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Abstract. Bestvina introduced a Z-structure for a group G to generalize the bound-
ary of a CAT(0) or hyperbolic group. A refinement of this notion, introduced by Farrell
and Lafont, includes a G-equivariance requirement, and is known as an EZ-structure.
A recent result of the first two authors with Tirel put EZ-structures on Baumslag–Solitar
groups and Z-structures on generalized Baumslag–Solitar groups. We generalize this to
higher dimensions by showing that fundamental groups of graphs of closed nonpositively
curved Riemannian n-manifolds (each vertex and edge manifold is of dimension n) ad-
mit Z-structures, and graphs of negatively curved or flat Riemannian n-manifolds admit
EZ-structures.

1. Introduction. Suppose that a discrete group G acts properly and co-
compactly by isometries on a CAT(0) spaceX. The spaceX can be naturally
compactified by attaching the visual boundary ∂∞X, and X = X ∪ ∂∞X is
homotopy equivalent to X. In fact, ∂∞X is a Z-set in X, meaning that ∂∞X
can be instantly homotoped (1) intoX. Furthermore, large translates of com-
pact sets in X “look small”, i.e. if K is a compact set and x0 ∈ X, then the
visual diameter of {gnK}∞n=1 as viewed at x0 goes to 0 if d(1, gn)→∞ in G.
It follows that for any open cover U of X, all but finitely many translates
of K are contained in an element U ∈ U .

In [3], Bestvina introduced the concept of a Z-structure on a group G in
order to generalize the boundary of a CAT(0) (or word hyperbolic) group:
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(1) More precisely, there is a homotopy ht : X → X such that h0 = IdX and
ht(X) ⊂ X for all t > 0.
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Definition 1.1. A Z-structure on a group G is a pair of spaces (X,Z)
satisfying the following four conditions:

(1) X is a compact absolute retract,
(2) Z is a Z-set in X,
(3) X = X − Z is a proper metric space on which G acts properly and

cocompactly by isometries,
(4) X satisfies the nullity condition with respect to the G-action: for every

compact K ⊂ X and any open cover U of X, all but finitely many
G-translates of K lie in an element of U .
If the group action of G on X extends to X, this is called an EZ-

structure [17]. In Bestvina’s original definition, the action on X was required
to be free and X was required to be a Euclidean retract (finite-dimensional
absolute retract). The modified definition here is due to Dranishnikov [13].
Among other things, this modification allows for groups with torsion. It is
still open whether all groups of type F (or even type F ∗ or F ∗AR) admit
Z-structures (2).

Many properties of CAT(0) or hyperbolic boundaries transfer over to
this general setting. For example: the dimension of a Z-boundary is equal to
the global cohomological dimension of that boundary; the Čech cohomology
of Z determines H∗(G;ZG); and, when G is torsion-free, the cohomological
dimension of G is 1 + dimZ. See [3], [13] and [20].

In this paper, we are concerned with the following question:

Question. Suppose a groupG acts properly and cocompactly on aCAT(0)
space X by homeomorphisms. Under what conditions is (X, ∂∞X) part of an
(E)Z-structure for G?

We note that the change to an action by homeomorphisms does not af-
fect property (2) of Definition 1.1. In fact, in [1], it is shown that in this
case there is a topologically equivalent metric on X for which the action is
by isometries. Thus, in this situation, properties (1)–(3) are always satis-
fied. The key property to check then is the nullity condition. The latter can
certainly fail for some actions, for example, the Baumslag–Solitar group

BS(1, 2) = 〈a, t | tat−1 = a2〉
acts properly and cocompactly on the product T ×R, where T is a trivalent
tree. Certain translates of a fundamental domain have exponentially growing
height (as measured by the distance to a fixed basepoint) in T ×R, and this
implies X fails the nullity condition.

To get around this problem, the first two authors with Tirel [19] modified
the action of BS(1, 2) (or more generally BS(m,n)) on T ×R by “compress-

(2) See [20] for definitions.
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ing the R-direction”. The rough idea is to conjugate the given action by a
homeomorphism of T × R which is the identity on T and shrinks distances
in the R-direction. This changes the exponential growth of the diameter of
translates of a fundamental domain to sublinear growth (the diameters are
still forced to go to infinity), which is enough to ensure the nullity condi-
tion.

In the present paper, we give a more general picture of when this strat-
egy works. Our setup requires that the CAT(0) space splits as a Cartesian
product X × Y . Then, given a fundamental domain K, we insist that all
G-translates of K have uniformly bounded diameter in the X-direction, and
have “properly controlled” diameter in the Y -direction. Finally, we assume
Y is compressible, which roughly means that Y admits homeomorphisms
which uniformly shrink all compact sets K ⊂ Y (see Definition 4.1). With
this setup, we can perform the same conjugating trick as in [19] to produce
a Z-structure.

The compressibility hypothesis on Y is rather strong since it requires
that compressing be done via homeomorphisms. This rules out a variety of
important candidates for the space Y . Remark 4.6 and Section 8 address
some of the limitations imposed by this hypothesis. Nevertheless, we show
that all simply connected nonpositively curved Riemannian manifolds are
compressible. This allows us to take on an important and well-studied class
of groups. One of our main theorems is the following:

Theorem 1.2. Fundamental groups of graphs of closed nonpositively
curved Riemannian n-manifolds have Z-structures.

Here, a graph of closed nonpositively curved n-manifold groups means a
finite connected graph of groups, where each vertex and edge group is the
fundamental group of a closed nonpositively curved Riemannian n-manifold
(where n is the same for each vertex and edge). Equivalently, we could have
required that each vertex group is the fundamental group of a closed non-
positively curved n-manifold and each edge group is finite index in its vertex
groups. The coarse geometric structure of these groups has been studied
by Farb–Mosher [15], and more generally by Mosher–Sageev–Whyte [21]. In
those papers, graphs of groups with the finite index property for edge groups
are referred to as geometrically homogeneous.

The beauty of the geometric homogeneity property is that the fundamen-
tal group frequently acts properly and cocompactly on a Cartesian product
space T × M̃v, where M̃v is the universal cover of a vertex space (in our case
and in the case of [15], a Riemannian manifold homeomorphic to Rn) and
T is the associated Bass–Serre tree. Even though the action is usually not
by isometries, the CAT(0) geometry of T × M̃v under the `2-metric, with its
corresponding visual boundary, turns out to be quite useful.
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In addition to the above theorem, we give conditions under which our
(new) G-action extends to X. Roughly speaking, we need to know that
certain covering maps lift to maps on the universal cover which extend to
visual boundaries; we also need a compressing homeomorphism that does not
change much under linear reparametrization of the domain. If each vertex
manifold is negatively curved or flat, our conditions will be satisfied, so we
have the following:

Theorem 1.3. Fundamental groups of graphs of closed negatively curved
or flat Riemannian n-manifolds have EZ-structures.

As in the proof of Theorem 1.2 the CAT(0) geometry of T × M̃v plays a
vital role in the proof of this theorem.

A somewhat surprising ingredient in some part of the proofs of our main
theorems is the use of the theory of Hilbert cube manifolds as pioneered
by Anderson, Chapman, West, Toruńczyk, Edwards, and others. See [10]
and [25] for overviews of the subject. Most—but not all—of our results can
be obtained without the use of Hilbert cube manifolds, the key exception
being the n = 4 cases of our main theorems. Perhaps more importantly, the
Hilbert cube manifolds approach (which is valid in all dimensions) has the
potential for proving theorems beyond the scope of this paper. We expand
upon that thought in Section 9. The authors thank the referee, who pushed
us to include this approach in the current article. Prior to the requested
revisions, we had overlooked a gap in our proofs when n = 4.

2. Boundaries of CAT(0) spaces. We will assume the reader is fa-
miliar with the definitions and basic facts about CAT(0) spaces; see [6] for
complete details.

Let X be a proper CAT(0) space, and let ∂X be the boundary of X. Fix
a base point x0 ∈ X. Each equivalence class of rays in ∂X contains exactly
one representative emanating from x0. We may endow X = X ∪ ∂X with
the cone topology, described below, under which ∂X is a closed subspace
of X and X is compact. Equipped with the topology induced by the cone
topology on X, the boundary is called the visual boundary of X; we denote
it by ∂∞X.

The cone topology on X, for x0 ∈ X, is generated by the basis B =
B0 ∪ B∞, where B0 consists of all open balls B(x, r) ⊂ X and B∞ is the
collection of all sets of the form

U(c, r, ε) = {x ∈ X | d(x, x0) > r and d(pr(x), c(r)) < ε},

where c : [0,∞)→ X is any geodesic ray based at x0, r > 0, ε > 0, and pr is
the natural projection of X onto B(x0, r).
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Now, for each pair x ∈ X and ε > 0, let

V (x, ε) = {y ∈ X | d(x0, y) > d(x0, x) and d(x, pd(x0,x)(y)) < ε}.

Lemma 2.1. If B0 is the set of all open balls in a proper CAT(0) space X
and Vx0 is the collection of all V (x, ε) as defined above, then B0 ∪ Vx0 is a
basis for the usual cone topology on X.

