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0. INTRODUCTION 

A compact subpolyhedron K in the interior of a PL manifold M is called a PL spine of 

M if M collapses to K. A long standing question in geometric topology is whether the PL 
spines of a class of compact contractible 4-manifolds constructed by Mazur may be “pushed 
off themselves”. Equivalently one may ask whether these Mazur manifolds contain a dis- 
joint pair of spines. Recently, focus on this question has been broadened to include all 
compact contractible manifolds not homeomorphic to a ball. In our main theorem (The- 
orem 4.1) we prove that one standard method of constructing compact contractible 
manifolds with non-simply concentrated boundary-as the closure of the complement of 
a regular neighborhood of an acyclic k-complex in an n-sphere with large enough dimen- 
sion-always yields manifolds with disjoint spines if n > 4k. Note that these disjoint spines 
are necessarily of dimension 2 II - 2. As an application (Theorem 6.1) of our main theorem 
we prove that in many cases the suspension circle in the double suspension of a homology 
(n - 2)-sphere can be moved off itself by an arbitrarily small homeomorphism of the 
resulting n-sphere. 

In Section 1 and Section 2 we present our basic definitions and some elementary 
lemmas. In the next section we describe a large class of compact contractible manifolds 
which contains the examples to which our results apply. Section 4 contains the main results 
of this paper. In Section 5 we discuss the notion spine in the topological category. The last 
two sections contain some applications and open questions. 

1. PRELIMINARIES 

The main result of this paper is obtained in the PL category. In Sections 24, all 
manifolds are assumed to be combinatorial, complexes are simplicial, and maps are 
piecewise linear. In these sections, z indicates PL homeomorphic spaces. When we switch 

to the topological category in Section 5 and Section 6, the distinction will be made clear. 
Throughout this paper, homology is with Z-coefficients. Unless noted to the contrary, 

an unlabeled map between homology or homotopy groups is induced by inclusion. A space 
with the homology of a point is called acyclic. A group is perfect if its abelianization is the 
trivial group. In particular, the fundamental group of an acyclic space is perfect. A compact 
acyclic n-manifold is called a homology n-cell. An n-manifold with the same homology as S 
is called a homology n-sphere. The following well-known lemma follows from straightfor- 
ward calculations involving the Mayer-Vietoris, Universal Coefficient, duality, Hurewicz, 
and Whitehead theorems from algebraic topology. 

99 
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LEMMA 1.1. (a) The boundary of a homology n-cell is a homology (n - l)-sphere. 
(b) ZfY’-’ c I” is a bicollared homology (n - l)-sphere in a homology n-sphere and VI 

and V, are the components of r” - C”- ‘, then VI and vz are homology n-cells. 
(c) The union of two homology n-cells along a common boundary is a homology n-sphere. 

(d) A simply connected homology n-cell is contractible, and a simply connected homology 
n-sphere is homotopy equivalent to S”. 

2. PL SPINES 

A compact subpolyhedron in the interior of a manifold M is called a PL spine of M if 

M collapses to K. The standard example occurs when M is a regular neighborhood of 
a finite complex, K, lying in the interior of a manifold. In fact, if K is a PL spine of M then 
M is a regular neighborhood of K in the manifold M’ obtained by adding an exterior collar 
to M along its boundary. A compactum P in the interior of a manifold M is a PL 

pseudo-spine of M if M - P is (PL) homeomorphic to 8M x [O,l). By regular neighborhood 
theory ([15] or [l 11) a PL spine is a PL pseudo-spine. While the converse is not true, we 
have the following “near converse”. 

LEMMA 2.1. Let M be a compact manifold containing a PL pseudo-spine P, and let N be 

a neighborhood of P in M. Then there is a spine K of M contained in N. 

Proof: Let h : dM x [0, 1) + M - P be a homeomorphism. Choose 0 < r < 1 so that 
h(8M x [r, 1)) c N, and let K = h@M x [r, 1)) u P. 0 

COROLLARY 2.2. A compact manifold M contains a disjoint pair of PL spines @it contains 

a disjoint pair of PL pseudo-spines. 

