorphisms.  However, he did  
not crystalize his observation into a formally stated theorem.  This occurred later.  (See  
page 42 of [D].)  R. D. Edwards appears to have been the first to realize that the 
converse of Bing’s observation is also true, and our statement of the (Strong) Bing 
Shrinking Theorem imitates the elegant formulation of the theorem given by Edwards in 
[E].  (We have added the parenthetical strong content.)  Edwards sketched a brief and 
clever proof of the theorem in [E] that differed from previous proofs in that it uses the 
Baire Category Theorem in the space of maps from X to Y.  (Proving the strong version 
of the theorem requires no additional effort.)  An exposition of Edwards’ proof can also 
be found on pages 23 to 25 of [D]. 
 
Definition.  We call a decomposition 𝒢 of a compact metric space X (strongly) 
shrinkable if the quotient map π : X → X/𝒢 satisfies the (strong) shrinking criterion.  
Thus, the (Strong) Bing Shrinking Theorem implies the following result. 
 
Corollary.  If 𝒢 is a decomposition 𝒢 of a compact metric space X, then the quotient 
map π : X → X/𝒢 spaces is a (strong) near homeomorphism if and only if 𝒢 is (strongly) 
shrinkable. ∎ 
 
Definition.  A collection 𝒞 of subsets of a metric space X with metric ρ is null if for every 
ϵ > 0, { C ∈ 𝒞 : diamρ(C) ≥ ϵ } is finite.  Thus, if 𝒞 is null, then all but countably many 
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elements of 𝒞 are one-point sets.   A decomposition of X which is a null collection is 
called a null decomposition.  Note that if f : X → Y is an onto map between compact 
metric spaces and 𝒞 is a null collection of subsets of X, then the uniform continuity of f 
implies that f(𝒞) = { f(C) : C ∈ 𝒞 } is a null collection of subsets of Y. 
 
 
3. Squeezable sets 
 
Definition.  A subset A of a compact metric space X with metric ρ is a squeezable 
subset of X if A is compact and for every null decomposition 𝒢 of X such that A ∈ 𝒢, for 
every open neighborhood U of A in X, and for every δ > 0, there is a homeomorphism h 
∈	ℋX – U(X) such that diamρ(h(A)) < δ and for every G ∈ 𝒢, either diamρ(h(G)) < δ or 
h│G = idG. 
 
We state two theorems about squeezable sets.  First: null decompositions whose non-
singleton elements are squeezable sets are strongly shrinkable.  The proof of this fact is 
a familiar argument to experts in decomposition space theory. 
 
Theorem 1.  If 𝒢 is a null decomposition of a compact metric space X each of whose 
non-singleton elements is squeezable, then 𝒢 is strongly shrinkable. 
 
Proof.   Let π : X → X/𝒢 denote the quotient map.  Let ρ be a metric on X, let σ be a 
metric on X/𝒢, and let σ% denote the supremum metric on C(X,X/𝒢) determined by σ.  Let 
G1, G2, G3, ⋯ be a list of the non-singleton elements of 𝒢, and let yi = π(Gi) for i ≥ 1.  To 
prove that 𝒢 is strongly shrinkable, let δ > 0 and let C be a closed subset of X/𝒢 that is 
disjoint from { yi : i ≥ 1 }.  There is an n ≥ 1 such that diamρ(Gi) < δ for all i > n.  There 
are pairwise disjoint open subsets V1, V2, ⋯ , Vn of X/𝒢 – C such that yi ∈ Vi and 
diamσ(Vi) < δ for 1 ≤ i ≤ n.  For each i, 1 ≤ i ≤ n, since Gi is squeezable, there is a 
homeomorphism hi ∈	ℋX – π –1(Vi)(X) such that diamρ(hi(Gi)) < δ and for every G ∈ 𝒢, 
either diamρ(hi(G)) < δ or hi│G = idG.  Let U = ⋃ 1 ≤ i ≤ n π –1(Vi).  Then a homeomorphism 
h : X → X is defined by setting h│π –1(Vi) = hi│π –1(Vi) for 1 ≤ i ≤ n and h│X – U =  
idX – U.  Clearly, diamρ(h(G)) < δ for each G ∈ 𝒢.  Also for 1 ≤ i ≤ n, and x ∈ π –1(Vi), since 
h–1(x) ∈ π –1(Vi), then σ(π(x),π∘h–1(x)) ≤ diamσ(Vi) < δ; and for x ∈ X – U, σ(π(x),π∘h–1(x)) 
= σ(π(x),π(x)) = 0.  Thus, σ%(π,π∘h–1) < δ.  Finally, since π –1(C) ⊂ X – U, then h│π –1(C) = 
idπ –1(C). ∎ 
 
