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COARSE Z-BOUNDARIES FOR GROUPS

CRAIG R. GUILBAULT AND MOLLY A. MORAN

Abstract. We generalize Bestvina’s notion of a Z-boundary for a group to that
of a “coarse Z-boundary.” We show that established theorems about Z-boundaries
carry over nicely to the more general theory, and that some wished-for proper-
ties of Z-boundaries become theorems when applied to coarse Z-boundaries. Most
notably, the property of admitting a coarse Z-boundary is a pure quasi-isometry
invariant. In the process, we streamline both new and existing definitions by in-
troducing the notion of a “model Z-geometry.” In accordance with the existing
theory, we also develop an equivariant version of the above—that of a “coarse EZ-
boundary.”

The primary goal of this paper is an expansion of Bestvina’s notion of a Z-
boundary. His approach placed Gromov boundaries of torsion-free hyperbolic groups
and visual boundaries of torsion-free CAT(0) groups in a general framework which
allows other classes of groups G to admit a boundary. Later Dranishnikov relaxed
that framework to allow for groups with torsion. Here we relax the requirements fur-
ther: instead of a geometric action of G on a proper metric AR (absolute retract) X ,
we allow for a “coarse near-action” (a concept that will be developed here and which
contains quasi-actions as special cases). Our boundaries will be called cZ-boundaries
or “coarse Z-boundaries.” With the new definition in place, we are able to accomplish
a primary goal:

Theorem 0.1. If a group G admits a cZ-boundary and H is quasi-isometric to G,
then H admits a cZ-boundary. In fact, G and H admit the same cZ-boundaries.

Of course, this generalization is only useful if the information carried by Z-boundaries
is also carried by cZ-boundaries. In addition to proving new theorems, we revisit
established results and show that their analogs remain valid in the broader context.
Along the way, we introduce the notion of a model geometry and a model Z-geometry
as part of an effort to streamline the axiom system for Z-boundaries—both coarse
and classical. We also expand upon the important notion of an EZ-boundary.
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1. Introduction

Bestvina [Bes96] and Dranishnikov [Dra06] developed a general theory of group
boundaries which contains Gromov boundaries of hyperbolic groups and visual bound-
aries of CAT(0) groups as special cases. These generalized boundaries—known as Z-
boundaries—involve a mix of geometry, topology, and group theory. The necessary
ingredients are:

i) a geometric action of the group G on some proper metric AR (X, d); and
ii) a Z-set compactification X = X ⊔ Z in which compacta from X vanish in X

as they are pushed toward Z by the G-action.

When this can be arranged, Z is called a Z-boundary and
(
X,Z, d

)
a Z-structure for

G. In [FL05], Farrell and Lafont introduced an additional condition (also satisfied by
all hyperbolic and CAT(0) groups):

iii) the G-action on X extends to a G-action on X

When all three conditions are satisfied, they call
(
X,Z, d

)
an EZ-structure (equi-

variant Z-structure) and Z an EZ-boundary for G.
Many non-hyperbolic, non-CAT(0) groups, for example, Baumslag-Solitar groups

and systolic groups, are now known to admit Z- or EZ-structures. But a full char-
acterization of which groups admit (E)Z-structures is an interesting open problem.
Section 6 of [GM19] contains a survey of known results; original sources include
[BM91], [Dah03], [OP09], [Tir11], [Mar14], [Gui14], [GMT19], and more recently
[EW18], [GMS20], [CCGO20],and [Pie18].

The following theorem from [GM19] has its origins in [Bes96].

Theorem 1.1 (Generalized Boundary Swapping). If G is quasi-isometric to a group
H which admits a Z-boundary Z, and G acts geometrically on some proper metric
AR X, then G also admits Z as a Z-boundary.

It is tempting to conclude that the property of admitting a Z-boundary is a quasi-
isometry invariant of groups. Unfortunately, that conclusion would be premature.
Consider, for example:

Question A. If H ≤ G is of finite index, and H admits a Z-boundary, does G
admit a Z-boundary?