Proof. Clearly each set U(ξ, r, ε) can be expressed as V (ξ(r), ε); so the
cone topology is at least as fine as the proposed topology. For the reverse
containment, suppose y ∈ V (x, ε) ∈ Vx0 . Let δ = ε − d(x, pd(x0,x)(y)).
If y ∈ ∂X then y ∈ U(y, d(x0, x), δ) ⊆ V (x, ε). If y ∈ X, define W =
B(y, δ) \ B(x0, d(x0, x)). Since projection onto B(x0, d(x0, x)) does not in-
crease distances, W ⊆ V (x, ε). It follows that V (x, ε) is open in the cone
topology, so the proposed topology is at least as fine as the cone topology.

The following lemma is similar in spirit to the Lebesgue covering lemma
and is a generalization of [19, Lemma 2.3].

Lemma 2.2. Let (X, d) be a proper CAT(0) space and let U be an open
cover of X. Then there exist R � 0 and δ > 0 such that for every x ∈
X \B(x0, R), V (x, δ) lies in an element of U .

Proof. Without loss of generality we may assume U consists entirely
of elements from the basis B0 ∪ Vx0 . Since ∂∞X is compact, there exists
{U1, . . . , Uk} ⊆ U that covers ∂∞X For each i, write Ui = V (xi, εi). Since
X\
⋃k
i=1 Ui is a closed subset of X which contains no infinite rays, an Arzelà–

Ascoli argument shows that X \
⋃k
i=1 Ui is bounded. Choose R� 0 so that

R > max{d(x0, xi) | 1 ≤ i ≤ k} and X \
k⋃
i=1

Ui ⊆ B(x0, R).

Note that if an open ball B(x, ε) lies in Ui then V (x, ε) ⊆ Ui. It follows that,
for each x ∈ S(x0, R), there exists some εx > 0 such that V (x, εx) is con-
tained in some Ui. For each i ∈ {1, . . . , k}, define a function ηi : S(x0, R)→
[0,∞) by ηi(x) = sup {ε |V (x, ε) ⊆ Vi}. Note that ηi is continuous, and
ηi(x) > 0 if and only if x ∈ Vi. Thus, η : S(x0, R) → [0,∞) defined by
η(x) = max {ηi(x)}ki=1 is continuous and strictly positive. Let δ′ be the min-
imum value of η and set δ = min {δ′/2, 1/R}. Clearly V (x, δ) lies in some Ui
for all x ∈ S(x0, R). Moreover, if d(x0, x) > R then V (x, δ) ⊆ V (pR(x), δ);
so again V (x, δ) lies in some Ui.

Definition 2.3. A function φ : R+ → R+ is sublinear if

lim
x→∞

φ(x)

x
= 0.
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A function φ : R+ → R+ is uniformly sublinear if

φ̄(t) := max
|x−y|=t

|φ(x)− φ(y)|

is sublinear.

For example, log(x+ 1) : R+ → R+ is a uniformly sublinear homeomor-
phism.

Lemma 2.4. Suppose (X, d) is a proper CAT(0) space. If φ : R+ → R+

is sublinear and U is an open cover of X then there exists T > 0 such that
whenever d(x0, x) > T , B(x, φ(d(x0, x))) lies in some U ∈ U .

Proof. Choose R � 0 and δ > 0 as in the previous lemma. We can
assume that δ < 1/R. By sublinearity, choose T > 0 so that φ(t)

t−φ(t) < δ2 and
t− φ(t) > R for all t ≥ T . It suffices to prove:

Claim. If d(x0, x) > T , then B(x, φ(d(x0, x))) ⊆ V (pR(x), δ).

Let y ∈ B(x, φ(d(x0, x))). Then d(x, y)) < φ(d(x0, x)) and d(x0, x) −
φ(d(x0, x)) > R. Let x′ = pd(x0,x)−φ(d(x0,x))(x) and y′ = pd(x0,x)−φ(d(x0,x))(y).
Since projection does not increase distances, d(x′, y′) < φ(d(x0, x)). Then
d(pR(x′), pR(y′))

1/δ
≤ d(pR(x′), pR(y′))

R

≤ d(x′, y′)

d(x0, x)− φ(d(x0, x))
(CAT(0) inequality for 4x0x′y′)

≤ φ(d(x0, x))

d(x0, x)− φ(d(x0, x))
< δ2

Consequently, d(pR(x′), pR(y′)) < δ; and since pR(x′) = pR(x) and pR(y′) =
pR(y), we conclude that y ∈ V (pR(x), δ).

3. The Hilbert cube and Hilbert cube manifolds. To begin this
section, we provide a brief discussion of a simple CAT(0) space that will
play a useful role in our main theorems. Let Iω denote the infinite prod-
uct

∏∞
i=0[0, 1/2

i] endowed with the metric d((xi), (yi)) = (
∑
|xi − yi|2)1/2.

This metric induces the standard product topology, so Iω is just a metrized
version of the Hilbert cube. For each nonnegative integer n, endow In =∏n−1
i=0 [0, 1/2i] ⊆ Rn with the subspace metric, where Rn denotes n-dimen-

sional Euclidean space. Clearly In is CAT(0) and the obvious inclusion
In ↪→ Iω is an isometric embedding. It follows that Iω is CAT(0) since
a “fat triangle” in Iω could otherwise be projected into In (for large n) to
obtain a fat triangle in In.

If (X, d) is a proper CAT(0) space, then so is X×Iω, under the `2-metric.
Moreover, ∂∞(X × Iω) ≈ ∂∞X; in fact, for arbitrary p ∈ Iω, X × {p} ↪→
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X × Iω extends continuously to an inclusion map X̂ ×{p} ↪→ X̂ × Iω which
is a homeomorphism between visual boundaries.

A Hilbert cube manifold is a separable metric space with the property
that every point has a neighborhood homeomorphic to Iω. A surprising fact
about Iω is that it is homogeneous, i.e., for any x, y ∈ Iω there exists a
homeomorphism of Iω taking x to y. From this, it is easy to see that (as in
finite dimensions) all connected Hilbert cube manifolds are homogeneous.

In Section 7, we will make essential use of some classical theorems from
the topology of Hilbert cube manifolds. We state those results here for easy
access.

Theorem 3.1 ([27]). If X is a locally finite CW-complex then A× Iω is
a Hilbert cube manifold.

Theorem 3.2 ([9]). A map f : A → B between finite CW-complexes is
a simple homotopy equivalence (in the sense of [28] and [11]) if and only if
f × idIω : A× Iω → B × Iω is homotopic to a homeomorphism.

Building upon his own work, along with work by West [26] and others,
Chapman [8] used Hilbert cube technology to extend simple homotopy theory
to the category of compact ANRs. From there, Edwards [14], building on
work by Toruńczyk [23], [24], obtained the following generalization of the
above theorems. Strictly speaking, we do not need this generalization for
our main theorem, but believe it could be useful in attacking the problems
posed in Section 9.

Theorem 3.3. The product of a locally compact ANR with Iω is a Hilbert
cube manifold. Moreover, a map f : A → B between compact ANRs is a
simple homotopy equivalence if and only if the map f×idIω : A×Iω → B×Iω
between Hilbert cube manifolds is homotopic to a homeomorphism.

4. Z-structures and compressible spaces. The following is our main
definition. Recall that a function f : X → Y is proper if preimages of
compact sets are compact.

Definition 4.1. A proper metric space Y is compressible if for any
proper function ψ : R+ → R+ there is a homeomorphism hψ : Y → Y
such that for every compact set K ⊂ Y with diam(K) < ψ(R), we have
diam(hψ(K)) < φ(R) for φ : R+ → R+ a sublinear function. We say hψ is a
compressing homeomorphism.

Of course, it suffices to check compressibility for K being two points, but
it is convenient to state it for all compact sets. For applications to geometric
group theory, the following is obvious, but useful.



8 C. Guilbault et al.

Proposition 4.2. If a map f : X → Y between proper metric spaces is
both a homeomorphism and a quasi-isometry, and X is compressible, then
so is Y .

We can now state our main technical theorem, which generalizes the main
result of [19].

Theorem 4.3. Suppose G acts properly and cocompactly on X×Y , where
X and Y are CAT(0) and Y is compressible. Let (x0, y0) be a basepoint in
X × Y . Let πX : X × Y → X × y0 and πY : X × Y → x0 × Y be the
projections onto each factor. Assume that for a fixed compact K in X × Y
with GK = X × Y ,

(1) there is S > 0 such that diam(πX(gK)) < S for all g ∈ G,
(2) there is a proper function ψ : R+ → R+ such that if πX(gK)⊂BX(x0, R),

then diam(πY (gK)) < ψ(R).

Then there exists a proper cocompact action of G on X×Y such that (X×Y,
∂∞(X × Y )) is a Z-structure for G.