Remark. The proof of Lemma 2.1 also shows that any pseudo-spine (or spine) may be 
“thickened” (within an arbitrary neighborhood) to a spine which is a codimension 0 sub- 
manifold having locally flat boundary in M. If P is a spine, this can also be accomplished by 
letting K be a regular neighborhood of P. However, if P is just a pseudo-spine of M, then 
a regular neighborhood of P is just a pseudo-spine. See [ll, pp. 36-41). 

The following lemma, which is stated for PL spines, is also true if the word “spine” is 
changed to “pseudo-spine” anywhere in its statement. 

LEMMA 2.3. For any compact manfold M, the following are equivalent: 

(a) M contains a pair of disjoint PL spines, 
(b) for any PL spine K of M there is a PL spine of M disjoint from K. 
(c) For any PL spine K of M there is an isotopy H: M x I + M x I, jxed on aM, with 

Ho = idM and H,(K) n K = 0. 

Proof. To see that (a)*(b), suppose K, K1 and K2 are PL spines of M and 
K1 n Kz = 8. Since M - K, is homeomorphic to 8M x [0, 1) we may construct an ambient 
isotopy of M, fixed on an arbitrarily small neighborhood N of K, and also on aM, which 
pushes points “outwards” along collar lines towards c?M. By choosing N to miss K1, we 
may use this procedure to push K2 arbitrarily close to aM. Since K is a compactum in 
int M, we may arrange that the image of Kz, which is a PL spine of M, misses K. 
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To check (b) = (c), choose a PL spine K, of M disjoint from K and let N be a neighbor- 
hood of Ki disjoint from K. Construct an ambient isotopy H : M x I + M x I in the manner 
described above which fixes N u dM and moves K sufficiently close to 8M that H(K x {l}) 

misses K. 
(c) * (a) is immediate. 0 

Note. Condition (c) defines the notion of pushing K o_#itseEf: 

The next lemma is standard. Since both the lemma and the technique are used often in 
this paper, we sketch a proof. 

LEMMA 2.4. If M is an n-dimensional compact PL manfold containing a k-dimensional 

polyhedron K with regular neighborhood N then xI(M - int(N)) + Xj(M) is a surjection fur 

j < n - k and an isomorphism for j < n - k - 1. 

Proofi Let j 2 0, p~8N and consider the inclusion induced homomorphism 

i# : nj(M - int(N), p) + Ej(M, p). If o[: (Sj, (4)) + (M, {p}) represents an element of nj(M, p) 

and ifj < n - k, we may use general position to homotope cr(re1 {q)) to a map ~1’ with image 
missing K. Since N - K x 8N x [0, l), we may use these collar lines to homotope uz’ into 
M-int(N). Hence, i# is surjective. 

Now suppose /?: (Sj,{q}) + (M - int(N), {p}) re p resents an element of ker(i,). Then 
there exists b: (Bj’ ’ , (4)) -+ (M, (p>) extending /I. If j < n - k - 1, we may use general 
position to homotope [(rel Sj) to a map p with image ($1 n K = 8. Again using the collar 
structure on N - K, we may homotope @(rel Sq) into M - int(N). Hence, p is trivial in 
Zj(M - int(N)), and i# is injective. 0 

COROLLARY 2.5. lf K is a k-dimensional PL spine of M then 7Ej(aM) + Xj(M) is a surjection 

for j -C n - k and an isomorphism for j < n - k - 1. 

3. NEWMAN COMPACT CONTRACTIBLE MANIFOLDS 

A classical technique developed by M. H. A. Newman can be used to produce compact 
contractible manifolds not homeomorphic to n-balls. Let L be a finite acyclic simplicial 

complex with x1(L) = G # (1). Then k 2 2, and there is an embedding e: L + S” for any 
n 2 2k + 1. If N is a regular neighborhood of e(L), then H,(N) E H,(L), so N is a homo- 
logy n-cell with a k-dimensional PL spine. By Lemma 1.1 and Corollary 2.5, 3N is 

a homology (n - l)-sphere with xl(aN) z G. Moreover, Lemmas 1.1 and 2.4 combine to 
show that M = S” - int(N) is contractible. Since z,@M) z G, M is not an n-ball. We shall 
refer to a compact contractible manifold created in this manner as a Newman compact 

contractible man$old. When 2k + 1 < n any two embeddings of L into S” are equivalent (see 
[6, Theorem 5]), hence, there is a unique Newman contractible n-manifold associated with 
L which we denote by New(L, n). 