To state the second theorem about squeezable sets, we need some additional 
definitions. 
 
Definition.  A subset A of ℝn is starlike if A is compact and there is a point x ∈ A such 
that for each y ∈ A, the straight-line segment joining x to y lies in A.  A subset A of a 
compact metric space X is starlike-equivalent if there is an open neighborhood U of A in 
X and an embedding e : U → ℝn such that e(U) is an open subset of ℝn and e(A) is a 
starlike subset of ℝn. 
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Theorem 2.  Every starlike-equivalent subset of a compact metric space is squeezable. 
 
A proof of this theorem is embedded in the proof of the Lemma in [B]: start at the 
second paragraph of that proof.  The only required change to the argument in [B] is to 
replace ℝ3 by ℝn, a change which the argument in [B] tolerates without complaint.  
Alternatively, see the proof of Lemma 5 on pages 55-56 of [D]. 
 
 
4. Squashable sets 
 
Definition.  A subset A of a compact metric space X with metric ρ is a squashable 
subset of X if A is compact and for every null decomposition 𝒢 of X such that A ∈ 𝒢, 
every open neighborhood U of A in X, and for every δ > 0, there is a map f ∈  
cl(ℋX – U(X)) such that f(A) is a one-point set {p}, f maps X – A homeomorphically onto  
X – {p}, and for every G ∈ 𝒢, either diamρ(f(G)) < δ or f│G = idG. 
 
The notions of squeezable and squashable are very close.  In fact, as the following 
theorem shows, they are equivalent. 
 
Theorem 3.  A compact subset of a compact metrizable space X is squeezable if and 
only if it is squashable. 
 
Proof.  Let X be a compact metric space with metric ρ, and let A be a compact subset 
of X. 
 
First assume A is a squeezable subset of X.  Let 𝒢 be a null decomposition of X such 
that A ∈ 𝒢, let U be an open neighborhood U of A in X, and let δ > 0.  We inductively 
choose open neighborhoods Un of A in X, real numbers δn > 0 and homeomorphisms hn 
∈	ℋX – Un(X) with the following properties. 

• Let U1 = U and δ1 = δ/2, and choose h1 ∈ ℋX – U1(X) such that diamρ(h1(A)) < δ1  
and for every G ∈ 𝒢, either diamρ(h1(G)) < δ1 or h1│G = idG. 

Let n ≥ 2 and assume that for 1 ≤ i ≤ n – 1, Ui is an open neighborhood of A in X,  
δi > 0 and hi ∈ ℋX – Ui(X) such that diamρ(hi(A)) < δi and for every G ∈ 𝒢, either  
diamρ(hi(G)) < δi or hi│G = idG.  

• Choose Un to be an open neighborhood of A in X such that cl(Un) ⊂ 𝒩ρ(A,1/n) ∩  
Un – 1 and diamρ(hn – 1(Un)) < δn – 1. 

• Choose δn > 0 so that h1∘h2∘⋯∘hn – 1 maps each subset of X of ρ-diameter < δn to  
a subset of X of ρ-diameter < δ/2n. 

• Choose hn ∈ ℋX – Un(X) such that diamρ(hn(A)) < δn and for every G ∈ 𝒢, either 
diamρ(hn(G)) < δn or hn│G = idG. 
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For n ≥ 1, let kn = h1∘h2∘⋯∘hn.  Thus, each kn is a homeomorphism of X.   
 