Proof. Let hψ : Y → Y be a compressing homeomorphism for ψ, and
extend this to the homeomorphism Hψ := (idX , hψ) : X × Y → X × Y . Let
f : G → Homeo(X × Y ) be the given action. Now, modify the action by
conjugating with Hψ, i.e. define a new action by

fHψ(g) : X × Y → X × Y, fHψ(g) = Hψf(g)H−1ψ .

This conjugated action is again proper and cocompact. We only need to verify
the nullity condition. If K is a fundamental domain for the original G-action,
then Hψ(K) is a fundamental domain for the conjugated action. Let g ∈ G,
and consider a translate fHψ(g).K. By construction, this is contained in a
product of balls B(x, 2S)×B(y, φ(d(x0, x))) for sublinear φ and some x ∈ X.
By Lemma 2.4, the collection B = B(x, 2S)×B(y, φ(d(x0, x))) satisfies the
nullity condition.

We now give examples of compressible spaces.

Lemma 4.4. R+ with the standard metric is compressible.

Proof. By choosing a larger function, we can assume the proper function
ψ : R+ → R+ is increasing and ψ(x + y) ≥ ψ(x) + ψ(y) for all x, y ∈ R+.
Since ψ is increasing, we can define the inverse ψ−1 : [ψ(0),∞)→ R+. Given
an interval [a, a+ ψ(R)] with a > ψ(0), we have

ψ−1([a, a+ ψ(R)]) ⊂ [ψ−1(a), ψ−1(a) +R].

Now, let the homeomorphism ĥψ : R+ → R+ be defined by

ĥψ(x) =

{
x, 0 ≤ x ≤ ψ(0),

φ(ψ−1(x)) + ψ(0), x ≥ ψ(0),
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where φ is a uniformly sublinear homeomorphism with φ(0) = 0. It follows
that for any a, a′ with d(a, a′) < ψ(R), d(hψ(a), hψ(a′)) < φ(R) + ψ(0).

Note that we can also assume ĥψ(x)/x is decreasing. Our main examples
of compressible spaces come from the following theorem.

Theorem 4.5. Let M be a simply connected, nonpositively curved, Rie-
mannian manifold. Then M is compressible.

Proof. We assume that the proper function ψ : R+ → R+ is increasing,
ψ(x+y) ≥ ψ(x)+ψ(y) for all x, y ∈ R+, and ĥψ is defined as in Lemma 4.4.
Fix a basepoint m0 ∈M . Let

expm0
: Tm0M

∼= Rn →M

be the exponential map which, by the Cartan–Hadamard Theorem, is a
diffeomorphism taking geodesic rays in Rn emanating from the origin to
geodesic rays in M emanating from m0. Consider the homeomorphism

hψ := expm0
◦h′ψ ◦ exp−1m0

: M →M

where h′ψ restricts to ĥψ on geodesic rays in Rn emanating from the origin.
Roughly speaking, hψ is the homeomorphism that restricts to ĥψ on geodesic
rays in M emanating from m0.

Claim. hψ is a compressing homeomorphism for M .

Suppose that x and y are two points in M with d(x, y) < ψ(R). If
d(x,m0) = d(y,m0) = D, then d(hψ(x), hψ(y)) ≤ ĥψ(D)d(x, y)/D by the
CAT(0) inequality. Since D > d(x, y)/2, by our assumption that ĥψ(x)/x is
decreasing we deduce that

ĥψ(D)d(x, y)

D
<
ĥψ(d(x, y)/2)d(x, y)

d(x, y)/2
= 2ĥψ

(
d(x, y)

2

)
< 2φ(R)

In general, assume that d(x,m0) < d(y,m0), and choose z such that
d(x,m0) = d(z,m0) and z lies on the same ray emanating from m0 as y.
The projection of x to the geodesic between y and m0 is less than d(x,m0)
from m0. By convexity of the distance function we have d(x, z) < d(x, y).
Similarly, since metric balls are convex and z is the projection of y onto the
d(x,m0)-ball around m0, we have d(y, z) < d(x, y). So, by assumption we
have d(x, z) and d(z, y) < ψ(R). By the above, we see that

d(hψ(x), hψ(z)) ≤ 2ĥψ(ψ(R)) ≤ 2φ(R),

and by Lemma 4.4,

d(hψ(z), hψ(y)) < 2ĥψ(ψ(R)) ≤ 2φ(R),

so we have
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d(hψ(x), hψ(y)) ≤ d(hψ(x), hψ(y)) + d(hψ(y), hψ(z)) ≤ 4φ(R)

and we are done.

Remark 4.6. A number of comments regarding compressible spaces are
in order.

(1) For examples of compressible spaces not homeomorphic to Rn, let X
be a compact metric space and Cone∞(X) := X × [0,∞)/X × {0}. There
are natural “warped product” metrics that one can put on Cone∞(X) and,
for suitable choices, there are natural homeomorphisms which move points
towards the cone point along cone lines to produce a compressing homeo-
morphism. For example, X could be three points and Cone∞(X) the infinite
tripod equipped with the natural path metric.

(2) Compressing homeomorphisms like the ones described above and in
the proof of Theorem 4.5 are called radial compressions. More specifically, if
Y is homeomorphic to an open cone and ĥ : R+ → R+ is a homeomorphism,
then the map h : Y → Y which acts as ĥ on each cone line is called a radial
homeomorphism. When a CAT(0) space Y admits an open cone structure
where the cone lines are geodesic rays emanating from a fixed point y0 ∈ Y ,
the proof of Theorem 4.5 shows that, for any proper function ψ : R+ → R+

there is a homeomorphism ĥψ : R+ → R+ such that the corresponding radial
homeomorphism hψ : Y → Y is a compressing homeomorphism for ψ. We
call such a space radially compressible.

(3) For an example of a compressible space that is not radially compress-
ible, consider Rn×X, where Rn has the Euclidean metric and X is compact.
More generally, the product of a compressible space with a compact metric
space will always be compressible, when given the `2-metric.

(4) For a noncompressible CAT(0) space, let T be the universal cover of
the wedge of two circles. (For further discussion of this example, see Sec-
tion 8.)

(5) We are particularly interested in compressibility of universal covers
of closed aspherical manifolds. As shown above, universal covers of nonpos-
itively curved closed Riemannian n-manifolds are always compressible. Our
proof generalizes to CAT(0) universal covers only when there are no points
from which geodesic rays bifurcate. In Section 8 we will show that the exotic
universal covers constructed by Davis in [12], many of which are CAT(0),
are noncompressible. Knowing that a universal cover is homeomorphic to Rn
does not appear to be enough; in fact, we suspect it is a rare phenomenon
that a proper metric on Rn yields a compressible space.

(6) For a concrete example which exhibits our (lack of) knowledge outside
the nonpositively curved case, we do not know if the geometries NIL and
SOL are compressible, nor do we know if closed graph 3-manifolds have
compressible universal cover.
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5. EZ-structures. In this section we identify conditions on a compress-
ing homeomorphism hψ and on the initial action of G on X×Y which allow
us to improve the Z-structure (X × Y , ∂∞(X × Y )) from Theorem 4.3 to
an EZ-structure. In other words, we are looking to extend the conjugated
action of G on X ×Y to ∂∞(X ×Y ). Rather than striving for the most gen-
eral result, we prove a theorem that is sufficiently general for all applications
presented in this paper.

Recall that, for proper CAT(0) spaces X and Y , X × Y (with the `2-
metric) is CAT(0) with ∂∞(X × Y ) ≈ ∂∞X ∗ ∂∞Y . One of the conditions
we will impose on the G-action on X × Y is that it splits as a product of
G-actions. Neither of those actions is expected to be geometric, but another
hypothesis will ensure that they extend over ∂∞X and ∂∞Y . Our action on
∂∞X ∗ ∂∞Y will be the join of those actions.

For the purposes of this section, join lines of ∂∞X ∗ ∂∞Y are parame-
terized by [0,∞], so as to indicate slopes in X × Y . The following lemma is
based on standard CAT(0) geometry. We leave its proof to the reader.

Lemma 5.1. Let (X, dX) and (Y, dY ) be proper CAT(0) metric spaces;
α : [0,∞) → X and β : [0,∞) → Y be proper topological embeddings em-
anating from x0 and y0, respectively, and converging to points z ∈ ∂∞X
and w ∈ ∂∞Y . Let Q = {(α(t), b(t)) | t ∈ [0,∞)}. Then the closure of Q
in (X × Y, d2) is Q = Q ∪ Azw where Azw is the join line in ∂∞(X × Y )
connecting z to w. Furthermore, a proper topological ray (embedded or oth-
erwise) γ = (γ1, γ2) : [0,∞) → Q ⊆ X × Y converges to a point m ∈ Azw
(of slope m ∈ [0,∞]) if and only if

lim
t→∞

dY (γ2(t), y0)

dX(γ1(t), x0)
= m.

Let X and Y be proper CAT(0) spaces and assume

(i) h = (h1, h2) : X × Y → X × Y is a factor-preserving homeomorphism,
(ii) h1 : X → X is an isometry,
(iii) h2 : Y → Y is a homeomorphism and a quasi-isometry which extends

to a homeomorphism on Y , and
(iv) Y is radially compressible toward a basepoint y0.