Remarks. (1) Finite acyclic simplicial complexes with non-trivial fundamental groups 
are plentiful. Any finite presentation of a non-trivial perfect group with equal numbers of 
generators and relators gives such a complex. One easy example is obtained by building 
a CW complex with one O-cell, two 1 -cells and two 2-cells and 

xl(L) z (a, b 1 a3 = b5 = (ab)2) (the Poinc& dodecahedral group). Inspection of the cellular 
chain complex reveals that L is acyclic. Triangulate L. to complete the process. 
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(2) By Corollary 2.5, any PL spine of a Newman (or any other) compact contractible 
n-manifold with non-simply connected boundary will have dimension 2 n - 2. 

(3) In order for New(L, n) to be well defined, it is not always necessary that 
2 dim(L) + 1 < n. For example, techniques found in [l] may be used to show that there is 
a unique Newman compact contractible (2k + l)-manifold associated with any given finite 
acyclic k-complex. Since the main results of this paper require that 4 dim(L) < n, we do not 
concern ourselves with this matter. 

4. MAIN RESULT 

THEOREM 4.1. Let L be a k-dimensional finite acyclic complex. For any n > 4k the 

compact contractible n-manifold M = New(L, n) contains a disjoint pair of PL spines. 

P~oqf: For notational simplicity, we break the proof into two cases. 

Case (a). n is odd. 

Step 1 (Set up): Let m = (n + 1)/2, e: L -i S” be a PL embedding, X be a regular 
neighborhood of e(L) and PE 8X. Then L1 = e(L) x {p] and L2 = (p] x e(L) are copies of 
L in 8(X x X). Choose disjoint regular neighborhoods N1 and Nz of L1 and Lz, respectively, 
in J(X x X). Being a regular neighborhood of Li, each Ni is a homology cell, and by 
Corollary 2.5, n1 (aNi) + ni(Ni) is an isomorphism. 

Let Ax and Ar. be the diagonals of X xX and e(L) x e(L), respectively. Then 
A x = X, At x L and Ax collapses to AL. Construct an embedding H: AL x [O, l] --f X x X, 

with HO = id and H1(AL) c 2(X x X) - (N, u N2), as follows. Use general position to 
homotope AL off of Lx L in X xX. Since Lx L is a spine of Xx X (thus, 
X x X - (L, x L) z a(X x X) x [0, I)), we may further homotope AL into 8(X x X). General 
position within 8(X x X) allows us to move the image of AL off from L1 u L2 and the collar 
structures on the Ni - Li allow US to push the image out of N1 u Nz. With a final 
application of general position we may adjust the union of these homotopies to the desired 
embedding. Let L3 denote H1 (AL) and let N3 be a regular neighborhood of L3 in 8(X x X) 
disjoint from N1 u Nz. 

By Kervaire [S], PL homology spheres of dimension # 3 bound (PL) contractible 
manifolds. Hence, there are (homeomorphic) contractible (n - I)-manifolds C1 and C2 with 
boundaries homeomorphic to 8N1 z aNz. Attach C1 and Cz to X x X via these homeo- 
morphisms. We will denote this adjunction space by (X x X) ud(C1 w C,). See Fig. 1. 

Step 2 (Recognition of M): Let C = [8(X x X) - int(N, u N2)] ua(C, u C,). We claim 
that Z is homeomorphic to S”. To this end, note that Z is obtained from the homology 
n-sphere 8(X x X) by removing the interiors of homology n-cells NI and N2 and filling in 
with homology cells C1 and C,; therefore, by several applications of Lemma 1.1, C is 

a homology n-sphere. Next we observe that Z is simply connected. Consider the standard 
inclusion induced isomorphism z1 (X x fp) ) x x1 ( {p> x X) -+ 7~~ (X x X), and the isomor- 
phism x1(8(X x X)) -+ nl(X x X) promised by Corollary 2.5. Together these show that 