The issue is this: Application of Theorem 1.1 requires an AR X on which G acts
geometrically. One might hope that the H-action on an AR Y , implicit in the hy-
pothesis, can be extended to a G-action. Those familiar with an analogous (open)
problem for CAT(0) groups will recognize the difficulty. The more general problem
of finding a geometric action of G on an AR X , given only that G is quasi-isometric
to a group H that admits such an action, appears even more difficult.

In this paper we provide a way around these questions as they pertain to group
boundaries. The key is a relaxation of the main definition to that of a coarse Z-
structure. Under the new definition, the requirement of a geometric G-action is
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relaxed to allow for a (proper and cobounded) “coarse near-action.”1 When G is
quasi-isometric to a group H which acts geometrically on a proper metric AR Y ,
obtaining a coarse near-action of G on Y is relatively easy: Use our Theorem 2.12
(Generalized Švarc-Milnor) to obtain a coarse equivalence f : G → Y . Then use f
and a coarse inverse g : Y → G to conjugate the action of G on itself to Y . The
converse portion of Theorem 2.12 assures that the result is a coarse near-action on
Y . When this and the supporting machinery have been established, we will have:

Theorem 1.2. If groups G and H are quasi-isometric and
(
Y , Z, d

)
is a Z-structure

for H, then there is a coarse near-action of G on Y under which
(
Y , Z, d

)
is a coarse

Z-structure for G.

The new approach is useful only if a coarse Z-boundary carries information, com-
parable to that of an actual Z-boundary. For example, work by Bestvina, Mess,
Geoghegan, Ontaneda, Dranishnikov, and Roe [BM91], [Bes96], [Geo86], [Ont05],
[GO07], [Dra06], [Roe03] has established that, for Z-structures on a group G:

• the boundary Z is well-defined up to shape equivalence;
• dimZ is a group invariant; and
• the Čech cohomology of Z reveals the group cohomology of G with RG-
coefficients (R a PID).

We will show that these relationships carry over to the realm of coarse Z-structures.
In fact, the added flexibility allows for a strengthening of some of these conclusions.

Here is a quick outline of the remainder of this paper. In Section 2, we develop the
notion of a coarse near-action of a group G on a metric space (X, d) and prove some
fundamental facts—most significantly, a coarse version of the classical Švarc-Milnor
Lemma, along with a crucial converse. In Section 3 we introduce the notions of a
model geometry and a model Z-geometry. Those are used in Section 4 to define a
coarse Z-structure. That definition includes classical Z-structures as a special case.
In addition, we establish an equivalent—strikingly simple—formulation of a coarse
Z-structure which highlights the benefits of our approach. In Sections 5 and 6 we
show that key theorems about groups and their Z-structures remain valid for coarse
Z-structures, and that new, stronger versions are often possible. In Section 7 we
define a coarse EZ-structure and prove a few basic theorems. In a final section, we
discuss the fundamental questions (such as Question A above) which motivated this
work. These questions go well beyond Z-boundaries; some are well-known to the
experts. Our goal is to shine a light on a family of interesting open problems and to
highlight their connections to the study of group boundaries.

1Coarse near-action is a straightforward generalization of quasi-action. The extra generality
is useful when metric spaces are not necessarily geodesic (or quasi-geodesic). For those who prefer
quasi-actions, nearly all of our definitions and theorems have analogs in that category at the expense
of some mild additional hypotheses. See Section 2 for details.
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2. Coarse near-actions

Definition 2.1. Let C ≥ 0. A C-near-action of a group G on a metric space (X, d)
is a function ψ which assigns to each γ ∈ G a function ψ (γ) : X → X satisfying the
following conditions:

(1) d (ψ (1) (x) , x) ≤ C, for all x ∈ X , and
(2) d (ψ (γ1γ2) (x) , ψ (γ1)ψ (γ2) (x)) ≤ C, for all x ∈ X and γ1, γ2 ∈ G.

When the constant C is unimportant, we simply refer to ψ as a near-action.