Let ψ : R+ → R+ be a proper function, and let hψ : Y → Y be a
corresponding radial compression function based on a homeomorphism ĥψ :

R+ → R+ (see Remark 4.6). We say that ĥψ is linearly controlled if

lim
t→∞

ĥψgĥ
−1
ψ (t)

t
= 1

for all linear maps g : R+ → R+.



12 C. Guilbault et al.

Remark 5.2. By precomposing ĥψ with log(x+1), we can always assume
that ĥψ is a linearly controlled compressing homeomorphism for ψ.

Let ηm =
(
1
mη1, η2

)
be a ray in X × Y , where η1 and η2 are geodesic

rays emanating from x0 and y0, and 1
mη1(t) ≡ η1(t/m). Viewing η1 and η2

as elements of ∂∞X and ∂∞Y , respectively, ηm represents the point of the
join line Aη1η2 ⊆ ∂∞X ∗ ∂∞Y = ∂∞(X × Y ) at slope m (a generic point of
∂∞X ∗ ∂∞Y ). Next let Hψ = (idX , hψ) : X × Y → X × Y (as in the proof
of Theorem 4.3), and consider the topological ray

η′ = HψhH
−1
ψ ηm =

(
h1

(
1

m
η1

)
, hψh2h

−1
ψ η2

)
.

We wish to apply Lemma 5.1 with h1η1 and hψh2h
−1
ψ η2 playing the roles

of α and β. Clearly the radial homeomorphisms hψ and h−1ψ extend via the
identity to ∂∞Y . Since it is an isometry, h1 extends to a homeomorphism
of X; and by hypothesis, h2 extends to a homeomorphism of Y . Therefore
h1η1 and hψh2h−1ψ η2 satisfy the hypothesis on α and β, with h1η1 converging
to h1(η1) ∈ ∂∞X and hψh2h

−1
ψ η2 converging to h2(η2) ∈ ∂∞Y . Let x′0 :=

h1η1(0) = h1(x0) and y′0 := hψh2h
−1
ψ η2(0) = hψh2(y0).

The role of γ = (γ1, γ2) in our application of Lemma 5.1 is played by
ηm =

(
1
mη1, η2

)
. Hence, consider

lim
t→∞

dY (hψh2h
−1
ψ η2(t), y

′
0)

dX
(
h1
(
1
mη1

)
(t), x′0

) = lim
t→∞

dY (hψh2h
−1
ψ η2(t), y

′
0)/t

dX
(
h1
(
1
mη1

)
(t), x′0

)
/t
.

It is easy to see that

lim
t→∞

dX
(
h1
(
1
mη1

)
(t), x′0

)
t

=
1

m
.

Since h2 is a quasi-isometry, choose K ≥ 1 and ε ≥ 0 such that

1

K
d(y, y′)− ε ≤ d(h2(y), h2(y

′)) ≤ Kd(y, y′) + ε

for all y, y′ ∈ Y . In particular,

1

K
· ĥ−1ψ (t)− ε ≤ d(h2h

−1
ψ η2(t), h2(y0)) ≤ K · ĥ−1ψ (t) + ε.

So, letting C = d(h2(y0), y0), we have

1

K
· ĥ−1ψ (t)− C ≤ d(h2h

−1
ψ η2(t), y0) ≤ K · ĥ−1ψ (t) + C.
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Since ĥψ can be taken to be increasing, we have

ĥψ

(
1

K
· ĥ−1ψ (t)− (ε+ C)

)
≤ ĥψ

(
d(h2h

−1
ψ η2(t), y0)

)
≤ ĥψ(K · ĥ−1ψ (t) + ε+ C)

for t sufficiently large.
Notice now that

d(hψh2h
−1
ψ η2(t), y0) = hψ

(
d(h2h

−1
ψ η2(t), y0)

)
,

so, for sufficiently large t, we have

ĥψ

(
1

K
· ĥ−1ψ (t)− (ε+ C)

)
≤ d(hψh2h

−1
ψ η2(t), y0)

≤ ĥψ(K · ĥ−1ψ (t) + ε+ C).

Divide all three terms by t and let t→∞. By the linear control assumption
on ĥψ, the corresponding left- and right-hand limits are both 1, hence the
middle limit is 1. Finally, note that

d(hψh2h
−1
ψ η2(t), y0)− d(y0, y

′
0) ≤ d(hψh2h

−1
ψ η2(t), y

′
0)

≤ d(hψh2h
−1
ψ η2(t), y0) + d(y0, y

′
0).

Again divide all three terms by t and let t → ∞. Apply the above work to
once more conclude that the left- and right-hand limits are 1, so the middle
limit is 1 as well. Putting these pieces together and applying Lemma 5.1,
we see that the ray η′ = HψhH

−1
ψ ηm converges to the point of slope m in

∂∞X ∗ ∂∞Y on the join line between h1(η1) ∈ ∂∞X and h2(η2) ∈ ∂∞Y.
Therefore, we have the following theorem.

Theorem 5.3. Let X,Y, h, hψ be as above. Then the compressed homeo-
morphism hψhh

−1
ψ extends to the boundary ∂∞X ∗∂∞Y . The induced homeo-

morphism on ∂∞X∗∂∞Y is the join of the induced homeomorphisms on ∂∞X
and ∂∞Y .

6. Graphs of closed aspherical n-manifolds. We begin to focus on
our main class of examples, which can be thought of as higher-dimensional
analogues of generalized Baumslag–Solitar groups.

Suppose that G is the fundamental group of a finite connected graph
of groups (G, Γ ), with the property that each vertex group Gv is the fun-
damental group of a closed aspherical manifold Mv and, for each edge e,

the monomorphisms Ge
φ−e−−→ Gi(e) and Ge

φ+e−−→ Gt(e) are of finite index.
The primary goal in this section is to realize (G, Γ ) with a graph of cov-
ering spaces (as defined and developed in the appendix). The assumptions
on (G, Γ ) ensure that each Ge can be realized as the fundamental group
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of both a finite-sheeted cover M−e of Mi(e) and a finite-sheeted cover M+
e

of Mt(e). These covers are homotopy equivalent, but a priori, not homeo-
morphic. Being closed and aspherical, all vertex manifolds and their covers
are necessarily of the same dimension. To proceed, we need a single edge
space, for each edge e, which covers both of its vertex spaces (possibly the
same space, in cases where e is a loop in Γ ). We will describe two useful
approaches. Each approach requires an additional hypothesis that is conjec-
turally satisfied in all cases. The first is conceptually simpler; it chooses one
of the above-mentioned covers as the edge space and leaves the chosen ver-
tex manifolds in place. The second approach is more drastic, but has some
important benefits.

Approach I. Assume the Borel Conjecture holds for all edge groups.

At each vertex v of Γ , place the aspherical manifold Mv chosen above,
then realize φ−e and φ+e by finite-sheeted covering projections q−e : M−e →
Mi(e) and q+e : M+

e → Mt(e). By hypothesis, there is a homeomorphism
f : M−e → M+

e . Let Me = M−e and define p−e = q−e and p+e = q+e ◦ f to be
the edge maps.

Approach II. Assume that the Whitehead group of each edge group Ge
is trivial.

Using the same notation as above and the new hypothesis, M−e and M+
e

are simple homotopy equivalent, so by the results discussed in Section 3,
there is a homeomorphism f : M−e × Iω →M+

e × Iω. Replace each Mv with
Mv×Iω and, for each edge e, letM−e ×Iω be the edge space (denoted simply
by Me × Iω from now on). Then insert the covering maps p−e = q−e × idIω

and p+e = (q+e × idIω) ◦ f to complete the realization of (G, Γ ) as a graph of
covering spaces.

Given the hypothesis and setup in Approach I, we can form the total
space

X =
(⋃

v

Mv

)
∪
(⋃

e

Me × [0, 1]
)
,

where Me × {0} and Me × {1} are glued to Mi(e) and Mt(e) using covering
maps p−e : Me → Mi(e) and p+e : Me → Mt(e) as defined above. From there
we pass to the universal cover X̃ to get the desired G-space. Any geodesic
metric on X lifts to a G-invariant metric on X̃. This cover together with the
G-invariant metric satisfy the following properties (see [15] and the appendix
to the present paper for details):

• There is a distance nonincreasing projection map pT : X̃ → T , where T is
the Bass–Serre tree for (G, Γ ).
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• There is a homeomorphism H : X̃ → T × M̃v, where M̃v is the universal
cover of an arbitrary vertex space. Furthermore, p−1T (t) maps to t × M̃v

under H and, for all m ∈ M̃v, the map T → T × m → X̃ is a locally
isometric embedding.

• There exists C ≥ 1 such that for all edges e of T and v ∈ e, the retraction
r : e→ v induces a projection

p−1T (e)
H−→ e× M̃v → v × M̃v

H−1

−−−→ p−1t (v)

which is C-Lipschitz.

The reader can compare these statements with the well-known picture of
the Cayley complex of the Baumslag–Solitar group BS(m,n) (homeomor-
phic to T × R, where T is the Bass–Serre tree of the splitting and R = S̃1).