(XX{P~)U({PIXX) carries z,(a(X x X)). Since L1 and Lz are spines of Xx {p) and 
(p> x X, respectively and since, Z1 faNi) -+ 7~~ (Ni) is an isomorphism for each i, it is clear that 
nl(a(X xX)) is carried by dN1 u aNz u a where CL is any properly embedded arc in 
S(X xX) - int(N, u N,) connecting dN1 to aN2. By Lemma 2.4, al(@X xX) 
- (int(N, u NJ) is also carried by 8N, u i)N, u IX. Since loops in aNi contract in Ci, an 



SOME COMPACT CONTRACTIBLE MANIFOLDS 103 

Fig. 1 

easy application of VanKampen’s theorem implies the simple connectivity of C. By Lemma 
1.1 (d) and the PL Generalized Poincare Conjecture [ 123, Z z S”. 

Let M = IZ - int(NJ. Since N3 is a regular neighborhood of an embedded copy of L, M 

is by definition New(L, n). See Fig. 2. 

Fig. 2. 

Step 3 (Recognition of disjoint pseudo-spines): We will show that C, and CZ are PL 
pseudo-spines of M. Let I+‘, = M - int(C,) and W, = M - int(C,). Consider the cobor- 
disms (WI, 8M, X1) and (W,, aM, X2). If these are h-cobordisms, it follows from the 
“weak h-cobordism theorem” (Stallings [14, Theorem 41) that WI-X, and W2-X2 are (PL) 
homeomorphic to aM x [0, l), and thus, C1 and CZ are PL pseudo-spines of M. 

To verify that (Wit aM, Xi) is an h-cobordism for each i, we will show that 

rtj( Wi, Xi) = 0 = nj( Wi, aM) for j I (n - 1)/2 and i = 1,2. Sufficiency of these conditions 
can be seen in a couple of ways. We outline a geometric proof based on a well-known 
engulfing strategy due to Stallings. 

Fix i and choose disjoint collars A and B on aM and Xi, respectively, in Wi. Let A’ and 
B’ be subcollars of A and B. Choose a triangulation 3 of B$ for which A, A’, B and B 
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correspond to subcomplexes. By our assumption, Zj( Wi, A) = 0 forj I (n - 1)/2, so by [13] 
there is a homeomorphism h: Wi + Wi, fixed on A’, SO that h(A) contains the [(n - 1)/2]- 
skeleton of Wi - int(B’). Similarly, if $* denotes the cell structure on Wi dual to f, there is 
a PL homeomorphism k: WC + K, fixed on B’, so that k(A) contains the [(n - 1)/2]- 
skeleton (relative to #*) of Wi-int(A’). By exploiting the joint structure between $(“-r)” 
and (y*)‘“- lJi2, we may alter h so that h(A) u k(B) = Wi. Now, Wi may be deformed into 
k(B) along the collar lines of h(A), and then onto 8Ci along the collar lines of k(B). Similarly, 
W deforms into 8M, hence, (Wiy dM, 8Ci) is an h-cobordism. 

We now verify the necessary homotopy conditions for (WI, i?M, X1). The argument for 
( W2, dM, aC2) is identical. 

CLAIM (i). 7Cj( WI 9 X,) = 0 for j < (n - 1)/2. 
Consider the following diagram of inclusion induced maps. 

Clearly the vertical map and the map in the lower row are isomorphisms for all j. 
Arguments like that used in Lemma 2.4 show the maps in the first row to be isomorphisms 
when j I (n - 1)/2. Note that the full force of the restriction on the size of k first becomes 
necessary in verifying the injectivity of the second map. In this verification, we use general 
position to move the (j + l)-dimensional image of a homotopy off the 2k-dimensional spine, 
L x L, of the (n + l)-dimensional manifold X x X. This requires that (j + 1) + 2k < n + 1. 
Since, by hypothesis, 4k < n, this condition holds. 

