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Boundaries of Baumslag–Solitar groups

CRAIG R GUILBAULT

MOLLY A MORAN

CARRIE J TIREL

A Z –structure on a group G was introduced by Bestvina in order to extend the
notion of a group boundary beyond the realm of CAT(0) and hyperbolic groups. A
refinement of this notion, introduced by Farrell and Lafont, includes a G–equivariance
requirement, and is known as an EZ –structure. The general questions of which groups
admit Z – or EZ –structures remain open. Here we show that all Baumslag–Solitar
groups admit EZ –structures and all generalized Baumslag–Solitar groups admit
Z –structures.

20F65, 57M07, 57M60

1 Introduction

In [3], Bestvina introduced the concept of a Z–structure on a group G to provide an
axiomatic treatment of group boundaries. Roughly speaking, the definition requires G
to act geometrically (properly, cocompactly, by isometries) on a “nice” space X and for
that space to admit a nice compactification X (a Z –compactification). In addition, it is
required that translates of compact subsets of X get small in X — a property called the
nullity condition. Adding visual boundaries to CAT(0) spaces and Gromov boundaries
to appropriately chosen Rips complexes provide the model examples. Bestvina posed
the still-open question of whether or not every group that admits a finite K.G; 1/
complex admits a Z–structure.

In [3], the Baumslag–Solitar group BS.1; 2/ was put forward as a nonhyperbolic,
non-CAT.0/ group that, nevertheless, admits a Z–structure. The Baumslag–Solitar
groups BS.1; n/ behave similarly, but from the beginning, the status of the general
Baumslag–Solitar groups BS.m; n/ was unclear. In this paper we resolve that issue in
a strong way:

Theorem 1.1 Every generalized Baumslag–Solitar group admits a Z–structure.
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A generalized Baumslag–Solitar group is the fundamental group of a graph of groups
with vertex and edge groups Z. By applying work of Whyte [17] and a boundary-
swapping trick (see [3] and Guilbault and Moran [10]), it will suffice to show that the
actual Baumslag–Solitar groups BS.m; n/ admit Z–structures. For those groups, we
will prove the following stronger theorem:

Theorem 1.2 (EZ–structures on Baumslag–Solitar groups) All Baumslag–Solitar
groups, BS.m; n/, admit EZ–structures.

Here EZ stands for “equivariant Z –structure”, a Z –structure in which the group action
extends to the boundary. Torsion-free groups (which includes all groups studied in
this paper) that admit EZ–structures are known to satisfy the Novikov conjecture;
see Farrell and Lafont [8]. The Novikov conjecture for Baumslag–Solitar groups
originally follows from Béguin, Bettaieb and Valette [2]. It can also be obtained
from Matsnev [12] combined with Yu [18] and the generalized Baumslag–Solitar case
comes from these results plus the quasi-isometry classification from [17]. Our theorem,
combined with [8], gives a new proof of the Novikov conjecture for Baumslag–Solitar
groups. This is one reason to aim for the stronger condition.

Acknowledgement This research was supported in part by Simons Foundation grants
207264 and 427244, CRG.

2 Background

2.1 Visual boundaries of CAT(0) spaces

In this section, we review the definition of CAT(0) spaces and the visual boundary
as we will use these as a starting point for EZ–structures on BS.m; n/. For a more
thorough treatment of CAT(0) spaces, see [5].

Definition 2.1 A geodesic metric space .X; d/ is a CAT(0) space if all of its geodesic
triangles are no fatter than their corresponding Euclidean comparison triangles. That is,
if �.p; q; r/ is any geodesic triangle in X and x�. xp; xq; xr/ is its comparison triangle
in E2 , then for any x; y 2� and their comparison points xx; xy 2 x�, we have d.x; y/�
dE.xx; xy/.

Example 1 Basic examples of CAT(0) spaces include:

� Rn equipped with the Euclidean metric is a CAT(0) space as all geodesic triangles
are already Euclidean and hence no fatter than their comparison triangles.
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� A tree, T , is a CAT(0) space since all geodesic triangles are degenerate and thus
have no thickness associated to them.

� If X and Y are CAT(0) spaces, then X �Y with the `2 metric is CAT(0). So,
for example, R�T is a CAT(0) space — a fact that will play a significant role
in this paper.

A group G that acts properly, cocompactly and by isometries (also known as a geometric
group action) on a proper CAT(0) space is called a CAT.0/ group.

Definition 2.2 The boundary of a proper CAT(0) space X, denoted by @X, is the set
of equivalence classes of rays, where two rays are equivalent if and only if they are
asymptotic. We say that two geodesic rays ˛; ˛0W Œ0;1/!X are asymptotic if there
is some constant k such that d.˛.t/; ˛0.t//� k for every t � 0.

If we fix a basepoint x0 2 X, each equivalence class of rays in X contains exactly
one representative emanating from x0 . So when x0 is chosen, we can view @X as
the set of all rays in X based at x0 . We may endow X D X [ @X with the cone
topology, described below, under which @X is a closed subspace of X and X is compact
(provided X is proper). Equipped with the topology induced by the cone topology
on X, the boundary is called the visual boundary of X ; we will denote it by @1X.