Definition 2.2. A function f : (X, d)→ (Y, d′) is

(1) a coarse embedding if there exist nondecreasing functions ρ−, ρ+ : [0,∞) →
[0,∞) with ρ− (r)→∞ as r →∞ such that for all x1, x2 ∈ X ,

ρ− (d (x1, x2)) ≤ d′ (f(x1), f(x2)) ≤ ρ+ (d (x1, x2))

(2) coarsely surjective if there exists C ≥ 0 such that, for all y ∈ Y , there exists
x ∈ X such that d′ (y, f (x)) ≤ C,

(3) a coarse equivalence if it is a coarsely surjective coarse embedding.

If ρ−, ρ+ and C are specified, we sometimes call a function f which satisfies: (1) a
(ρ−, ρ+)-coarse embedding; (2) C-surjective; and (3) a (ρ−, ρ+, C)-coarse equivalence.

Remark 2.3. A coarse embedding f : (X, d)→ (Y, d′) is a coarse equivalence if and
only if f has a coarse inverse, that is, there is a coarse embedding g : (Y, d′)→ (X, d)
such that gf and fg are boundedly close to idX and idY , respectively.

Definition 2.4. Let ρ−, ρ+ : [0,∞) → [0,∞) be fixed nondecreasing functions with
ρ− (r)→∞ as r →∞ and let C ≥ 0 be a fixed constant. A (ρ−, ρ+, C)-coarse near-
action is a C-near-action ψ of a group G on a metric space (X, d) with the property
that ψ (γ) is a (ρ−, ρ+)-coarse embedding for all γ ∈ G.

When the specific control functions and constant are unimportant, we simply refer
to ψ as a coarse near-action. Even when not specified, it is important that a single
choice of (ρ−, ρ+) applies uniformly to all ψ (γ).

Remark 2.5. Note that properties of a C-near-action ensure that each ψ (γ) is 2C-
surjective and ψ (γ−1) is a coarse inverse for ψ (γ). So each ψ (γ) is a coarse equiva-
lence.

The following generalizations of cocompact and proper actions are useful.

Definition 2.6. Let ψ be a coarse near-action of G on (X, d).

(1) ψ is cobounded if there exists x0 ∈ X and R > 0 such that for all y ∈ X , there
exists γ ∈ G such that d(ψ(γ)(x0), y) < R.

(2) ψ is proper if for each R > 0, there exists M ∈ N such that for all x, y ∈ X ,

|{γ ∈ G | ψ(γ)(Bd[x,R]) ∩Bd[y, R] 6= ∅}| ≤M

where Bd[x,R] is the closed metric ball.
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Remark 2.7. As an exercise, one can show that Condition (1) in Definition 2.6 is
equivalent to the statement that, for each x ∈ X there exists an R′ > 0 such that for
every y ∈ X , there exists γ ∈ G such that d(ψ(γ)(x), y) < R′. With some additional
effort, one can identify a single R′ > 0 which works for all x.

A geometric action (i.e., proper, cocompact, and by isometries) on a proper metric
space is a proper, cobounded, coarse near-action (with ρ− = ρ+ = id[0,∞) and C = 0),
so previously studied Z-structures fall within the new framework. Similarly, Defi-
nitions 2.2 and 2.4 generalize the notion of quasi-isometry and quasi-action, where
control functions are required to be of the form 1

K
r− ε and Kr+ ε. (To reconcile the

definitions, 1
K
r−ε can be truncated below at 0.) Quasi-actions have been widely stud-

ied; see for example, [Tuk86], [Tuk94], [Nek97], [KL01], [MSW03], [Man06], [KL09],
[MSW11], [Eis15], and [DK18]. In addition, uniform actions by coarse equivalences
(called coarse actions in [BDM08]) have been studied. To the best of our knowledge,
the notion of a coarse near-action has not appeared before.