Utilizing the isomorphisms in the above diagram, it suffices to show that 
nj((X x X) uBC2, X x (p}) = 0 for all j < (n - 1)/2. Let 2 be the universal cover of X, and 
p : d + X be the covering projection. Then (p, idx) : x” x X --) X x X is a covering map, and 
(p, idx)-‘(X x {p>) = 2 x {p}. Note, since n,(L1) injects into rcl(X xX), that the preimage 
of N2 under this covering projection is a discrete collection {N,} of copies of N2, one for 
each element of x1(X). For each N,, attach a copy C, of C2 to J? x X along its boundary in 
the obvious way. The resulting space, (2 x X) u? { C,}, is simply connected by repeated use 
of Van Kampen’s Theorem and thus is the universal cover of (X x X) upC2 with the 

obvious covering projection, call it p, extending (p, idx). Since p- ‘(X x {p}) = _? x {p}, then 
nj((X XX) u~CZ, X x {p}) z Zj((X XX) u?{C,}, _f x {p}) for all j. By the Hurewicz the- 
orem, it suffices to show that Hj((Z x X) up { C,}, x’ x {p}) = 0 for j 5 (n - 1)/2. By the long 
exact sequence for pairs, this may be accomplished by showing that 

Hj(x x {P}) + Hj((z xx) uc?{ccd>) . IS an isomorphism for all j I (n - 1)/2. Since both 
spaces are simply connected, this is immediate for j = 0,l. For 2 I j I (n - 1)/2, factor the 
map as follows: 

Since X is acyclic, it is clear from the Knnneth formula that the first map is an isomorphism 

for all j. Now consider the Mayer-Vietoris sequence 

Since each C, is contractible, and each aC, is a homology n-sphere, Hj( u C,) and 

Hj( u 8C,) are trivial for 1 I j < n. Plugging this information into the sequence shows that 

H,((x xx)) -+ Hj((R x x, Q{Ca>) is an isomorphism for all 2 < j < n. Hence, Claim (i) 
holds. 
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CLAIM (ii). nj( Wi 3 8M) = 0 for j 5 (n - 1)/2. 

Consider the following diagram. 

Xj( W9 8M) + 7tj(a(X X X) UaCz, NJ + ?Tj((X X X) Ua C2, N3) 

t 

nj((x xx) Uc?C29 b) 

1 

Zj((X XC) UaC2,ZZ(AL X I)) 

Iv0 

xj((X x X) u~C2r AL) + nj((X X W u~CZ, AX). 

All maps in this diagram are inclusion induced and can be shown to be isomorphisms for 
j I (n - 1)/2. With the exception of u. and ul, verifications are like those made in Case (i). 
Recalling from Step 1 that H: AL x I + X x X is an embedding with ZZ(AL x (0)) = Ar. and 
ZZ(Ar. x {l}) = L3, it is easy to show that u. and v1 are isomorphisms for all j. We leave this 
to the reader. 

Applying the above diagram, if suffices to show that nj((X x X) ugC2, Ax) = 0 for all 
j I (n - 1)/2. Again consider the covering projection p : (2 x X) ua { C,} + (X x X) uaCz. 
Noticethatp~‘(A,)={(x,p(x))~x~~}cdxXc(~xX)u,{C,}.Inparticular,z:~-+ 
(2 x X) ud{C.} defined by t(x) = (x, p(x)) takes 2 homeomorphically onto p-‘(Ax). We 
denote p-‘(Ax) by & and observe that it is the universal cover of Ax. Arguing as in Case (i), 
it suffices to show that HI@,) -+ Hj((f x X) ua {C@}) is an isomorphism for each 
2 I j I (n - 1)/2. Factor this map into the following inclusion induced maps. 

Hj(z\,) + Hj((X X X)) + Hj((Y X X) Ua(C~})* 

The Mayer-Vietoris argument used in Case (i) shows that the second map is an isomor- 
phism for all 2 I j < n. To see that the first map in an isomorphism, define 4 : i? x X -+ _f to 
be the projection map. Then the composition &, + 2 x X 5 J? is a homeomorphism. 
Hence we have a commutative diagram 

Hj((2 x x)1 

/ b* 
Hj(ix) 5 H,(Z) e 

Since X is acyclic, the Kiinneth formula shows that & is an isomorphism for all j. Thus, 
Hj(AL) + Hj((T x X)) is also isomorphism. 

Step 4 (Existence of disjoint spines). By Step 3 and Corollary 2.2, M contains a disjoint 
pair of spines. 

Case (b). n is even. 