The cone topology on X, denoted by T .x0/ for x0 2 X, is generated by the basis
BDB0[B1 where B0 consists of all open balls B.x; r/�X and B1 is the collection
of all sets of the form

U.c; r; �/D fx 2X j d.x; c.0// > r and d.pr.x/; c.r// < �g;

where cW Œ0;1/! X is any geodesic ray based at x0 , r > 0, � > 0 and pr is the
natural projection of X onto B.c.0/; r/.

Example 2 Boundaries of the simple examples given above are:

� @1Rn ' Sn�1 .

� @1T is compact and 0–dimensional. If each vertex has degree � 3, it is a
Cantor set C. (In order for T to be proper, assume all vertices have finite degree.)

� If X and Y are CAT(0) spaces and X � Y is given the `2 metric, then
@1.X � Y / ' @X1 � @1Y , the (spherical) join of the two boundaries [5,
Section 8.11]. For example, @1.R� T / is homeomorphic to S0 � @1T , the
suspension of a 0–dimensional set (usually a Cantor set).
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When G is a CAT(0) group acting geometrically on a proper CAT(0) space X, we call
@1X a CAT(0) boundary for G. For example, since Zn acts geometrically on Rn , it is
a CAT(0) group and Sn�1 is a CAT(0) boundary. The free group on two generators, F2 ,
acts geometrically on a four-valent tree, so a CAT(0) boundary for F2 is the Cantor set.

The following lemma, which is reminiscent of the Lebesgue covering lemma, will be
useful in proving our main theorem:

Lemma 2.3 Let .X; d/ be a proper CAT (0) space and let U be an open cover of X.
Then there exists a ı > 0 such that U

�
z; 1
ı
; ı
�

lies in an element of U for every
z 2 @1X.

Proof Since @1X is compact, there is a finite subcollection fU1; U2; : : : ; Ukg of U
that covers @1X. For each i 2 f1; 2; : : : ; kg, define a function �i W @1X ! Œ0;1/ by
�i .z/D sup

˚
� jU

�
z; 1
�
; �
�
�Ui

	
. Note that �i is continuous and �i .z/ > 0 if and only

if z 2 Ui . Thus, �W @1X ! Œ0;1/ defined by �.z/Dmaxf�i .z/gkiD1 is continuous
and strictly positive. Let ı0 be the minimum value of � and set ı D 1

2
ı0 .

2.2 Z–structures

Boundaries of CAT(0) groups have proven to be useful objects that can help us gain
more information about the groups themselves. This led Bestvina to generalize the
notion of group boundaries by defining “Z–boundaries” for groups, a topic that we
explore now. For more on Z–structures, see [3; 10].

Definition 2.4 A closed subset A of a space X is a Z –set if there exists a homotopy
H W X � Œ0; 1�!X such that H0 D idX and Ht .X/�X �A for every t > 0.

Example 3 The prototypical Z–set is the boundary of a manifold, or any closed
subset of that boundary.

A Z–compactification of a space X is a compactification X such that X �X is a
Z–set in X.

Example 4 The addition of the visual boundary to a proper CAT(0) space X gives a
Z –compactification X of X. A simple way to see the visual boundary as a Z –set in X
is to imagine the homotopy that “reels” points of the boundary in along the geodesic
rays.
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Definition 2.5 A Z –structure on a group G is a pair of spaces .X;Z/ satisfying the
four conditions

(1) X is a compact absolute retract (AR),

(2) Z is a Z–set in X,

(3) X DX �Z is a proper metric space on which G acts geometrically, and

(4) X satisfies the following nullity condition with respect to the G–action on X :
for every compact C � X and any open cover U of X, all but finitely many
G–translates of C lie in an element of U .

When this definition is satisfied, Z is called a Z–boundary for G. If only condi-
tions (1)–(3) are satisfied, the result is called a weak Z–structure. If, in addition to
(1)–(4) above, the G–action on X extends to X, the result is called an EZ–structure
(equivariant Z–structure).

Example 5 The following are the most common examples of .E/Z–structures:

(1) If G acts geometrically on a proper CAT(0) space X, then X DX [@1X, with
the cone topology, gives an EZ–structure for G.

(2) In [4] it is shown that if G is a torsion-free hyperbolic group, P�.G/ is an
appropriately chosen Rips complex and @G is the Gromov boundary, then
P�.G/D P�.G/[@G (appropriately topologized) gives an EZ –structure for G.
Results in [13] allow for the inclusion of hyperbolic groups with torsion.

(3) Osajda and Przytycki [14] have shown that systolic groups admit EZ –structures.

Other classes of groups that admit .E/Z –structures have been addressed by Dahmani [6]
(relatively hyperbolic groups), Martin [11] (nonpositively curved complexes of groups),
Tirel [16] (free and direct products) and Pietsch [15] (semidirect products with Z and
3–manifold groups).

There is a small overlap between our main theorem and the above results. For example,
the Baumslag–Solitar groups BS.m;m/ are CAT(0). But none of the others are CAT(0)
or hyperbolic (a topic discussed in Section 3). Since generalized Baumslag–Solitar
groups are, by definition, fundamental groups of graphs of groups, one might hope to
obtain .E/Z–structures by applying [11]. That strategy fails since the corresponding
actions on their Bass–Serre trees are not acylindrical. In short, almost all of the examples
covered by Theorem 1.2 appear to be new.
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A few comments are in order regarding the definition of Z –structure. First, Bestvina’s
original definition did not explicitly require actions by isometries, but only by covering
transformations. As we point out at the end of Section 3.3, there is no loss of generality
in requiring actions by isometries. Bestvina also required X to be finite-dimensional
and the action to be free. Dranishnikov relaxed both of these conditions in [7], and [10]
shows that nothing is lost in doing so.