In the case of Approach II, everything works the same as above, except
that the vertex and edge spaces are now the aspherical Hilbert cube man-
ifolds Mv × Iω and Me × Iω and their universal covers are M̃v × Iω and
M̃e × Iω. The spaces X and X̃ are now Hilbert cube manifolds.

The above may be summarized as follows.

Theorem 6.1. Let (G, Γ ) be a finite connected graph of groups (G, Γ ),
with the property that each vertex group Gv is the fundamental group of a
closed aspherical manifold Mv and, for each edge e, the monomorphisms

Ge
φ−e−−→ Gi(e) and Ge

φ+e−−→ Gt(e) are of finite index. Then:

(I) if the Borel Conjecture holds for each edge group Ge, then (G, Γ ) can be
realized by a graph of covering spaces with vertex spaces Mv;

(II) if the Whitehead group Wh(Ge) vanishes for each Ge, then (G, Γ ) can
be realized by a graph of covering spaces where the vertex spaces are the
Hilbert cube manifolds Mv × Iω.

Remark 6.2. For the purposes of this paper, Approaches (I) and (II) lead
to nearly identical places. That is largely due to our reliance on a compress-
ibility hypothesis, which we can verify only for nonpositively curved Rieman-
nian manifolds. Farrell and Jones [16] have shown that, with one significant
exception, both the Borel Conjecture and the triviality of the Whitehead
group hold for (fundamental groups of) closed nonpositively curved Rie-
mannian manifolds. The exception occurs when n = 4, where their surgery-
theoretic proof of the Borel Conjecture does not apply. As such, Approach
(II) is essential for obtaining the n = 4 case of our main results. Approach
(II) also holds promise for proving more general theorems, but that is likely
to require a different method—one that does not involve compressibility.
Further discussion of that idea is included in Section 9.
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7. Graphs of nonpositively curved Riemannian n-manifolds. We
are now ready to present our main results, in which we apply Theorems 6.1,
4.3 and 5.3 to provide new classes of groups that admit (E)Z-structures.

Theorem 7.1. Suppose G is the fundamental group of a finite graph of
groups, where each vertex group is the fundamental group of a closed, non-
positively curved Riemannian manifold, and each edge group is finite index
in the corresponding vertex groups. Then G admits a Z-structure. If the lifts
to universal covers of all covering maps p−e : Me → Mi(e) and p+e : Me →
Mt(e) (discussed above) extend over the visual boundaries, then G admits an
EZ-structure.

Proof. For the sake of simplicity, begin by assuming that n 6= 4. Then,
by [16], the Borel Conjecture holds for each edge group, so we may use the
graph of covering spaces described in Approach I above.

Our initial task is to check the conditions found in Theorem 4.3. Using the
homeomorphism X̃ → T×M̃v noted above, G acts properly and cocompactly
on the product T×M̃v. (For a more detailed discussion of this action, see the
appendix.) By Theorem 4.5 and Proposition 4.2, M̃v is compressible for any
π1(Mv)-equivariant metric. Choose any nonpositively curved Riemannian
metric. We fix a basepoint t0 ∈ T ; make M̃v isometric to p−1T (t0); put the
usual metric on T ; and give T×M̃v the product metric. Choose a compact set
K in X̃ so that GK = X̃. Note that diam(pT (gK)) ≤ diam(K), so condition
(1) of Theorem 4.3 is satisfied. Let p

M̃v
be the projection X̃ → p−1T (t0) ∼=

t0 × M̃v and let D = diam(p
M̃v
K). Now, suppose pT (gK) ⊂ BT (t0, R). The

projection
p−1T (BT (t0, R))→ BT (t0, R)× M̃v → t0 × M̃v → p−1T (t0)

is CR-Lipschitz, so p
M̃v

(gK) has diameter < DCR. Thus, condition (2) of
Theorem 4.3 is satisfied. It follows that G admits a Z-structure.

Now assume that all lifts M̃i(e)
p̃−e←−− M̃e

p̃+e−→ M̃t(e) of our finite-sheeted
coverings extend over their corresponding visual boundaries. To obtain an
EZ-structure, it suffices to verify the conditions in Theorem 5.3 for all el-
ements of G, viewed as self-homeomorphisms of T × M̃v. By the proof of
Theorem 4.5, we know that M̃v is radially contractible, so it suffices to check
(i)–(iii). Items (i) and (ii) are discussed in detail in Section 10.1 of the ap-
pendix, with the action on the first factor being the standard Bass–Serre
action. As is discussed in Remark 10.6, each element of G acting on M̃v is
a finite composition of lift homeomorphisms, inverses of those homeomor-
phisms, and isometries of vertex spaces. Each of those is a quasi-isometric
homeomorphism, and by hypothesis, each extends over the corresponding
boundaries. Therefore, condition (iii) holds as well.
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Next, in order to cover the n = 4 case (and to offer an alternative proof
in all other dimensions), let us switch to the setup described in Approach II.
Again, [16] confirms the necessary hypothesis. In order to apply Theorem 4.3,
we need a π1(Mv)-equivariant CAT(0) metric on M̃v × Iω. This can be ac-
complished by using the `2-metric described in Section 3. We also need to
know that M̃v × Iω is compressible—a fact that was noted in item (4.6) of
Remark 4.6. Everything else in the above proof now goes through without
changes.

Note that if each manifold is negatively curved, the lift of any finite
covering map is a quasi-isometry between Gromov hyperbolic spaces, and
hence extends to the visual boundaries.

Corollary 7.2. Graphs of nonpositively curved closed Riemannian
n-manifolds admit Z-structures. Graphs of negatively curved Riemannian
n-manifolds admit EZ-structures.

For generic nonpositively curved Riemannian manifolds, we cannot be
sure that the lifts of all the covering maps constructed in Section 6 extend
over visual boundaries. The problem is the possibly nongeometric nature of
the lifts of the homeomorphisms f : M−e →M+

e (or f : M−e ×Iω →M+
e ×Iω)

used in defining p+e : Me →Mt(e) (or p+e : Me×Iω →Mt(e)×Iω). By applying
the Bieberbach Theorems [22], we can avoid this problem in the extreme (but
important) special case where all vertex manifolds are flat.

Corollary 7.3. Graphs of closed flat n-manifolds admit EZ-structures.
Proof. The third Bieberbach Theorem, as described in [22, Ch. 2], en-

sures that, for all n and any pair of closed flat n-manifolds with isomorphic
fundamental groups, there is a corresponding affine homeomorphism; in other
words, a homeomorphism that lifts to an affine homeomorphism Rn → Rn.
Among other things, this will allow us to use Approach I from Section 6,
even when n = 4.

Choose a flat metric on each vertex manifold Mv, then use the covering
maps q−e : M−e → Mi(e) and q+e : M+

e → Mt(e) to lift those metrics to the
finite-sheeted covers M−e and M+

e . As such, the lifts to universal covers q̃−e
and q̃+e become isometries of Rn. The Bieberbach Theorem then allows us to
choose a homeomorphism f : M−e →M+

e that lifts to an affine isomorphism
of Rn. Since isometries and affine isomorphisms of Rn all extend over visual
boundaries, our corollary follows.

Using these results, we also obtain a strengthening of the result from [19]:

Corollary 7.4. Generalized Baumslag–Solitar groups admit EZ-struc-
tures.

Remark 7.5. A few comments are in order as we close this section.
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(1) The groups addressed in Corollaries 7.2 and 7.3 have been previously
studied by a number of people; see [15] and [21]. Among other things, these
fundamental groups are quasi-isometrically rigid in the sense that any group
quasi-isometric to such a group is itself the fundamental group of a finite
graph of groups with vertex/edge groups quasi-isometric to the original ver-
tex/edge groups.

(2) The proof of Theorem 7.1 is valid for graphs of (non-Riemannian)
nonpositively curved manifolds, provided they are compressible (to get a
Z-structure) or radially compressible (to get an EZ-structure). At this time,
we do not know any examples of that type.

(3) A primary motivation for studying EZ-structures is that a torsion-
free group with a EZ-structure satisfies the Novikov Conjecture. See [17] and
also [7]. All of the examples covered by Corollaries 7.2–7.4 were previously
known to satisfy the Novikov Conjecture for other reasons. For example,
hyperbolic and free abelian groups have finite asymptotic dimension, hence
by work of Bell and Dranishnikov [5], so do graphs of groups with these as
vertex and edge groups. It is an open question whether fundamental groups
of all nonpositively curved manifolds (Riemannian or otherwise) have finite
asymptotic dimension. Hence, it is possible that Theorem 7.1 contains new
examples of groups which satisfy the Novikov Conjecture.

8. Noncompressible spaces. In this section, we highlight the delicate
nature of compressibility by looking at some noncompressible CAT(0) spaces
which occur as universal coverings of compact aspherical CW-complexes and
manifolds. We begin with the simplest such example.

Example 8.1. Let T4 be the tree with valence 4 at each vertex and
standard path length metric, i.e., the universal cover of a wedge of two circles.
If we view T4 as a 1-manifold with singularites at the vertices, it is clear that
large balls have more singular points than small balls. This is an obstruction
to the existence of compressing homeomorphisms.