Remark 2.8. It is a standard fact (see, for example, [NY12, Cor.1.4.14]) that a
coarse equivalence between quasi-geodesic spaces is always a quasi-isometry. By the
same reasoning, it can be shown that every coarse action on a quasi-geodesic space
is a quasi-action. Since we do not require our geometric models to be quasi-geodesic
spaces, it is more natural for us to work with coarse actions. The decision to work
in this generality is both historical (see earlier papers on Z-structures) and practical.
Aside from the following minimal condition, which is immediate for path connected
spaces, additional requirements onX would not lead to stronger conclusions; moreover
the additional effort required to maintain our level of generality is minimal.

Definition 2.9. A metric space (X, d) is coarsely connected if there exists R > 0
such that, for all x, x′ ∈ X , there is a finite sequence x = x0, x1, · · · , xn = x′ of points
(an R-chain) in X with d (xi, xi+1) ≤ R for all 0 ≤ i ≤ n− 1.

The following proposition can be viewed as a generalization of the classical Švarc-
Milnor Lemma as well as [BDM07, Cor.0.9] and the reverse implication of [Nek97,
Th.8.4]. As usual, a finitely generated group is given the word metric with respect to
some finite generating set.

Proposition 2.10. Suppose a coarsely connected metric space (X, d) admits a proper,
cobounded coarse near-action ψ by a group G. Then G is finitely generated, and for
any x0 ∈ X, γ 7→ ψ (γ) (x0) is a coarse equivalence between G and X.

Proof. Let ψ be a (ρ−, ρ+, C)-coarse near-action on (X, d) and x0 ∈ X . For use later
in this proof, note that we may replace ρ− by an even smaller function (still called
ρ−), which is identically 0 on an interval [0, B], and strictly increasing to infinity on
[B,∞) for B > 0.

Choose a single constant R > 0 satisfying Definition 2.9 and such that {ψ (γ) (x0) | γ ∈ G}
is R-dense in X . Let

S = {γ ∈ G | d (ψ (γ) (x0) , x0) ≤ ρ+ (3R) + 3C}
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By properness, S is finite. Let H ≤ G be the subgroup generated by S. We claim
that H = G.

Suppose otherwise. Let

A =
⋃

g∈H

Bd [ψ (g) (x0) , R] , and

B =
⋃

g∈G\H

Bd [ψ (g) (x0) , R]

Note that A∪B = X , and neither set is empty. So there exists an R-chain connecting
a point of A to a point of B, and within that chain there exist points a ∈ A and b ∈ B
with d (a, b) ≤ R. Choose g1 ∈ H and g2 ∈ G\H such that d (a, ψ (g1) (x0)) ≤ R and
d (b, ψ (g2) (x0)) ≤ R. Then

• d
(
x0, ψ

(
g−1
1

)
ψ (g1) (x0)

)
≤ 2C,

• d
(
ψ
(
g−1
1

)
ψ (g1) (x0) , ψ

(
g−1
1

)
ψ (g2) (x0)

)
≤ ρ+ (3R), and

• d
(
ψ
(
g−1
1

)
ψ (g2) (x0) , ψ(g

−1
1 g2) (x0)

)
≤ C.

By the triangle inequality, d
(
x0, ψ(g

−1
1 g2) (x0)

)
≤ ρ+ (3R)+3C, so g−1

1 g2 ∈ S. But

then g2 = g1
(
g−1
1 g2

)
∈ H , a contradiction. The claim follows.

Next define σ−, σ+ : [0,∞)→ [0,∞) by

σ−(r) = inf {d (x0, ψ (γ) (x0)) | d (1, γ) ≥ r} , and

σ+(r) = sup {d (x0, ψ (γ) (x0)) | d (1, γ) ≤ r}

Notice that both σ− and σ+ are nondecreasing, σ−(r) ≤ σ+(r) for all r, and (by
properness), σ− (r)→∞ as r →∞.