We close this section with a few observations about Z–structures. The first makes the
nullity condition more intuitive, the second is useful for verifying the nullity condition,
and the third can (and will) be used to obtain Z –structures for a broad class of groups
without checking each group individually.

Every Z –compactification X of a proper metric space .X; d/ is metrizable (see [10]),
but in general there is no canonical choice of metric for X ; moreover, whichever
metric xd one chooses will be quite different from d . Nevertheless, any such choice
can be used to give the following intuitive meaning to the nullity condition. The proof
is straightforward general topology.

Lemma 2.6 Let .X;Z/ be a weak Z–structure as described in Definition 2.5, and
let xd be a metric for X. Then .X;Z/ satisfies the nullity condition (and hence is a
Z–structure) if and only if :

For any compact set C �X and � > 0, all but finitely many G–translates
of C have xd –diameter less than � .

The next lemma allows us to verify the nullity condition without checking every compact
subset C of X.

Lemma 2.7 Let X be a proper metric space admitting a proper cocompact action
by G and let .X; xd/ be a Z–compactification of X. If C is a compact subset of X
with the property that GC D X and the nullity condition is satisfied for C, then the
nullity condition is satisfied for all compact subsets of X.

Proof Choose � > 0 and let K � X be an arbitrary compact set. By properness
and the hypothesis, there are finitely many translates of C that cover K , that is,
K � g1C [ g2C [ � � � [ gnC for gi 2G. Since C satisfies the nullity condition, all
but finitely many G translates of C have xd –diameter less than �

n
. If we consider any

translate gK , then gK � gg1C [gg2C [ � � � [ggnC. Only finitely many ggiC for
g 2 G have diameter greater than �

n
and thus only finitely many gK have diameter

greater than n �
n
D � .
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The following useful fact is often referred to as the “boundary-swapping trick”:

Proposition 2.8 [3; 10] Suppose G and H are quasi-isometric groups that act
geometrically on proper metric ARs X and Y , respectively , and Y can be compactified
to a Z–structure .Y ;Z/ for H ; then X can be compactified by addition of the same
boundary to obtain a Z–structure .X;Z/ for G.

3 Z–structures on generalized Baumslag–Solitar groups

A Baumslag–Solitar group BS.m; n/ is a two-generator, one-relator group admitting a
presentation of the form

BS.m; n/D hs; t j tsmt�1 D sni:

Without loss of generality, we may assume that 0 < jmj � n. These groups are HNN
extensions of Z with infinite cyclic associated subgroups, and the standard presentation
2–complex Km;n is a K.�; 1/ space. If we begin with the canonical graph of groups
representation of BS.m; n/ with one vertex and one edge, the corresponding Bass–Serre
tree is the directed tree T .jmj; n/ with jmj incoming and n outgoing edges at each
vertex, and the universal cover of Km;n is homeomorphic to R�T .jmj; n/. Gersten [9]
has shown that, provided jmj ¤ n, the Dehn function of BS.m; n/ is not bounded by a
polynomial. By contrast, Dehn functions of hyperbolic and CAT(0) groups are bounded
by linear and quadratic functions, respectively. So most Baumslag–Solitar groups are
neither hyperbolic nor CAT(0). As such, this collection of groups contains some of the
simplest candidates for Z–structures not covered by the motivating examples.

3.1 Generalized Baumslag–Solitar groups

A generalized Baumslag–Solitar group is the fundamental group G of a finite graph
of groups with all vertex and edge groups Z. In [17], Whyte classified generalized
Baumslag–Solitar groups, up to quasi-isometry.

Theorem 3.1 [17] If � is a graph of Zs and G D �1� , then exactly one of the
following is true:

(1) G contains a subgroup of finite index of the form Z�Fn .

(2) G D BS.1; n/ for some n > 1.

(3) G is quasi-isometric to BS.2; 3/.
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As with the ordinary Baumslag–Solitar groups, each generalized Baumslag–Solitar
group G acts properly and cocompactly on R�T , where T is the Bass–Serre tree of
its graph of groups representation. If G is of the first type mentioned in Theorem 3.1,
it is quasi-isometric to the CAT(0) group Z�Fn , so, by the boundary-swapping trick
(Proposition 2.8), G admits a Z–structure. By another application of Theorem 3.1
and the boundary-swapping trick, we can then obtain Z–structures for all generalized
Baumslag–Solitar groups provided we can obtain them for ordinary Baumslag–Solitar
groups. That is where we turn our attention to now.

3.2 A “standard” action of BS.m; n/ on R�T.jmj; n/

As noted above, BS.m; n/ acts properly, freely and cocompactly on R�T .jmj; n/. In
Example 2, we observed that this space admits a Z –compactification by addition of the
suspension of @1T .jmj; n/. That is accomplished by giving R�T .jmj; n/ its natural
CAT(0) metric and adding the visual boundary. This gives us a weak Z–structure for
BS.m; n/, but since the action of BS.m; n/ on this CAT(0) space is not by isometries,
the nullity condition does not follow. In fact, if we subdivide R � T .jmj; n/ into
rectangular principal domains for BS.m; n/ in the traditional manner (see Figure 1)
and if jmj ¤ n, these rectangles grow exponentially as they are translated along the
positive t –axis. More importantly (for our purposes), translates of the fundamental
domain remain large in the compactification (details to follow). Arranging the nullity
condition will require significantly more work.