Example 8.2. Now consider T4 × Iω with the `2-metric. By [27], this is
a Hilbert cube manifold, therefore a homogeneous space. This nullifies the
above argument, but compressibility still fails since large balls in T4 × Iω
have more complementary components than small balls.

Next we examine an example of more direct relevance to this paper.
In particular, we identify a family of closed, nonpositively curved (locally
CAT(0)) finite-dimensional manifolds whose universal covers are not com-
pressible.

By a standard Davis example we are referring to the special case of the
construction in [12]. This begins with a compact contractible q-manifold Qq
with a mirror structure {Qv}v∈V consisting of tame (q−1)-cells in ∂Qq, and
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a Coxeter system (Γ, V ), consisting of a Coxeter group Γ and a preferred
generating set V in one-to-one correspondence with the mirrors. We assume
that ∂Qq =

⋃
Qv and the mirror structure is “Γ -finite”. For any compact

contractible q-manifold Qq, such an arrangement exists: begin with a flag
triangulation K of ∂Qq and let the mirrors be the top-dimensional cells
of the corresponding dual cell-structure on ∂Qq; they are indexed by the
vertex set V = K0. A corresponding (right-angled) Coxeter system (Γ, V ) is
obtained by declaring v2i = 1 for all vi ∈ V and (vivj)

2 = 1 when vi and vj
bound an edge in K.

Roughly speaking, Γ provides instructions for gluing together members
of the discrete collection Γ × Qq of copies of Qq, to obtain a contractible
open manifold Xq that admits a proper cocompact Γ -action. Within Xq,
the individual copies of Qq are referred to as chambers, with the chamber
corresponding to {g}×Qq denoted by gQq, and the identity chamber {e}×Qq
denoted as Qq. By passing to a torsion-free finite index subgroup Γ ′ ≤ Γ , one
obtains a covering projection Xq → Γ ′\Xq with quotient a closed aspherical
manifold.

From the perspective of this paper, the key facts about Xq are contained
in [12, Lemma 8.2 and Remark 10.6]. It is observed that if the elements
of Γ are ordered 1 = g1, g2, g3, . . . so that length(gj+1) ≥ length(gj) and
Ti =

⋃i
j=1 gjQ

q, then for all i, Ti is a connected q-manifold with bound-
ary, and Ti ∩ gi+1Q

q is a tame (q − 1)-cell in the boundary of each (made
up of a finite union of panels). Since Qq is simply connected, it is ori-
entable; so assume now that Qq is an oriented manifold, and give each
chamber giQq that same orientation when length(gi) is even and the op-
posite orientation when length(gi) is odd. A quick look at the gluing in-
structions in [12] for assembling the chambers into Xq confirms that the
orientations on the chambers fit together to provide appropriate orienta-
tions on the Ti. All of this implies that Ti is a boundary connected sum of
i copies of ±Q, hence ∂Ti is a connected sum of i copies of ±∂Q. This
is most interesting when q ≥ 4 and π1(∂Q

q) = G 6= 1, in which case
π1(∂Ti) is the free product ∗ik=1G. A key observation of Davis is that, for
the corresponding neighborhood of infinity Ni = Xq − intTi, we know that
∂Ti ↪→ Ni is a homotopy equivalence, therefore π1(Ni) = ∗ik=1G. Davis
used this fact to show that Xq is not simply connected at infinity (hence,
is not homeomorphic to Rq). We will use it for a similar, but different,
reason.

Place a geodesic metric d′ on Qq; let R = diam(Qq); and give Xq the
corresponding path length metric d. As such, (Xq, d) is a proper geodesic
metric space, and the action of Γ on Xq is geometric. Give Γ the word length
metric ρ corresponding to the generating set V . Choose x0 ∈ intQq and let
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f : (Γ, ρ) → (Xq, d) be defined by f(g) = gx0. Then f has R-dense image,
and by Švarc–Milnor, is a (K, ε)-quasi-isometry for some K ≥ 1 and ε ≥ 0.
Note that, by our choice of x0, f is injective.

Let β : N → N be the growth function for (Γ, ρ), i.e., β(n) = |Bρ[e, n]|,
and for r > 0 and A ⊆ Xq, let Nd[A; r] denote the closed r-neighborhood of
A in Xq. Let S be the smallest integer such that Bd[x0;R] ⊆ Tβ(S).

Lemma 8.3. For each n ∈ N,

(1) Bd[x0, n/K − ε−R] ⊆ Nd[f(Bρ[e, n]), R],
(2) Nd[f(Bρ[e, n]), R] ⊆ Tβ(n+S), and
(3) Tβ(n) ⊆ Bd[x0,Kn+ ε+R].

Proof. To prove (1), suppose y /∈ Nd[f(Bρ[e, n]), R]. Then there exists
g ∈ Γ such that ρ(e, g) > n and d(y, f(g)) ≤ R. Therefore

1

K
ρ(e, g)− ε ≤ d(x0, f(g)) ≤ d(x0, y) +R.

So
n

K
− ε−R < d(x0, y).

For item (2), let gx0 ∈ f(Bρ[e, n]). Then length(g) ≤ n and

Bd[gx0 : R] ⊆ gTβ(S) =
⋃

h∈Bρ[e;S]

ghQq.

By definition, length(g) ≤ n and length(h) ≤ S, so gh in the above equality
has length ≤ n+ S. Therefore the right-hand set is contained in Tβ(n+S).

For the final item, suppose gQq is a summand in Tβ(n). Then length(g)
≤ n, so gx0 ∈ f(Bρ[e, n]) ⊆ Bd[x0,Kn + ε]. By the triangle inequality,
gQq ⊆ Bd[x0,Kn+ ε+R].

Theorem 8.4. Let Xq be a Davis manifold with chamber a compact
contractible q-manifold Qq with non-simply-connected boundary. Let Γ be
the corresponding Coxeter group and d a metric on Xq such that Γ acts
geometrically on Xq. Then Xq is noncompressible under the metric d.

Note that Proposition 4.2 implies that Xq is noncompressible for any
quasi-isometric metric. The following corollary is immediate from [2].

Corollary 8.5. For all q ≥ 5, there exist closed locally CAT(0) q-mani-
folds with noncompressible universal covers.

Proof of Theorem 8.4. We will use the metric d and the constants K, ε,
R, and S defined above.
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By Lemma 8.3,

Bd

[
x0,

n

K
− ε−R

]
⊆ Tβ(n+S) ( Tβ(n+S+1) ⊆ Bd[x0,K(n+ S + 1) + ε+R]

for all n ∈ N. Suppose that Xq is compressible, and let ψ : R+ → R+ be the
identity function. Then there exists a homeomorphism hψ : Xq → Xq and a
sublinear function φ : R+ → R+ such that

diam(hψ(C)) ≤ φ(diam(C))

for all bounded C ⊆ Xq. By composing with an isometry from Γ , we may
assume that d(x0, hψ(x0)) ≤ R and by the above arrangement,

diam
(
hψ(Bd[x0,K(n+ S + 1) + ε+R])

)
≤ φ

(
2(K(n+ S + 1) + ε+R)

)
for all n ∈ N. Since

lim
n→∞

φ(n)

n
= 0,

we have

lim
n→∞

φ(2(K(n+ S + 1) + ε+R))

2(n/K − ε−R)
= 0.

By choosing n so large that diam(hψ(Bd[x0,K(n + S + 1) + ε + R])) <
1
2(n/K − ε−R) and R < 1

2(n/K − ε−R), we obtain

hψ(Bd[x0,K(n+ S + 1) + ε+R]) ⊆ Bd(x0, n/K − ε−R).

As a result, hψ(Tβ(n+S+1)) ⊆ intTβ(n+S).
Let W = Tβ(n+S) − int(hψ(Tβ(n+S+1))) and consider the cobordism (W,

∂Tβ(n+S), hψ(∂Tβ(n+S+1))). By Lemma 8.6 below, W deformation retracts
onto hψ(∂Tβ(n+S+1)) and the restriction of this deformation is a degree ±1
map d : ∂Tβ(n+S) → hψ(∂Tβ(n+S+1)). It is a standard fact that degree
±1 maps induce π1-surjections, so we have a surjection d∗ : ∗β(n+S)k=1 G →
∗β(n+S+1)
k=1 G. But then the rank domain is at least as large as the rank of the

range, violating Grushko’s Theorem.

Lemma 8.6. Let Mn be an orientable open n-manifold containing closed
neighborhoods of infinity N and N ′, each a codimension 0 submanifold with
tame (bicollared) boundary. Suppose also that N ′ ⊆ intN and both ∂N ↪→ N
and ∂N ′ ↪→ N ′ are homotopy equivalences. Let W = N − intN ′. Then

(1) W is a compact n-manifold with ∂W = ∂N t ∂N ′,
(2) W deformation retracts onto ∂N , and
(3) the resulting retraction r : W → ∂N restricts to a degree ±1 map

∂N ′ → ∂N .
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Proof. Assertion (1) is immediate. For assertion (2), let Ht and Jt be
deformation retractions of N onto ∂N and N ′ onto ∂N ′, respectively. Then
H1 : N → ∂N and J1 : N ′ → ∂N ′ are retractions, and J1 ◦Ht is a deforma-
tion retraction of W onto ∂N .