Let γ1, γ2 ∈ G. Then

ρ− (d (ψ (γ1) (x0) , ψ (γ2) (x0))) ≤ d
(
ψ
(
γ−1
1

)
ψ (γ1) (x0) , ψ

(
γ−1
1

)
ψ (γ2) (x0)

)

≤ d
(
ψ
(
γ−1
1

)
ψ (γ1) (x0) , x0) + d(x0, ψ

(
γ−1
1

)
ψ (γ2) (x0)

)
)

≤ 2C + [C + d
(
x0, ψ

(
γ−1
1 γ2

)
(x0)

)
]

≤ 3C + σ+ (d (γ1, γ2))

Therefore

(2.1) d (ψ (γ1) (x0) , ψ (γ2) (x0)) ≤ ρ−1
− (3C + σ+ (d (γ1, γ2)))

where ρ−1
− : [0,∞)→ [B,∞) is defined to be the inverse of ρ−|[B,∞). Since ρ

−1
− strictly

increases to infinity, we may define τ+ : [0,∞)→ [0,∞) by

τ+ (r) = ρ−1
− (3C + σ+(r))

to obtain an upper control function satisfying the inequality

d (ψ (γ1) (x0) , ψ (γ2) (x0)) ≤ τ+ (d (γ1, γ2))
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As for the lower control function, note that

ρ−σ−(d (γ1, γ2)) = ρ−σ−(d
(
1, γ−1

1 γ2
)
)

≤ ρ−(d(x0, ψ
(
γ−1
1 γ2

)
(x0)))

≤ d(ψ (γ1) (x0) , ψ (γ1)ψ
(
γ−1
1 γ2

)
(x0))

≤ d (ψ (γ1) (x0) , ψ (γ2) (x0)) + d
(
ψ (γ2) (x0) , ψ (γ1)ψ

(
γ−1
1 γ2

)
(x0)

)

≤ d (ψ (γ1) (x0) , ψ (γ2) (x0)) + C

Therefore

(2.2) ρ−σ−(d (γ1, γ2))− C ≤ d (ψ (γ1) (x0) , ψ (γ2) (x0))

Define τ− : [0,∞)→ [0,∞) by

τ− (r) =

{
0 if ρ−σ−(r)− C < 0

ρ−σ−(r)− C otherwise

Since the right-hand side of (2.2) is ≥ 0, the inequality

τ− (d (γ1, γ2)) ≤ d (ψ (γ1) (x0) , ψ (γ2) (x0))

holds. �

The next proposition generalizes [Eis15, Appendix A] and the forward implication
of [Nek97, Th.8.4].

Proposition 2.11. If a metric space (X, d) is coarsely equivalent to a countable2

group G then X admits a proper cobounded coarse near-action by G.

Proof. Let f1 : G → X be a (ρ−, ρ+, C)-coarse equivalence, where, as in the proof
of Proposition 2.10, ρ− is identically 0 on some interval [0, B] and strictly increasing
on [B,∞]; so ρ−1

− is defined on [B,∞). Let f2 : X → G be a coarse inverse of f1.
Then f2 is a (σ−, σ+)-coarse embedding with the property that d(x, f1f2(x)) ≤ C for
all x ∈ X and d(γ, f2f1(γ)) ≤ C for all γ ∈ G. We will show that ψ(γ) : X → X ,
defined by ψ(γ) = f1 ◦ γ ◦ f2 (where γ simultaneously represents an element of G and
the isometry of G defined by left multiplication by γ) determines a coarse near-action
of G on X .

First note that, for each γ ∈ G, f1 ◦γ ◦f2 is a (ρ− ◦ σ−, ρ+ ◦ σ+)-coarse embedding.
Thus, to show that ψ is a coarse near-action, we only need to check the conditions of
Definition 2.4.

We observe first that ψ(1) = f1f2, which is of bounded distance ≤ C from idX .
Next let γ1, γ2 ∈ G and x ∈ X . By the near inversive properties of f1 and f2,

d (f2f1 (γ2f2 (x)) , γ2f2 (x)) ≤ C

Left-multiplication by γ1 yields

d (γ1f2f1 (γ2f2 (x)) , γ1γ2f2 (x)) ≤ C

2Countability is needed to endow G with a proper word length metric, well-defined up to coarse
equivalence. See [NY12, §1.2].
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Plugging both terms into f1 gives

d (f1γ1f2f1 (γ2f2 (x)) , f1γ1γ2f2 (x)) ≤ ρ+(C)

In other words,

d(ψ(γ1)ψ(γ2)(x), ψ(γ1γ2)(x)) ≤ ρ+(C)

Letting C ′ = max {C, ρ+(C)}, we have shown that ψ is a (ρ− ◦ σ−, ρ+ ◦ σ+, C
′)-coarse

near-action of G on X .
Now, we show that this coarse near-action ψ of G on X is proper and cobounded.