Although this “standard” action of BS.m; n/ on R�T .jmj; n/ with its CAT(0) metric
and corresponding visual boundary does not give the desired .E/Z–structure, the
picture it provides is useful; therefore, we supply some additional details.

For the moment it is convenient to assume that m > 0. Choose a preferred vertex
v0 of T .m; n/ and place the Cayley graph � of BS.m; n/ in R � T .m; n/ so that
v0D .0; v0/ corresponds to 12BS.m; n/, and the positively oriented edge-ray �C��
whose edges are each labeled by an outward-pointing t and the negatively oriented edge-
ray ��whose edges are each labeled by an inward-pointing t both lie in f0g�T .m; n/.
In other words, the line � � �� [ �C � � , corresponding to the subgroup hti, is a
subset of f0g � T .m; n/. Subdivide R� fv0g into edges of length 1

n
, each oriented

in the positive R–direction and labeled by the generator s . Thus we have identified
this line with the subgroup hsi. Let R0 � R� � be the 1� 1 rectangle with lower
left-hand vertex at 1 and boundary labeled by the defining relator of BS.m; n/. Tile
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Figure 1: Tiling of BS.2; 3/

the plane R� � with rectangular fundamental domains, each of whose boundaries is
labeled by the relator as shown in Figure 1, keeping in mind that this plane represents
only a small portion of the Cayley complex.

For each edge-ray � � T .m; n/ emanating from v0 , we refer to the half-plane R� �

as a sheet of R � T .m; n/. If all edges on � are positively oriented, call R � � a
positive sheet; if all edges are negatively oriented, call R� � a negative sheet; and
if � contains both orientations, call R� � a mixed sheet. Call R� �C the preferred
positive sheet and R� �� the preferred negative sheet. (Note: although the oriented
tree f0g �T .m; n/ plays a useful role, most of its edges are not contained in � .)

Notice that each sheet is a convex subset of R�T .m; n/ isometric to a Euclidean half-
plane. Up to horizontal translation, all positive sheets inherit a tiling identical to that
of R��C and all negative sheets inherit a tiling identical (up to translation) to R��� .
So, in positive sheets the widths of the fundamental domains increase (exponentially)
as one gets further from v0 in the T .m; n/–direction, while in the negative sheets
the widths decrease. In mixed sheets, widths do not change in a monotone manner —
sometimes they increase and sometimes they decrease — but the resulting tiling is
always finer than that of an appropriately placed positive sheet. In other words, the
tiles in a generic sheet always fit inside those of a correspondingly subdivided positive
sheet. Finally, note also that for m < 0, the tiling of R� T .jmj; n/ is the same, but
with the s edges at odd integer heights oriented in the negative R–direction.

3.3 An adjusted action of BS.m; n/ on R�T.jmj; n/

Under the above setup, the nullity condition fails badly. For example, translates of R0
by powers of t limit out on the entire quarter circle bounding the right-hand quadrant
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of R� �C in the visual compactification of the CAT(0) space R�T .jmj; n/. Instead
of changing the space or its compactification, we will remedy this problem by changing
the action. Some of the resulting calculations are lengthy, but the idea is simple. Define
f W R�T .jmj; n/!R�T .jmj; n/ by

f .x; y/D .sgn.x/ log log.jxjC e/; y/:

Our new action is via conjugation by this homeomorphism. More specifically, for each
g 2 BS.m; n/, viewed as a self-homeomorphism of R�T .jmj; n/ under the original
BS.m; n/ action, define xgW R�T .jmj; n/!R�T .jmj; n/ by xgD f ıg ıf �1 . Here
f �1W R�T .jmj; n/!R�T .jmj; n/ can be specified by

f �1.x; y/D .sgn.x/.exp exp jxj � e/; y/:

For simplicity, we refer to this as the BS.m; n/–action on R�T .jmj; n/. Our goal then
is to show that with this action, the visual compactification of R�T .jmj; n/ satisfies
the definition of Z –structure. After that task is completed, we will show that this action
also extends to the visual boundary, thereby completing the proof of Theorem 1.2.

Before proceeding with the calculations, note that the BS.m; n/–action on the CAT(0)
space R�T .jmj; n/ is still not by isometries — as noted earlier, that would be impos-
sible since BS.m; n/ is not CAT(0) when jmj ¤ n. To obtain the isometry requirement
implicit in Definition 2.5 we can apply the following proposition. It reveals that the
isometry requirement is mostly just a technicality.

Proposition 3.2 [1] Suppose G acts properly and cocompactly on a locally compact
space X. Then there is a topologically equivalent proper metric for X under which the
action is by isometries.