For assertion (3), note that since ∂N is a connected orientable (n− 1)-
manifold, Hn−1(∂N) ∼= Z; and since r∗ : Hn−1(W ) → Hn−1(∂N) is an iso-
morphism, Hn−1(W ) ∼= Z. By duality H∗(W,∂N ′) = 0, so incl∗ : Hn−1(∂N

′)
→ Hn−1(W ) is also an isomorphism. It follows that (r|∂N ′)∗ = r∗ ◦ incl∗ is
an isomorphism, so |deg(r|∂N ′)| = 1.

Unfortunately, crossing a Davis manifold with the Hilbert cube does not
improve its compressibility properties.

Theorem 8.7. Let (Xq, d) be a Davis manifold of the type described
in Theorem 8.4. Then Xq × Iω is noncompressible under the corresponding
`2-metric or any metric quasi-isometric to it.

Proof. If we assume compressibility, the same sort of argument used
above leads to a cobordism of Hilbert cube manifolds (W×Iω, ∂Tβ(n+S)×Iω,
hψ(∂Tβ(n+S+1))×Iω) which deformation retracts onto hψ(∂Tβ(n+S+1))×Iω.
Projection yields a deformation retraction of W onto hψ(∂Tβ(n+S+1)) and
the same contradiction obtained earlier.

9. Some open questions. The results presented in this paper raise
several questions. The most obvious revolve around the compressibility hy-
pothesis. Roughly speaking, compressibility allowed us to take advantage of
the CAT(0) geometry of the product spaces T ×M̃v and T × (M̃v×Iω), even
when the corresponding proper cocompact action is not by isometries. In the
absence of compressibility, a different strategy is clearly needed. Nonetheless,
the questions remain.

Question 9.1. Suppose G is the fundamental group of a finite connected
graph of groups (G, Γ ) with the property that each vertex group Gv is the
fundamental group of a closed aspherical manifold Mv and, for each edge e,
the monomorphisms

Ge
φ−e−−→ Gi(e) and Ge

φ+e−−→ Gt(e)

are of finite index. Does G admit a Z-structure? An EZ-structure?
In attacking the above question, one is likely to bump up against the un-

resolved nature of the Borel Conjecture or the Whitehead Group Conjecture.
For that and other reasons, the following is an appealing special case.

Question 9.2. Suppose G is the fundamental group of a finite connected
graph of groups (G, Γ ) with the property that each vertex group Gv is the
fundamental group of a closed, locally CAT(0) manifold Mv and, for each
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edge e, the monomorphisms Ge
φ−e−−→ Gi(e) and Ge

φ+e−−→ Gt(e) are of finite
index. Does G admit a Z-structure? An EZ-structure?

We expect a positive answer. The point here is that [4] assures us that
the Borel Conjecture holds and the Whitehead group vanishes for these edge
groups. In addition, we still have CAT(0) geometry to work with.

If we are going to give up the compressibility hypothesis anyway, Ap-
proach (II) provides a method for attacking the above questions in even
greater generality. In particular, there may be no need to confine ourselves
to closed aspherical manifolds as vertex groups.

Question 9.3. Suppose G is the fundamental group of a finite connected
graph of groups (G, Γ ) with the property that each vertex group Gv is the
fundamental group of a finite aspherical CW-complex Yv and, for each edge e,

the monomorphisms Ge
φ−e−−→ Gi(e) and Ge

φ+e−−→ Gt(e) are of finite index.
Does G admit a Z-structure? An EZ-structure? Does it help to assume that
Wh(Ge) = 0 for all edge groups? that each Yv is nonpositively curved?

The point here is that, with the help of Hilbert cube technology, we can
often conclude that G acts properly and cocompactly on a product space or
even a CAT(0) space—now of the form T × (Ỹv × Iω).

10. Appendix: Graphs of covering spaces and actions on prod-
ucts. In this appendix, we expand upon the notion of a graph of covering
spaces as introduced in Section 7.

A graph of pointed topological spaces is a system (T , Γ ) consisting of

• a connected oriented graph Γ with vertex set E0 and edge set E1,
• a collection T of pointed path-connected topological spaces (Ys, ys) in-

dexed by E0 ∪ E1, and
• for each e ∈ E1, a pair of continuous edge maps

(Yi(e), yi(e))
p−e←−− (Ye, ye)

p+e−→ (Yt(e), yt(e)),

each inducing a π1-monomorphism.

The total space of (T , Γ ), denoted Tot(T , Γ ), is the adjunction space

Tot(T , Γ ) =
( ⋃
v∈E0

Yv

)
∪
( ⋃
e∈E1

Ye × [0, 1]
)
,

where Ye × [0, 1] is glued onto Yo(e) and Yt(e) using p−e and p+e respectively.
There is a natural projection map π : Tot(T , Γ )→ Γ for which the preimage
of each v ∈ E0 is a copy of Yv and for each point y lying on the interior of
an edge e, π−1(y) is a copy of Ye. There is a copy of Γ sitting in Tot(T , Γ )
made up of the images of ye × [−1, 1] under the quotient map q. Under
this realization of Γ , π may be viewed as a retraction. When each (Ys, ys)



24 C. Guilbault et al.

is a CW-pair and each p−e and p+e is cellular, Tot(T , Γ ) inherits a natural
CW-structure with Γ a subcomplex and π a cellular map. Call (T , Γ ) a
compact graph of pointed topological spaces if Γ is a finite graph and each
edge and vertex space is compact. This is equivalent to requiring Tot(T , Γ )
to be compact.

Given a graph of pointed topological spaces (T , Γ ), there is an induced
graph of groups (G, Γ ) with vertex and edge groups Gs = π1(Ys, ys), and edge
monomorphisms φ−e = (p−e )# and φ+e = (p+e )#. Moreover, given a graph of
groups (G, Γ ), it is possible to realize (G, Γ ) as a graph of pointed topological
spaces (T , Γ ); if desired, the (Ys, ys) can be chosen to be CW-pairs and the
maps to be cellular. Since numerous choices are involved, there is a great
deal of flexibility in choosing a graph of topological spaces realizing a given
graph of groups.

Suppose each Gs has presentation

Gs = 〈As |Rs〉.
Definition 10.1. Given a maximal tree Γ0 ⊆ Γ , the fundamental group

of (G, Γ ) based at Γ0, denoted π1(G, Γ ;Γ0), has generators( ⋃
v∈E0

Av

)
∪ {te | e ∈ E1}

and relations⋃
v∈Rv

Rv ∪ {t−1e φ−e (g)te = φ+e (g) | g ∈ Ge, e ∈ E1} ∪ {te = 1 | e ∈ Γ0}.

A notable property of π1(G, Γ ;Γ0) is that it contains canonical copies
of each Gv, and—up to isomorphism—it does not depend on the choice of
Γ0 (although the canonical copies of Gv do). Furthermore, if (T , Γ ) is a
corresponding graph of pointed topological spaces, there is a natural isomor-
phism between π1(G, Γ ;Γ0) and π1(Tot(T , Γ ), Γ0). Here we use the funda-
mental group of Tot(T , Γ ) based at Γ0 rather than the usual fundamental
group based at a point. This is a matter of convenience; if v is any of the
vertices of Γ0, there is a natural isomorphism between π1(Tot(T , Γ ), v) and
π1(Tot(T , Γ ), Γ0). See [18] for details.

Of particular interest to us are a pair of spaces on which π1(G, Γ ;Γ0)

act: the Bass–Serre tree for (G, Γ ), and the universal cover ˜Tot(T , Γ ) of a
corresponding total space:

• The Bass–Serre tree T for (G, Γ ) has vertex set Ê0 containing one element
for each left coset of each Gv ≤ π1(G, Γ ;Γ0), and edge set Ê1 containing
one element for each left coset of each Ge ≤ π1(G, Γ ;Γ0). The edge cor-
responding to a coset aGe connects the two vertices whose corresponding
cosets contain aGe. The left action on T is the obvious one, a key fact
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being that the stabilizer of a vertex corresponding to a coset aGv is the
group aGva

−1, and the stabilizer of the edge corresponding to a coset
aGe is aGea−1. The quotient of this action is the original graph Γ ; let
q : T → Γ be that quotient map.

• The universal cover ˜Tot(T , Γ ), on the other hand, admits a proper and
free π1(G, Γ ;Γ0)-action (by covering transformations); it is cocompact if
and only if (T , Γ ) is a compact graph of spaces.