Let e:L-+S”” be a PL embedding, let X be a regular neighborhood of e(L), 
choose PE 8X. Instead of working in X x X, we now work in X x X x I. 
L,=e(L)x{p}x{1/2}, LZ={p}xe(L)x{l/2), Ax={(x,x,1/2)~XxXxZ~x~X} 
AL = {(x, x, l/2) E X x X x II x E e(L)}. Make similar obvious changes when necessary. 

and 
Let 
and 
No- 

tation becomes more tedious in this case, but the proof requires no significant changes from 
that of Case (a) 0 

In the above proof the PL spines and pseudo-spines detected are codimension 0 sub- 
manifolds with locally flat boundaries. By the remark following Lemma 2.1, any PL spine or 
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pseudo-spine may be “thickened” within a given neighborhood to a PL spine of this type. 

Moreover, as suggested by the proof of Theorem 4.1, a codimension 0 submanifold 

C c int M with locally flat boundary, is a PL pseudo-spine of M if and only if (M-int C, dM, 

Z) is an h-cobordism. This allows a slight extension of our main result. 

THEOREM 4.2. Suppose rl, r2 are h-cobordant homology (n - 1)-spheres (n 2 5) and Eet 

MI, M2 be the (unique) compact contractible n-manifolds bounded by rI and r2, respectively. 

Then MI contains a disjoint pair of PL spines lyM2 contains a disjoint pair of PL spines. In 

particular, if M = New(L, n) for an acyclic k-complex L with 4k -=c n, then any homology 

(n - l)-sphere h-cobordant to dM bounds a compact contractible n-manifold containing a pair 

of disjoint PL spines. 

Proof: Existence of MI and M2 is by [S], For uniqueness, suppose Mi and Mj are 

compact contractible n-manifolds each with boundaries homeomorphic to Ti. Then 

Mi up Mf is a homology sphere (Lemma 1.1) which, again by [S] bounds a compact 

contractible (n + l)-manifold, N. By the h-cobordism theorem (see e.g. [ll]), 

(NV Mi, M:) x (Mi X I, Mi X {O}, Mi X {I}), SO Mi z Mj. 

Now let (W, rl, r,) be an h-cobordism and suppose MI contains a pair of disjoint 

spines, C and C’. By the remarks preceding this theorem, we may assume that C and C’ are 

codimension-0 submanifolds with locally flat boundaries. W ur, MI is a compact contract- 

ible (n + l)-manifold with r2 boundary. By uniqueness, W ur, MI z M2. Moreover, 

(W ur, M,)-int C and (W ur, M,)-int C’ are homeomorphic to W. Again by earlier 

remarks, this implies that C and C’ are pseudo-spines of W ur, M 1 FZ M2. By Corollary 2.2, 

M2 contains disjoint spines. The converse holds by symmetry. 

Combining the initial assertion of this result with Theorem 4.1 yields the final asser- 

tion. fl 

Note. A version of Theorem 4.2 with n = 4 is valid if we work with “topological spines” (see 

following section). 

5. TOPOLOGICAL SPINES 

A compacturn A in the interior of a topological manifold X is a (topological) spine of X if 

there is a map f: aX + A and a homeomorphism of X onto the mapping cylinder, Cyl( f ), 
which takes 8X identically onto the domain end and A identically onto the range end of 

Cyl( f ). By Whitehead [ 151, regular neighborhoods of compact polyhedra in combinatorial 

manifolds are mapping cylinders of this type; hence, the notion of topological spine 

generalizes the notion of PL spine. A compactum B in the interior of a topological manifold 

X is a (topological) pseudo-spine of X if X - B is topologically homeomorphic to i3X x [O, 1). 

Most results in this paper remain true when the term “PL spine (or pseudo-spine)” is 

replaced by “topological spine (or pseudo-spine)“. For example the proofs of Lemma 2.1 

and its corollary are still valid, and of course the PL spines provided by Theorem 4.1 are 

also topological spines. An exception is the topological analogue of Corollary 2.5 which fails 

spectacularly, as is shown in [l]. 