For i ≥ n ≥ 2, since hi│X – Ui = idX – Ui and X – Un ⊂ X – Ui, then ki│X – Un = kn – 1│X – 
Un and ki(Un) = kn – 1(Un).  Since diamρ(hn – 1(Un)) < δn – 1, then diamρ(kn – 1(Un)) < δ/2n – 1.  
Hence, ρ%(ki,kn – 1) < δ/2n – 1 for i ≥ n ≥ 2.  Therefore, {kn} is a Cauchy sequence in C(X,X).  
Hence, {kn} converges to a map f : X → X.  Also, the preceding observations in this 
paragraph imply that f│X – Un = ki│X – Un and f(Un) ⊂ cl(ki(Un)) = ki(cl(Un)) for i ≥ n – 
1. 
 
For i ≥ 1, since X – U ⊂ X – Ui, then hi│X – U = idX – U.  Thus, each kn ∈ ℋX – U(X).  
Therefore, f ∈ cl(ℋX – U(X)).  Note that since a limit of onto maps is onto in C(X,X), then f 
is onto.   
 
For n ≥ 1, since f(A) ⊂ f(Un) ⊂	cl(kn – 1(Un)) and diamρ(cl(kn – 1(Un))) ≤ δ/2n – 1, then 
diamρ(f(A)) = 0.  Hence, f(A) = {p} for some p ∈ X.  Since f is onto, then f(X – A) ⊃ X – 
{p}.  Since A  = ⋂n ≥ 1cl(Un), then X – A = ⋃n ≥ 1(X – cl(Un)).  Hence, f(X – A) =  
⋃n ≥ 1f(X – cl(Un)).  For each n ≥ 1, since (X – Un) ∩ cl(Un + 1) = ∅, kn is injective,  
f(X – cl(Un)) ⊂ kn(X – Un) and f(A) ⊂ kn(cl(Un + 1)), then f(X – cl(Un)) ∩ f(A) = ∅.  
Therefore, f(X – A) = X – {p}.  For each n ≥ 1, f│X – cl(Un) = kn – 1│X – cl(Un) is a 
homeomorphism onto an open subset of X – {p}.  Since { X – cl(Un) : n ≥ 1 } is an 
increasing sequence of open sets whose union is X – A, it follows that f maps X – A 
homeomorphically onto X – {p}. 
 
Let G ∈ 𝒢.  If G = A, then diamρ(f(G)) = 0.  Suppose G ≠ A.  Then there is an n ≥ 1 such 
that G ⊂ X – Un.  Hence, f│G = kn – 1│G = h1∘h2∘⋯∘hn – 1│G.  If hi│G = idG for 1 ≤ i ≤  
n – 1, then f│G = idG.  So assume there is an i ∈ { 1, 2, ⋯ , n – 1 } such that hi│G ≠ 
idG.  Let m = max { i ∈ { 1, 2, ⋯ , m } : hi│G ≠ idG }.  Then f│G = h1∘h2∘⋯∘hm│G and 
diamρ(hm(G)) < δm.  Therefore, diamρ(f(G)) = diamρ(h1∘h2∘⋯∘hm – 1(hm(G))) < δ/2m < δ. 
 
This proves A is a squashable subset of X. 
 
Now assume A is a squashable subset of X.  Let 𝒢 be a null decomposition of X such 
that A ∈ 𝒢, let U be an open neighborhood of A in X and let δ > 0.  Let V be an open 
neighborhood of A in X such that V ⊂ U and such that every element of 𝒢 – {A} that 
intersects V has ρ-diameter < δ/3.  Since A is squashable, there is a map f ∈  
cl(ℋX – V(X)) such that f(A) = {p} for some p ∈ X, f maps X – A homeomorphically onto X 
– {p}, and for every G ∈ 𝒢, either diamρ(f(G)) < δ/3 or f│G = idG.  Hence, there is a 
homeomorphism h ∈ ℋX – V(X) such that ρ%(f,h) < δ/3.  Since X – U ⊂ X – V, then h ∈  
ℋX – U(X).  Since h(A) ⊂ 𝒩ρ({p},δ/3), then diamρ(h(A)) < δ.  Let G ∈ 𝒢 – {A}.  We must 
prove that either diamρ(h(G)) < δ or h│G = idG.  Suppose h│G ≠ idG.  Since h│X – V = 
idX – V, then G ∩ V ≠ ∅.  Hence, diamρ(G) < δ/3.  Observe that h(G) ⊂ 𝒩ρ(f(G),δ/3).  
Either diamρ(f(G)) < δ/3 or f│G = idG.  In the first case, diamρ(h(G)) ≤ 
diamρ(𝒩ρ(f(G),δ/3)) < δ.  In the second case, diamρ(h(G)) ≤ diamρ(𝒩ρ(f(G),δ/3)) = 
diamρ(G,δ/3)) < δ.  This proves A is a squeezable subset of X. ∎ 
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We now come to the theorem which justifies the introduction of the notion of 
squashability: every recursively squashable set is squashable.  To deal correctly with 
the notion of recursive squashability, we need more notation and another definition. 
 