First, observe that for each γ ∈ G,

d(f1(γ), ψ(γ)(f1(1))) = d(f1(γ), f1γf2(f1(1)))

≤ ρ+(d(γ, γf2(f1(1))))

= ρ+(d(1, f2(f1(1))))

≤ ρ+(C)

≤ C ′

Set x0 = f1(1) and R = C ′+C. Let y ∈ X . Since f1 is a coarse equivalence, choose
γ ∈ G such that d(f1(γ), y) ≤ C. Then,

d(ψ(γ)(x0), y)

= d(ψ(γ)(f1(1)), y)

≤ d(ψ(γ)(f1(1)), f1(γ)) + d(f1(γ), y)

≤ C ′ + C

proving that ψ is cobounded.
To show that ψ is proper, let R > 0 and x, y ∈ X . We wish to show that

{γ ∈ G|ψ(γ)(B[x,R]) ∩B[y, R] 6= ∅} ⊂ {γ ∈ G|γ(B[γ1,M ]) ∩ B[γ2,M ] 6= ∅}

for some γ1, γ2 ∈ G and M = ρ−1
− (2C ′ +R + ρ+σ+(C

′)). Since the latter set is finite
(G acts properly on itself), we can conclude that ψ is proper.

Thus, choose a γ ∈ G so that ψ(γ)(B[x,R]) ∩B[y, R] 6= ∅. Let z ∈ B[x,R] so that
ψ(γ)(z) ∈ B[y, R]. Since f1 is a coarse equivalence, there is γ1, γ2, γ3 ∈ G so that
d(f1(γ1), x) ≤ C ′, d(f1(γ2), y) ≤ C ′ and d(f1(γ3), z) ≤ C ′. From this we observe that

d(ψ(γ)(z), ψ(γ)(f1(γ3))) ≤ ρ+σ+(C
′)

Moreover, we have:

d(f1(γ2), f1(γγ3))

≤ d(f1(γ2), y) + d(y, ψ(γ)(z)) + d(ψ(γ)(z), ψ(γ)(f1(γ3))) + d(ψ(γ)(f1(γ3)), f1(γγ3))

≤ 2C ′ +R + ρ+σ+(C
′)

Since f1 is a coarse-equivalence, using the previous inequality, we have

ρ−(d(γ2, γγ3) ≤ 2C ′ +R + ρ+σ+(C
′)
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Hence d(γ2, γγ3) ≤ ρ−1
− (2C ′ +R+ ρ+σ+(C

′)) ≤M , proving γγ3 ∈ B[γ2,M ]. Further-
more, we know

d(f1(γ1), f1(γ3)) ≤ d(f1(γ1), x) + d(x, z) + d(z, f1(γ3))

≤ 2C ′ +R

Once again, using the previous inequality we see that d(γ1, γ3) ≤ ρ−1
− (2C ′ + R) ≤

M proving that γγ3 ∈ γ(B[γ1,M ]). Thus, we have γγ3 ∈ {γ ∈ G|γ(B[γ1,M ]) ∩
B[γ2,M ] 6= ∅}. �

Combining the previous two propositions and restricting to the cases of primary
interest (for our purposes) gives us the following.

Theorem 2.12 (Generalized Švarc-Milnor with converse). Let (X, d) be a coarsely
connected metric space and G a finitely generated group. Then X admits a proper,
cobounded coarse near-action by G if and only if X is coarsely equivalent to G.