The spaces T and ˜Tot(T , Γ ) and their actions are closely related. The
space ˜Tot(T , Γ ) can be viewed as Tot(U , T ) where

• the Bass–Serre tree T is oriented so that q : T → Γ is orientation-
preserving,

• for each s ∈ Ê0 ∪ Ê the vertex/edge space is (Ỹs, ỹs) where Ỹs is the
universal cover of Ỹq(s) and ỹs is a preimage of yq(S),

• the edge maps

(Ỹi(e), ỹi(e))
p̃−e←−− (Ỹe, ỹe)

p̃+e−−→ (Yt(e), yt(e))

are the (unique) pointed lifts of the edge maps

(Yo(q(e)), yo(q(e)))
p−
q(e)←−−− (Yq(e), yq(e))

p+
q(e)−−−→ (Yt(q(e)), yt(q(e))).

Hence, there is a π1(G, Γ ;Γ0)-equivariant projection π : ˜Tot(T , Γ )→ T such
that for each v ∈ Ê0 corresponding to the coset aGv, π−1v) ≈ Ỹv, and
for each point y in the interior of e ∈ Ê1 corresponding to the coset aGe,
π−1(y) ≈ Ỹe. (An alternative construction of the Bass–Serre tree is as the
quotient of ˜Tot(T , Γ ) obtained by identifying these covering spaces to points;
see [18].) The equivariance of π means that, for a vertex v of T stabilized by
aGva

−1, the set π−1(v) ≈ Ỹv is stabilized (setwise) by aGva−1.

10.1. Graphs of covering spaces. If each map in a graph of pointed
topological spaces (T , Γ ) is a covering projection, we call (T , Γ ) a graph
of covering spaces. By covering space theory, every group monomorphism
can be realized as a covering projection, but realizing an arbitrary graph of
groups (G, Γ ) as a graph of covering spaces requires compatibility between
these projections. To obtain such a realization, choices are required under
which each edge space Ye simultaneously covers Yi(e) and Yt(e) (in a manner
that realizes the given group monomorphisms). When this is possible, we say
that (G, Γ ) is realizable by covering spaces.

Example 10.2. Suppose that each vertex and edge group is isomorphic
to Z, so that π1(G, Γ ;Γ0) is a generalized Baumslag–Solitar group. By placing
a copy of S1 at each vertex and noting that every finite-sheeted cover of S1
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is homeomorphic to S1, we see that (G, Γ ) is realizable by compact graph of
finite-sheeted covering spaces.

Example 10.3. As a generalization of the above, place a copy of Zn on
each vertex and edge of Γ . For edge maps, choose arbitrary monomorphisms
of varying index. This graph can be realized by a compact graph of finite-
sheeted covering spaces, where the space on each vertex and edge is the
n-torus Tn.

Example 10.4. Suppose (G, Γ ) is a graph of finitely generated free
groups, and all monomorphisms are finite index. If we restrict ourselves to
graphs as vertex and edge spaces, there are instances where it is impos-
sible to realize (G, Γ ) by covering spaces. However, if we allow the use of
3-dimensional orientable handlebodies, where genus determines topological
type, we can realize any such (G, Γ ) as a compact graph of finite-sheeted
covering spaces. (Unfortunately, in the context of our purposes, the corre-
sponding universal covers will not be compressible.)

A key ingredient in our main theorems is the following general fact.

Lemma 10.5. Let (T , Γ ) be a graph of covering spaces and v0 ∈ Γ be a
vertex. Then ˜Tot(T , Γ ) is homeomorphic to T × Ỹv0, where T is the Bass–
Serre tree corresponding to the induced graph of groups.

Proof. Since each map p−e : Ye → Yi(e) [resp., p+e : Ye → Yt(e)] is a cover-

ing map, so is each p̃−e : Ỹe → Ỹi(e) [resp., p̃+e : Ỹe → Ỹt(e)]. By uniqueness of
universal covers, these latter maps are necessarily homeomorphism. Thus, all
of the double mapping cylinders in the construction of ˜Tot(T , Γ ) are actual
products. It follows easily that π : ˜Tot(T , Γ )→ T is a fiber bundle. Since T
is contractible, it is a trivial bundle.

Next, for graphs of covering spaces, we give a concrete description of
the action of π1(Tot(T , Γ ), Γ0) on ˜Tot(T , Γ ), where the latter is viewed as
T × Ỹv0 . Specifically, we will define a π1(Tot(T , Γ ), Γ0)-action on Ỹv0 which,
when paired diagonally with the Bass–Serre action on T , gives the desired
covering space action on T × Ỹv0 .

To define the desired action on Ỹv0 it is enough to:

• define, for each v ∈ E0, a homomorphism θv : Gv → Homeo(Ỹv0),
• define a homomorphism θF : F (E1)→ Homeo(Ỹv0),

• let Θ : (∗v∈E0 Gv) ∗ F (E1) → Homeo(Ỹv0) be the union of the above
homomorphisms, and

• check that all relators described in Definition 10.1 are sent to idYv0 .
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Toward that end, inductively orient the edges of Γ0 outward away from v0.
Then orient each edge not in Γ0 arbitrarily. By changing some symbols,
but without loss of generality, we may assume this is the orientation on Γ
used in the basic definitions. As noted above, for each e ∈ E1 we have
homeomorphisms

(Ỹi(e), ỹi(e))
p̃−e←−− (Ỹe, ỹe)

p̃+e−−→ (Ỹt(e), ỹt(e)).

Let fe : (Ỹi(e), ỹi(e)) → (Ỹt(e), ỹt(e)) be the composition p̃+e ◦ (p̃−e )−1, and for
each v ∈ E0, let hv = fek ◦· · ·◦fe1 : Yv0 → Yv where e1∗· · ·∗ek is the reduced
edge path in Γ0 from v0 to v. (Let hv0 = id

Ỹv0
.) Since basepoints have been

chosen, we have a well-defined Gv-action on each vertex space Ỹv. Viewing
each α ∈ Gv as a self-homeomorphism of Ỹv, define θv : Gv → Homeo(Ỹv0)
by θv(α) = h−1v αhv.

To define θF : F (E1) → Homeo(Ỹv0) we need only specify the images
of the generators. Do this by setting θF (e) = h−1t(e) ◦ fe ◦ hi(e). Note that if
e ∈ Γ0, then fe ◦ hi(e) = ht(e), so θF (e) = idYv0 ; hence all type (ii) relators
are sent to the identity element. The key to checking that type (i) relators
r = e ·(p−e )#(β) ·e−1 ·((p+e )#(β))−1 are sent to the identity is the observation

that (p−e )#(β) = p̃−e ◦ β ◦ (p̃−e )−1 and (p+e )#(β) = p̃+e ◦ β ◦ (p̃+e )−1.
It suffices to show that Θ(e · (p−e )#(β) · e−1) = Θ((p+e )#(β)). We provide

that calculation:

Θ(e · (p−e )#(β) · e−1) = θF (e) · θi(e)((p−e )#(β)) · θF (e)−1

= (h−1t(e) ◦ fe ◦ hi(e)) · (h
−1
i(e) ◦ (p−e )#(β) ◦ hi(e)) · (h−1i(e) ◦ f

−1
e ◦ ht(e))

= (h−1t(e) ◦ fe ◦ hi(e)) · (h
−1
i(e) ◦ (p−e )#(β) ◦ hi(e)) · (h−1i(e) ◦ f

−1
e ◦ ht(e))

= h−1t(e) ◦ fe ◦ (p−e )#(β) ◦ f−1e ◦ ht(e)

= h−1t(e) ◦ fe ◦ (p̃−e ◦ β ◦ (p̃−e )−1) ◦ f−1e ◦ ht(e)

= h−1t(e) ◦ (p̃+e ◦ (p̃−e )−1) ◦ (p̃−e ◦ β ◦ (p̃−e )−1) ◦ (p̃−e ◦ (p̃+e )−1) ◦ ht(e)

= h−1t(e) ◦ p̃
+
e ◦ β ◦ (p̃+e )−1 ◦ ht(e)

= h−1t(e) ◦ (p+e )#(β) ◦ ht(e)
= θt(e)((p

+
e )#(β)) = Θ((p+e )#(β)).

Since all relators of the relative presentation of π1(Tot(T , Γ ), Γ0) are sent
to the identity element, Θ induces a homomorphism

Θ : π1(Tot(T , Γ ), Γ0)→ Homeo(Ỹv0).

This is the desired action. Just as with the Bass–Serre action of the
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π1(Tot(T , Γ ), Γ0)-action on T , we do not expect the π1(Tot(T , Γ ), Γ0)-action
on Ỹv0 to be proper or free. But combined, these two actions yield a proper
free action on T × Ỹv0 .

Remark 10.6. In cases where (T , Γ ) is a graph of finite-sheeted covering
spaces, all of the lift homeomorphisms

(Ỹi(e), ỹi(e))
p̃−e←−− (Ỹe, ỹe)

p̃+e−−→ (Ỹt(e), ỹt(e))

are quasi-isometric homeomorphisms. Since the group action

Θ : π1(Tot(T , Γ ), Γ0)→ Homeo(Ỹv0),

as described above, takes each group element to a finite composition of lift
homeomorphisms, inverses of those homeomorphisms, and isometries of ver-
tex spaces, the action is by quasi-isometric homeomorphisms.
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