Notation.  If A is a compact subset of a compact metric space X and 𝒢A = {A} ∪ { {x} : x 
∈ X – A }, then 𝒢A is clearly a decomposition of X.  In this situation, we abbreviate X/𝒢A 
to X/A. 
 
Definition.  If 𝒫 is a topological property of compact subsets of compact metrizable 
spaces (such as squeezable, squashable or starlike-equivalent) and n ≥ 1, we say that 
a subset A of a compact metrizable space X is a recursively 𝒫 subset of X of filtration 
length ≤ n if there is a finite sequence A1 ⊂ ⋯ ⊂ An + 1 of compact subsets of X such that 
A1 is a 𝒫 subset of X, Ai/Ai – 1 is a 𝒫 subset of X/Ai – 1 for 2 ≤ i ≤ n + 1, and An + 1 = A.  
Thus, a subset with property 𝒫 is recursively 𝒫 of filtration length ≤ 0. 
 
Theorem 4.  Every recursively squashable subset of a compact metrizable space is 
squashable. 
 
Proof.  Clearly, it suffices to prove that if B ⊂ A are compact subsets of a metric space 
X such that B is a squashable subset of X and A/B is a squashable subset of X/B, then 
A is a squashable subset of X.  Let ρ be a metric on X, let σ be a metric on X/B and let π 
: X → X/B denote the quotient map.  Let 𝒢 be a null decomposition of X such that A ∈ 𝒢, 
let U be an open neighborhood of A in X and let δ > 0.  Let ℋ = (𝒢 – {A}) ∪ {B} ∪ { {x} : x 
∈ B – A }.  Then ℋ is a null decomposition of X such that B ∈ ℋ.  Since B is a 
squashable subset of X, there is a map g ∈ cl(ℋX – U(X)) such that such that g(B) = {q} 
for some q ∈ X, g maps X – B homeomorphically onto X – {q}, and for every G ∈ 𝒢, 
either diamρ(g(G)) < δ or g│G = idG.   
 
Observe that h = π∘g–1 : X → X/B is a homeomorphism.  π(𝒢) = { π(G) : G ∈ 𝒢 } is a null 
decomposition of X/B such that π(A) = A/B ∈ π(𝒢).  Also π(U) is an open neighborhood 
of A/B in X/B.  There is an ϵ > 0 such that h–1 maps each subset of X/B of σ-diameter < 
ϵ to a subset of X of ρ-diameter < δ.  Since A/B is a squashable subset of X/B, there is 
a map f ∈	cl(ℋX/B – π(U)(X/B)) such that f(A/B) = {p} for some p ∈ X/B, f maps X/B – A/B 
homeomorphically onto X/B – {p}, and for every G ∈ 𝒢, either diamσ(f(π(G))) < ϵ or 
f│π(G) = idπ(G). 
 
Define the map k : X → X by k = h–1∘f∘h∘g.  We now run through the details of the 
verification that k has the correct properties to imply that A is squashable in X.  First 
observe that since h∘g = π, then k = h–1∘f∘π. 
 
Lemma.  If X, Y and Z are compact metrizable spaces, then composition (f,g) ↦ g∘f : 
C(X,Y) × C(Y,Z) → C(X,Z) is continuous. 
 