Corollary 2.13. A quasi-geodesic metric space (X, d) admits a proper, cobounded
quasi-action by G if and only if G is finitely generated and quasi-isometric to X.

Proof. This is [Nek97, Th.8.4]. Alternatively, use Theorem 2.12 and Remark 2.8. �

3. Model geometries and model Z-geometries

Throughout this paper, all spaces are assumed separable and metrizable. A metric
space (X, d) is proper if every closed metric ball Bd [x, r] ⊆ X is compact. It is
cocompact if there exist x0 ∈ X and R > 0 so that {Bd [γx0, R] | γ ∈ Isom (X)} covers
X . Here Isom (X) denotes the group of self-isometries of X . For later use, we review
a few well-known properties that follow from properness and/or cocompactness.

A metric space (X, d) is uniformly contractible if for each R > 0, there exists S > R
so that every open metric ball Bd(x,R) contracts in Bd(x, S).

Lemma 3.1. If a proper metric space (X, d) is cocompact and contractible, then it is
uniformly contractible.

Proof. See, for example, [GM19, Lemma 4.8]. �

An open cover U of a metric space (X, d) is uniformly bounded if {diam (U) | U ∈ U}
is bounded above; in that case the supremum of this set is the mesh of U . The order
of U is the largest k ∈ N∪{∞} such that some x ∈ X is contained in k elements of
U . We say that (X, d) has macroscopic dimension ≤ n if there exists a uniformly
bounded open cover of X having order ≤ n + 1. A cover V refines U if, for every
V ∈ V there exists some U ∈ U such that V ⊆ U ; in that case we write U ≻ V.

Lemma 3.2. Let (X, d) be proper and cocompact. Then X has finite macroscopic
dimension; in fact, X admits a sequence of finite order, uniformly bounded, open
covers U0 ≻ U1 ≻ U2 ≻ · · · such that mesh (Ui)→ 0.
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Proof. The argument provided in [Mor16, Lemma 3.1] proves the existence of some
x0 ∈ X , r > 0, and {λi}i∈N ⊆ Isom (X) such that U0 = {Bd (λi(x0), r)} is a finite
order cover of X . The following method produces a refinement Vε of U0 of mesh
≤ ε for arbitrary ε > 0: Use properness to choose a finite cover W ′

ε of Bd[x0, r] by
open ε-balls, and let Wε be the collection of intersections of the elements of W ′

ε with
Bd (x0, r). Then let

Vε = {λi (W ) | W ∈ Wε and i ∈ N}

Since Wε is finite and U0 has finite order, Vε has finite order.
To produce the sequence of open covers promised in the lemma, we apply the

above procedure inductively. Let ε1 be arbitrary and U1 = Vε1. Next let ε2 > 0 be a
Lebesgue number for the coverW ′

ε1
to obtain U2 = Vε2 which refines U1 and has mesh

≤ ε2. Continue inductively, making sure that the chosen Lebesgue numbers converge
to 0. �

Lemma 3.3. Suppose (X, d) is uniformly contractible; U is a uniformly bounded,
finite order, open cover of X; K is the nerve of U ; and ψ : X → K is a corresponding
barycentric map. Then there is a map s : K → X and a bounded homotopy H :
X × I → X joining s ◦ ψ with the identity idX .

Proof. Since K is finite-dimensional and X is uniformly contractible, it is straight-
forward to build a map s : K → X inductively over the skeleta of K such that s ◦ ψ
is bounded distance from idX . (This is an easier version of [GM19, Prop.5.2].) From
there one can apply [GM19, Cor.5.3] to obtain the desired homotopy. �

A locally compact space X is an absolute neighborhood retract (ANR for short) if,
whenever X is embedded as a closed subset of another space Y , some neighborhood
of X retracts onto X . A contractible ANR is called an absolute retract or simply
an AR. The category of ANRs provides a common ground of “nice” spaces which
includes manifolds, locally finite complexes, and proper CAT(0) spaces—the spaces
most commonly encountered in geometric group theory. For a quick introduction to
ANRs, see [GM19, §2]. It is worth noting that some authors do not require ANRs
to be locally compact (or separable and metrizable). For our purposes, we consider
those conditions to be part of the definition. We use the term metric AR (or metric
ANR) when a specific metric plays a role.