3.4 Nullity condition for the BS.m; n/–action on R�T.jmj; n/

Recall the 1 � 1 rectangle R0 � R � � defined earlier. Under the standard action
of BS.m; n/ on R�T .jmj; n/ acts as our preferred fundamental domain. Translates
of R0 by elements of BS.m; n/ produce a “tiling” of R� T .jmj; n/, part of which
is pictured in Figure 1. The most notable trait of this tiling is that, while the heights
of all rectangles in the tiling are 1 (measured along the T .jmj; n/–coordinate), the
widths of rectangles in the positive sheets grow exponentially with the T .jmj; n/–
coordinate whenever jmj ¤ n. For example, a generic tile in a positive sheet with
lower edge at height b will have width .n=jmj/b . Widths of tiles in generic sheets are
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�
a
�
3
2

�b
; bC 1

� �
.aC 1/

�
3
2

�b
; bC 1

�
�
.aC 1/

�
3
2

�b
; b
��

a
�
3
2

�b
; b
�

�
81
16
; 4
�

�
27
8
; 3
��

9
4
; 2
��

3
2
; 2
�

.1; 0/v0

Figure 2: Coordinates of BS.2; 3/

bounded above by this number. Under the BS.m; n/–action on R�T .jmj; n/, the role
of R0 is played by the compressed rectangle R0 D f .R0/, and every BS.m; n/–tile
has its width compressed by the log log function. Most importantly, for the sake
of calculations, a generic BS.2; 3/–tile in the preferred positive sheet will have the
coordinates shown in Figure 2. For a generic BS.m; n/–tile, simply replace 2 and 3
by m and n, respectively.

For a CAT(0) space X, the reason @1X is called the “visual boundary” is because,
in a flat geometry, the size of a set A�X viewed within X is related to the angle of
vision it subtends for a viewer stationed at a fixed origin. For that reason (with more
precision to be provided shortly), the following lemma and its corollary are key. To
keep calculations as simple as possible, we begin by analyzing the preferred positive
sheet of R�T .jmj; n/.

Lemma 3.3 For each � > 0, there exists M� > 0 such that if xgR0 is a BS.m; n/–tile
lying in the preferred positive sheet R� �C of R� T .jmj; n/ and outside the closed
M� –ball of R�T .jmj; n/ centered at v0 , and if w1;w22 xgR0 , then the angle between
segments v0w1 and v0w2 is less than � .

Proof First note that R� �C is a Euclidean half-plane, so angle refers to standard
angle measure. Similarly, since R� �C is a convex subset of R�T .jmj; n/ with v0

corresponding to the origin, a closed M�–ball of R � T .jmj; n/ intersects R � �C
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.p; bC 1/

.q; b/

�

v0

Figure 3: Angle measurement in preferred sheet of BS.2; 3/

precisely in the closed half-disk of the same radius. As such, Figure 3 accurately
captures the situation.

Since our tiling is symmetric about the vertical axis, we may assume that xgR0 lies in
the right-hand quadrant and has vertices with Euclidean coordinates

�
�
log log.a.n=jmj/bC e/; b

�
,

�
�
log log..aC 1/.n=jmj/bC e/; b

�
,

�
�
log log.a.n=jmj/bC e/; bC 1

�
,

�
�
log log..aC 1/.n=jmj/bC e/; bC 1

�
,

where all numbers in the formulas, except possibly m, are nonnegative.

For simplicity of notation, let

p D log log
�
a

�
n

jmj

�b
C e

�
and q D log log

�
.aC 1/

�
n

jmj

�b
C e

�
:

Note that the angle between v0w1 and v0w2 is no larger than the angle between
segments v0; .p; bC 1/ and v0; .q; b/.

Representing that angle by � , we have the formula

� D tan�1
�
bC1

p

�
� tan�1

�
b

q

�
and by application of a few inverse tangent identities we obtain

� D tan�1
��
bC1

p
C
�b

q

�.�
1�
�b.bC1/

pq

��
:
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With some algebraic manipulation we may simplify this equation for � as follows:

� D tan�1
�

b.q�p/

pqC b2C b
C

q

pqC b2C b

�
:

Next we analyze this formula when
p
a2C b2!1. Recall that p and q are both

defined in terms of a and b . In particular, p!1 and q!1 as
p
a2C b2!1.

Thus, the second term in the above sum clearly gets small as
p
a2C b2!1. So, to

deduce that � approaches 0 as
p
a2C b2!1, we need only check that the first term

in that sum goes to zero.

We direct our attention to proving that the term

(#)
b.q�p/

pqC b2C b

approaches 0 as
p
a2C b2!1.

Recall that

b.q�p/D b

�
log log

�
.aC 1/

�
n

jmj

�b
C e

�
� log log

�
a

�
n

jmj

�b
C e

��
D b log

log..aC 1/.n=jmj/bC e/
log.a.n=jmj/bC e/

:

We split our analysis into two cases:

Case 1 (aD 0) Observe that

b log log
��

n

jmj

�b
C e

�
� b log.b/

and since there is a b2 term in the denominator, (#) approaches 0, as desired.

Case 2 (a � 1) Without loss of generality, we can assume a.n=jmj/b > e , in which
case

log..aC 1/.n=jmj/bC e/
log.a.n=jmj/bC e/

<
log..aC 1/.n=jmj/b/C 1

log.a.n=jmj/b/

D
log.aC 1/C log.n=jmj/bC 1

log aC log.n=jmj/b

<
log aC log.n=jmj/bC 2

log aC log.n=jmj/b
! 1 as

p
a2C b2!1;

which implies that (#)! 0, as desired.
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Now suppose xgR0 is an arbitrary tile of R�T .jmj; n/. We may choose an edge ray �
in T .jmj; n/ emanating from �0 so that xgR0 lies in the sheet R� � , which inherits
the geometry of a Euclidean half-plane with v0 at the origin. For points w1;w2 2 xgR0

we can measure the angle between segments v0w1 and v0w2 in this half-plane. That
measure does not depend on the sheet chosen.