6. APPLICATIONS TO TOPOLOGICAL EMBEDDING THEORY 

Results presented in this section are topological in nature. We no longer assume that 

manifolds are combinatorial or that maps are PL. The symbol z now denotes topological 

homeomorphism. 
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A subset K of a metric space X is said to be slippery if, for any E > 0, there is 
a homeomorphism h : X + X such that d(x, h(x)) < E for all x EX, and h(K) n K = 8; 
otherwise, we say that K is sticky. For example, if k < n/2 then any k-dimensional 
subpolyhedron of a PL n-manifold is slippery. By contrast, Wright [16] has shown that for 
all n 2 4, there exist sticky (topologically embedded) arcs in S”. Furthermore, it is still 

unknown whether or not all Cantor sets in S” (n 2 4) are slippery (see [4]). 
The sticky arcs produced by Wright are based on an extremely complicated construc- 

tion by McMillan [9]. For some time it has seemed reasonable that simpler examples might 

lie on the “suspension circles” of doubly suspended non-simply connected homology 
spheres. If H is a homology sphere and C’(H) denotes the double suspension of H, then by 
Cannon-Edwards [2], x2(H) z S”; moreover, if H is not simply connected, the circle of 
suspension points is wildly embedded as a subset of S”. Combined with Theorem 4.1, the 
following result shows that, in many cases, this double suspension circle (and, thus, any arc 
contained within) is actually slippery. 

THEOREM 6.1. Let Hnm2 be a homology sphere, E’(H) z S” be the double suspension of H, 
and J c S” correspond to the suspension circle. If H bounds a compact contractible (n - l)- 
manifold C which contains a pair of disjoint spines, then J is slippery in S”. 

Proof Let pH denote the cone over H viewed as H x [0, l]/H x {l} with p denoting the 
cone point. For each 0 5 t < 1, let ptH c pH denote the subcone; H x [t, l]/H x (1). If K 
is a spine of C, then there is an obvious map 7~: C + pH which sends K to {p} and 
is a homeomorphism off K. Let C, denote n - 1 ( pt H), and notice that C, is homeomorphic 
to c. 

Since J c S” has a neighborhood N homeomorphic to pH x S’, with J corresponding to 
{p) x S’, it will suffice to show that for any E > 0, there exists an s-homeomorphism 
h:pHxS’-+pHxS’whichfi xes (H x (0)) x S’, and for which h({p) x S’) n ({ p} x S’) = 8. 
Without loss of generality we assume that the metric on pH x S’ is of the form, 

d((.x,, ~~1, (~2, ~2)) = max(d(xl, 4 d(yl,ydI. 
Consider the cell-like map 71 x id: C x S’ + pH x S’. Choose t sufficiently close to 1 that 

p,H x {q} has diameter less than c/2 for all q ES’. By Cannon-Edwards (see [2]), there is 
a homeomorphism f: C x S’ + pH x S’ such that d( f(x, y), TC x id(x, y)) < e/2 for all 
(x, y) EC x S’ and f = TT x id on (C - C,) x S’. Then f -‘({p> x S’) c int(C, x S’) and since 
C, contains disjoint spines, there is a spine, K’, of C, sufficiently close to aC, (see proof 
of Lemma 2.3) that (K’ x S’) nf - ‘({p} x S’) = 8. By pushing out (towards aC,) along 
collar lines of C, - K’, we may construct a homeomorphism g: C, x S’ + C, x S’ which 
fixes aC, x S’, sends C, x (q} into C, x {q) for all q, and for which 
g(f-‘({p} x S’))nf-‘({p} xS’) = 0. Extend to all of CxS’ via the identity. Letting 
h=ftlf-‘:pHxS’+pHxS’givesthedesiredmap. q 

As mentioned earlier, the question of whether all Cantor sets in S” (n 2 4) are slippery is 
open. Many who have considered this question regard a collection of examples produced by 
Daverman in [4] as the most likely known candidates for counterexamples. We close this 

section by noting, without proof, that techniques similar to those used above can be 

employed to show that many of the Daverman examples are in fact slippery. 

7. QUESTIONS 

Numerous questions regarding the existence of disjoint spines of compact contractible 

manifolds remain open. The most obvious is: 
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Question I. Does there exist a compact contractible manifold which does not contain 
a pair of disjoint (PL or topological) spines? 

It seems that dimension may play a role in this question, hence we pose the following 
separately. 