 8 

Proof.  Let σ and τ be metrics on Y and Z, respectively.  Let σ%, τ5 and τ6 denote the 
supremum metrics on C(X,Y), C(Y,Z) and C(X,Z) determined by σ, τ and τ, respectively. 
Let f ∈ C(X,Y), g ∈ C(Y,Z) and ϵ > 0.  There is a δ > 0 such that δ < ϵ/2 and: y, y′ ∈ Y 
and σ(y,y′) < δ ⇒ τ(g(y),g(y′)) < ϵ/2.  Now suppose f′ ∈ C(X,Y) and g′ ∈ C(Y,Z) such 
that σ%(f,f′) < δ and τ5(g,g′) < δ.  Since σ%(f,f′) < δ, then τ6(g∘f,g∘f′) < ϵ/2; and τ6(g∘f′,g′∘f′) ≤ 
τ5(g,g′) < δ < ϵ/2.  Hence, τ6(g∘f,g′∘f′) ≤ τ6(g∘f,g∘f′) + τ6(g∘f′,g′∘f′) < ϵ.  This proves (f,g) ↦ 
g∘f is continuous. ∎ 
 
Since g ∈ cl(ℋX – U(X)) and f ∈	cl(ℋX/B – π(U)(X)), there are sequences {gn} in ℋX – U(X) and 
{fn} in ℋX/B – π(U)(X/B) such that {gn} converges to g in C(X,X) and {fn} converges to f in 
C(X/B,X/B).  Define the homeomorphism kn : X → X by kn = h–1∘fn∘h∘gn.  Since 
composition is continuous by the preceding lemma, then {kn} converges to k.  Since 
gn│X – U = idX – U, h(X – U) = X/B – π(U) and fn│X/B – π(U) = idX/B – π(U), then kn│X – U 
= idX – U.  Thus, {kn} ⊂ ℋX – U(X) and k ∈ cl(ℋX – U(X)). 
 
k(A) = h–1∘f∘π(A) = h–1∘f(A/B) = h–1({p}) which is a one-point set in X.  Since π maps  
X – A homeomorphically onto X/B – A/B, f maps X/B – A/B homeomorphically onto X/B 
– {p}, and h–1 : X/B → X is a homeomorphism, then k maps X – A homeomorphically 
onto X – h–1(p). 
 
diamρ(k(A)) = diamρ(h–1({p})) = 0.  Let G ∈ 𝒢 – {A}.  Then G ∈ ℋ.  Then k(G) =  
h–1∘f∘π(G).  Either diamσ(f(π(G))) < ϵ or f│π(G) = idπ(G).  If diamσ(f(π(G))) < ϵ, then  
diamρ(k(G)) = diamρ(h–1(f∘π(G))) < δ.  Suppose f│π(G) = idπ(G).  Then k│G =  
h–1∘f∘π│G = h–1∘π│G = g│G.  Since G ∈ ℋ, then either diamρ(g(G)) < δ or g│G = 
idG.  Thus, either diamρ(k(G)) = diamρ(g(G)) < δ or k│G = idG. ∎ 
 
 
5. Consequences 
 
Theorems 1, 3 and 4 imply: 
 
Corollary 1.  If 𝒢 is a null decomposition of a compact metric space X each of whose 
non-singleton elements is recursively squeezable, then 𝒢 is strongly shrinkable (and, 
thus, the quotient map π : X → X/𝒢 is a strong near homeomorphism). 
 
Then using Theorem 2, we have:  
 
Corollary 2.  If 𝒢 is a null decomposition of a compact metric space X each of whose 
non-singleton elements is recursively starlike-equivalent, then 𝒢 is strongly shrinkable 
(and, thus, the quotient map π : X → X/𝒢 is a strong near homeomorphism). 
 
Clearly Corollary 2 implies the following result which is the main theorem of [MOR]. 
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Theorem 1.1 of [MOR].  If n ≥ 1 and 𝒢 is a null decomposition of a compact metric 
space X each of whose non-singleton elements is recursively starlike-equivalent subset 
of X of filtration length ≤ n, then 𝒢 is strongly shrinkable (and the quotient map π : X → 
X/𝒢 is a strong near homeomorphism). 
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