Corollary 3.4 For each � >0, there exists N� >0 such that if xgR0 is a BS.m; n/–tile
of R� T .jmj; n/ lying outside the closed N�–ball of R� T .jmj; n/ centered at v0 ,
and if w1;w2 2 xgR0 , then the angle between segments v0w1 and v0w2 is less than � .

Proof Let � > 0 be fixed, and apply Lemma 3.3 to obtain M�=2 so large that if xgR0
is a BS.m; n/–tile in the preferred positive sheet R� �C and lying outside the closed
M�=2–ball of R � T .jmj; n/ centered at v0 , and if w1;w2 2 xgR0 , then the angle
between v0w1 and v0w2 is less than �

2
. Then let N� DM�=2CR , where R > 0 is

chosen so large that every BS.m; n/–tile that intersects B.v0;M�=2/ is contained in
B.v0;M�=2CR/.

Now let xgR0 be an arbitrary BS.m; n/–tile and R � � a sheet of T .jmj; n/ that
contains xgR0 .

Case 1 (R�� is a positive sheet) In the case of the standard tiling of R�T .jmj; n/

(by exponentially growing rectangles) we observed that the standard tiling of R� �

is identical up to horizontal translation to that of R� �C . So if the standardly tiled
template of R��C were superimposed on R�� , each tile of R�� would be contained
in a pair of side-by-side tiles of R� �C . This remains true after conjugating the action
by f . Therefore the tile xgR0 fits within a pair of side-by-side BS.m; n/–tiles of R��C

superimposed upon R� � . So by the triangle inequality for angle measure and the
choice of N� , the angle between v0w1 and v0w2 is less than � provided xgR0 lies
outside the closed N�–ball.

Case 2 (R� � is arbitrary) As noted previously, the standard tiling of an arbitrary
sheet of R�T .jmj; n/ refines the standard tiling of an appropriately chosen positive
sheet. The same then is true for the BS.m; n/–tiling. Hence, the general case can be
deduced from Case 1.

Theorem 3.5 The BS.m; n/–action on R�T .jmj; n/, together with the visual com-
pactification R�T .jmj; n/ of R�T .jmj; n/ with the `2 metric, is a Z–structure for
BS.m; n/.
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Proof We need only verify the nullity condition of Definition 2.5. Toward that end let
U be an open cover of R�T .jmj; n/, and apply Lemma 2.3 to obtain a ı > 0 with
the property that every basic open subset of R�T .jmj; n/ of the form U.z; 1=ı; ı/,
with z 2 @1.R�T .jmj; n//, is contained in some element of U . By Lemma 2.7 and
properness of the action, it then suffices to find N > 0 such that every BS.m; n/–
translate xgR0 of R0 which lies outside B.v0; N / is contained in U.z; 1=ı; ı/ for
some z 2 @1.R�T .jmj; n//.

Suppose xgR0 lies outside B.v0; N /, where N is yet to be specified. Choose a sheet
R � � containing xgR0 and a point w0 2 xgR0 . The Euclidean ray ��!

v0w0 in R � �

is an element of @1R� T .jmj; n//; call it z . Its projection onto the .1=ı/–sphere
of R�T .jmj; n/ is the point z.1=ı/ where the ray ��!

v0w intersects the semicircle of
radius 1=ı in R� � . For any other point w 2 xgR0 , let p1=ı.w/ denote the projection
onto the .1=ı/–sphere. By the law of cosines, the distance between p1=ı.w/ and z.1=ı/
is
p
.2=ı2/.1� cos �/, where � is the angle between the segments w0v0 and v0w.

Since ı is constant, this distance can be made arbitrarily small (in particular < ı ), by
forcing � to be small. By Corollary 3.4, this can be arranged by making N sufficiently
large. Lastly, one should be sure to choose N > 1=ı .

Corollary 3.6 Every generalized Baumslag–Solitar group admits a Z–structure.

Proof This argument was provided in Section 3.1.

Remark Our choice of “compressing function” for the R–coordinate, essentially
x

f1
�! log log.x C e/, is somewhat arbitrary. (In an earlier draft we used x 7!p
log.xC 1/, which also worked.) A key property is that limx!1 f1.exp x/=x D 0,

or equivalently limx!1 f1.x/=log x D 0; this ensures that translates of compacta
become small when pushed vertically by powers of t . If another function is chosen,
care must be taken to maintain control over compacta pushed in other directions (see
Figure 3 and the corresponding calculations).

Another issue affected by the choice of compressing function is the ability, or lack
thereof, to extend the action to the visual boundary (a topic to be discussed in the
next section). Some flexibility still exists, but a compressing function that leads to
a Z–structure may not yield an EZ–structure; moreover, among those that give EZ–
structures, the induced boundary actions can vary.

Our choice of compressing function was made because it works: it leads to EZ–
structures for Baumslag–Solitar groups, and the resulting calculations are reasonably
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clean. For geometrically similar groups, an analogous “compressing trick” might be
useful, and in those cases the ability to vary the compressing function might become
important. An example of this phenomenon can be found in [15].