Question 2. Do there exist dimensions n 2 3 for which all compact contractible 
n-manifolds contain disjoint (PL or topological) spines? 

Question 3. Does there exist a dimension n 2 3 for which no compact contractible 
n-manifold other than B” contains a pair of disjoint spines? 

Remarks (1) These questions are most appropriate when n 2 4, since when n = 3, they 
are directly tied to the Poincare conjecture. To see this, observe that any compact 
contractible 3-manifold has a 2-sphere boundary (apply Lemma 1.1); hence, there is a com- 
pact contractible 3-manifold not homeomorphic to B3 iff the Poincare conjecture fails. If 
a fake 3-cell, H3, exists it does not contain a pair of disjoint spines. Indeed, if a pair of 
disjoint spines existed, we could apply the techniques of Lemma 2.3, to produce an infinite 
collection of pairwise disjoint spines of H3. Since the boundary of each is a 2-sphere, this 
would violate the existence of a prime decomposition of H3 as promised by Kneser (see [7]). 

(2) By Freedman [YJ, there exist compact contractible 4-manifolds which allow no 
combinatorial structure. Hence, the consideration of topological spines is essential in 
dimension 4. 

Acknowledgements-The author wishes to acknowledge Ric Ancel for several helpful remarks and observations. 

REFERENCES 

1. F.D. ANCEL and C.R. GUILBAULT: Compact contractible n-manifolds have arc spines (n ;r. 5), to appear in 
Pacijic J. Math. 

2. J.W. CANNON: Shrinking cell-like decompositions of manifolds: codimension three, Ann. of Math. 110 (1979), 
83-112. 

3. R.J. DAVERMAN, Embedding phenomena based upon decomposition theory: Wild Cantor sets satisfying strong 
homogeneity properties, Proc. Amer. Math. Sot. 75 (1979), 177-182. 

4. R.J. DAVERMAN, Problems about finite dimensional manifolds, Open Problems in Topology, J. vanMill and 
G.M. Reed, Eds., North-Holland, Amsterdam, 1990, 431-455. 

5. M.H. FREEDMAN, The topology of four-dimensional manifolds, J. Diff. Geom. 17 (1982), 357-453. 
6. V.K.A.M. GUGENHEIM, Piecewise linear isotopy and embedding of elements and spheres (I), Proc. London 

Math. Sot. 3 (1953), 29-53. 
7. J. HEMPEL, 3-manifolds, Ann. of Math. Stud., (86) (1976). 
8. M.A. KERVAIRE, Smooth homology spheres and their fundamental groups, Trans. Amer. Math. Sot. 144 (1969) 

67-72. 
9. D.R. MCMILLAN, An arc in a PL n-manifold with no neighborhood that embeds in S”, n 2 4, Michigan Math. 

J. 25 (1978), 29-43. 
10. M.H.A. NEWMAN, Boundaries of ULC sets in Euclidean n-space, Proc. Acad. Sci. U.S.A 34 (1948), 193-196. 
11. C.P. ROURKE and B.J. SANDERSON, Introduction to Piecewise-Linear Topology, Springer Berlin (1982). 
12. S. SMALE, Generalized Poincare conjecture in dimensions greater than four, Ann. Math. 74 (1961), 391-406. 
13. J.R. STALLINGS, Polyhedral homotopy-spheres, Bull. Amer. Math. Sot., 66 (1960), 485-488. 
14. J.R. STALLINGS, On infinite processes leading to differentiability in the complement of a point, in: Differential 

and combinatorial topology, S. Cairns, Ed., Princeton Univ. Press, Princeton, 1965, pp. 245-254. 
15. J.H.C. WHITEHEAD, Simplicial spaces, nuclei, and m-groups, Proc. London Math. Sot. 45 (1939), 243-327. 
16. D.G. WRIGHT, A Sticky arc in S” (n 2 3), Proc. ofthe Fifth Annual Western Workshop in Geometric Topology, 

Colorado Springs, June 16-18, 1988, 36-37 (informal proceedings). 

Department of Mathematical Sciences, 
University of Wisconsin-Milwaukee, 

Milwaukee, 
Wisconsin 53201, V.S.A 
EMS Building, PO Box 413. 