4 EZ–structures on Baumslag–Solitar groups

We complete the proof of Theorem 1.2 by showing that the BS.m; n/–action on
R�T .jmj; n/ extends to the visual compactification R�T .jmj; n/. Since this action
is not by isometries and, more specifically, this action does not send rays to rays, this
observation is not immediate.

Note that, since T .jmj; n/ is a Bass–Serre tree for BS.m; n/, there is a natural action
by isometries of BS.m; n/ on T .jmj; n/. As such, this action extends to the visual
compactification of T .jmj; n/ (which is just its end-point compactification) in the obvi-
ous way. As noted previously, @1.R�T .jmj; n// is the suspension S0�@1T .jmj; n/,
which we may parametrize as the quotient space Œ0; ��� @1T .jmj; n/=�. Here the
equivalence relation identifies the sets f0g � @1T .jmj; n/ and f�g � @1T .jmj; n/
to the right- and left-hand suspension points, which we denote by R and L. Each
edge path ray � in T .jmj; n/ emanating from v0 uniquely determines both a point
of @1T .jmj; n/ and a sheet R� � �R�T .jmj; n/. The great semicircle C� of rays
in R� � based at v0 (parametrized by the angles they make with the positive x–axis),
trace out the set Œ0; ��� f�g � S0 � @1T .jmj; n/.

Given a homeomorphism hW @1T .jmj; n/! @1T .jmj; n/, the suspension of h is the
homeomorphism of S0 � @1T .jmj; n/ which fixes R and L and takes each great
semicircle C� to Ch.�/ in a parameter-preserving manner. The reflected suspension
of h switches R and L and takes the point on C� with parameter � to the point
on Ch.�/ with parameter � � � . We will complete the proof of Theorem 1.2 for
cases m> 0 by proving the following proposition.

Proposition 4.1 For m > 0, the suspension of the BS.m; n/–action on @1T .m; n/
extends the BS.m; n/–action on R�T .m; n/.

Remark Cases where m< 0 require the use of reflected suspensions; we will handle
those cases after completing Proposition 4.1.

The proof of Proposition 4.1 requires some additional terminology and notation. Thus
far we have understood the space R � T .jmj; n/ as a union of sheets, each with a
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common origin v0 D .0; v0/ and a common “edge”, R� fv0g. As such, each sheet
has a natural system of Euclidean local coordinates, where a point .x; y/ 2 R � �

is represented by the pair of real numbers .x; d/, where d is the distance along �
from v0 to y .

Since the actions of BS.m; n/ on R�T .jmj; n/ (standard and conjugated) do not send
sheets to sheets, it is useful to expand our perspective slightly. If � is an arbitrary
edge path ray in T .jmj; n/ emanating from a vertex v , then R�� is again convex and
isometric to a Euclidean half-plane. Call R� � a generalized sheet and attach to it the
obvious system of Euclidean local coordinates, where vD .0; v/ plays the role of the
origin. Note that

� if v0 lies on � , then R�� contains the sheet R�� 0 where � 0� � is the subray
beginning at v0 ; and

� if v0 … � , there is an edge path ray � 0 emanating from v0 and containing � as
a subray, in which case the sheet R� � 0 contains R� � .

In each of the above cases, the edges of half-planes R � � and R � � 0 cobound a
Euclidean strip in the larger of the two sets. As a result, a ray in R� � emanating
from an arbitrary edge point .x; v/ at an angle � with Œx;1/� fvg is asymptotic in
R� T .jmj; n/ to the ray in R� � 0 emanating from v0 and forming the same angle
with Œ0;1/� v0 . As such, both rays represent the same element of S0 � @1T .m; n/,
the point on the semicircle C� 0 with parameter � .

Proof of Proposition 4.1 In this proof we allow s and t to represent the isometries
generating the action of BS.m; n/ on the Bass–Serre tree T .m; n/ as well as the
extensions of those isometries to the visual compactification of T .m; n/. We use
the same symbols to denote the homeomorphisms generating the standard BS.m; n/–
action on R�T .m; n/, as described in Section 3.2.1 It will be useful to have formulaic
representations of these functions.

As an isometry of T .m; n/, s fixes v0 , but permutes the collection of rays emanating
from that vertex. As a self-homeomorphism of R� T .m; n/, the action of s on the
R–coordinate is translation by 1

n
. So, if R � � is an arbitrary sheet and �0 is the

image of � under s in the Bass–Serre tree, then, as a homeomorphism of R�T .m; n/,

1This notation is reasonable since the isometries s; t W T .m; n/! T .m; n/ are precisely the T .m; n/–
coordinate functions of the corresponding self-homeomorphisms of R�T .m; n/ .

Algebraic & Geometric Topology, Volume 19 (2019)



2094 Craig R Guilbault, Molly A Moran and Carrie J Tirel

s takes points of R� � with local coordinates .x; d/ to points of R� �0 with local
coordinates

�
xC 1

n
; d
�
.

As an isometry of T .m; n/, t sends v0 to a vertex v1 , one unit away; and as a self-
homeomorphism of R�T .m; n/, the action of t on the R–coordinate is multiplication
by n

m
. So, if R � � is an arbitrary sheet and �0 is the image of � under t in the

Bass–Serre tree, t takes points of R� � with local coordinates .x; d/ to points of
R� �0 with local coordinates

�
n
m
x; d

�
.

Now consider the homeomorphisms xs D f ı s ı f �1 and xt D f ı t ı f �1 which
generate the B.m; n/–action on R�T .jmj; n//. Since the suspension of a composition
is the composition of the suspensions, it is enough to verify the proposition for these
two elements. Recall that f and f �1 are given by the formulas

.x; y/
f
�!

�
sgn.x/ log log.jxjC e/; y

�
and

.x; y/
f �1

��!
�
sgn.x/

�
exp exp jxj � e

�
; y
�
:

Let R� � be an arbitrary sheet, and for p; q 2 Z with p � 0, let Erp=q D f.qx; px/ j
x 2RCg, ie Erp=q is the ray in R� � with slope p

q
. If �0 is the image of � under s in

the Bass–Serre tree, then xs takes R� � onto R� �0 and the image of Erp=q is the set
of points with local coordinates

(4-1)
n�
ıq;x;n � log log

�
exp exp.jqjx/C 1

n

�
; px

� ˇ̌
x 2RC

o
;

where ıq;x;n D˙1 is a small variation on sgn.q/. Specifically,

ıq;x;n D sgn
�

sgn.q/ log log.xC e/C 1

n

�
;

which is identical to sgn.q/ except when log log.x C e/ < 1
n

and q < 0. Most
importantly, the image of Erp=q under xs is a topologically embedded (nongeodesic)
ray in R� �0 which, in local coordinates, emanates from

�
log log

�
eC 1

n

�
; 0
�

and is
asymptotic to geodesic rays in R� �0 with slope p

q
. That is easily seen by letting x

approach infinity in formula (4-1). From this it can be seen that the restriction of xs
taking R � � onto R � �0 extends to the visual boundaries of these half-planes by
taking C� onto C�0 in a parameter-preserving manner. Since this is true for each sheet,
it follows that the suspension of the homeomorphism sW @1T .m; n/! @1T .m; n/

extends xsW R�T .m; n//!R�T .m; n// over the visual boundary.
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Next consider the homeomorphism xt . Again let Erp=q be a ray (as described above) in
an arbitrary sheet R�� and let �0 be the t –image of � under the action on T .m; n/. In
local coordinates, the image of Erp=q is the set of points in R��0 with local coordinatesn�

sgn.q/ log log
�
n

m
exp exp.jqjx/C m�n

m
� e
�
; px

� ˇ̌
x 2RC

o
:

Consider now the ratios of the coordinates of these points as x gets large, ie

sgn.q/ � lim
x!1

px

log log
�
n
m

exp exp.jqjx/C m�n
m
� e
� :

By another elementary but messy calculation, this limit is p
q

. As such, the image
of Erp=q under xt is a topologically embedded (nongeodesic) ray in R� �0 emanating
(in local coordinates) from .0; 0/ and asymptotic to rays in R� �0 with slope p

q
. As

before, the restriction of xt taking R� � onto R� �0 extends to the visual boundaries
of these half-planes by taking C� onto C�0 in a parameter-preserving manner. And
since this is true for all sheets, the suspension of t W @1T .m; n/! @1T .m; n/ extends
xt W R�T .m; n/!R�T .m; n/ over the visual boundary.

To complete Theorem 1.2, we need an analog of Proposition 4.1 for m< 0. In those
cases, we cannot simply suspend the BS.m; n/–action on @1T .jmj; n/ to get the
appropriate extension of the BS.m; n/–action on R�T .jmj; n/. That is because the
homeomorphisms t and xt now flip the orientation of the R–factor. More precisely,
if r W R�T .jmj; n/!R�T .jmj; n/ is the reflection homeomorphism taking .x; y/
to .�x; y/, then t and xt are the homeomorphisms r ı t 0 and r ı t 0 , where t 0 and t 0 are
the homeomorphisms studied earlier in cases where m> 0. Obviously, if t 0 extends
to the visual boundary of R � T .jmj; n/, then xt extends to the visual boundary of
R�T .jmj; n/ via the reflected suspension of that same homeomorphism. By contrast,
the homeomorphisms s and xs are no different when m< 0 than they are when m> 0.

For m < 0 define �W BS.m; n/! Z to be the quotient map obtained by modding
out by the normal closure of the subgroup hsi. Then, for an action of BS.m; n/ on
@1T .jmj; n/, define the corresponding t –reflected action of BS.m; n/ on the space
S0 � @1T .jmj; n/ as follows:

� if �.g/ is even, then gW S0�@1T .jmj; n/!S0�@1T .jmj; n/ is the suspension
of gW @1T .jmj; n/! @1T .jmj; n/; and

� if �.g/ is odd, then gW S0 � @1T .jmj; n/! S0 � @1T .jmj; n/ is the reflected
suspension of gW @1T .jmj; n/! @1T .jmj; n/.
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The proof of the following is now essentially the same as Proposition 4.1.

Proposition 4.2 For m < 0, the t –reflected suspension of the BS.m; n/–action on
@1T .jmj; n/ extends the BS.m; n/–action on R�T .jmj; n/.

Remark The argument by which Z–structures for generalized Baumslag–Solitar
groups were obtained from the existence of Z –structures on ordinary Baumslag–Solitar
groups does not extend to EZ–structures. That is because equivariance can be lost
when applying Proposition 2.8. We leave the issue of EZ–structures for generalized
Baumslag–Solitar groups for later.
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