Definition 3.4. A model geometry is a proper, cocompact, metric AR (X, d).

Given a model geometry, we often seek a nice compactification. A closed subset
A of a space Y , is a Z-set if there exists a homotopy H : Y × [0, 1] → Y such that
H0 = idY and Ht(Y ) ⊂ Y − A for every t > 0. In this case we say H instantly
homotopes Y off from A. A Z-compactification of a space X is a compactification
X = X⊔Z such that Z is a Z-set in X. If X is separable and metrizable then so is X ;
and if X is an AR then so is X . For these and other facts about Z-compactifications,
see [GM19, §3].

A controlled Z-compactification of a proper metric space (X, d) is a Z-compactifi-
cation X satisfying the additional condition:
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(‡) For every R > 0 and open cover U of X , there is a compact set C ⊂ X

so that if A ⊆ X − C and diamdA < R, then A ⊆ U for some U ∈ U .

If we choose a metric d for X, condition (‡) is equivalent to:

(‡′) For every R > 0 and ǫ > 0, there is a compact set C ⊂ X so that

if A ⊆ X − C and diamdA < R, then diamdA < ǫ.

Definition 3.5. A model Z-geometry
(
X,Z, d

)
is a controlled Z-compactification

X = X ⊔ Z of a model geometry (X, d). In this case we refer to (X, d) as the
underlying geometry and the space Z as the Z-boundary of

(
X,Z, d

)
.

It is important to note that the space X = X ⊔Z does not, by itself, determine the
model Z-geometry; the metric d is a crucial ingredient.3 It is also worth noting that
a given model geometry (X, d) can admit any number of distinct model Z-geometries
(possibly none at all). It is useful to think about the following simple examples.

Example 3.6. The Euclidean plane (R2, dE) and hyperbolic plane (H2, dH) are model
geometries. Adding the standard visual circles at infinity gives model Z-geometries(
R2, S1, dE

)
and

(
H2, S1, dH

)
. In each case, all isometries of the original space

extend to homeomorphisms of the compactification. By contrast, if we quotient out
the upper half-circle in either of these boundaries, we get a new model Z-geometry
for which the boundary is still a circle, but now many isometries do not extend. We
will return to the issue of extendability in Section 7.

Example 3.7. As above, we can obtain model Z-geometries
(
Rn, Sn−1, dE

)
and(

Hn, Sn−1, dH
)
by adding the visual (n− 1)-sphere at infinity to Euclidean and hy-

perbolic n-space. If A ⊆ Sn−1 is a non-cellular cell-like set (such as a Fox-Artin
arc or the Whitehead continuum in S3), then quotienting out by A produces model
Z-geometries with boundaries not homeomorphic to Sn−1.

We require cocompactness in our model geometries but we do not assume they ad-
mit a geometric group action—or even proper, cobounded coarse near action. Heintze
[Hei74] has observed the existence of homogeneous negatively curved Riemannian
manifolds which, by virtue of not being symmetric spaces, do not admit quotients of
finite volume. Cornulier [Cor18] shows that these spaces are not even quasi-isometric
to a finitely generated group, and hence admit no proper, cobounded coarse near ac-
tion. More recently, Healy and Pengitore [HP] have constructed higher rank CAT(0)
spaces with similar properties. As such, there are model geometries and Z-geometries
not relevant to the group theoretic applications that are the focus of this paper. Nev-
ertheless, several theorems in the coming sections can be applied to those spaces.

3By contrast, the choice of a metric d realizing the topology on X , while convenient, is of little
additional significance; any such metric will do.
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Model geometries are not required to be finite-dimensional but the argument pre-
sented in [Mor16], or more explicitly [GM16, Th.2], gives the following.

Theorem 3.8. The Z-boundary of every model Z-geometry
(
X,Z, d

)
has finite

Lebesgue covering dimension. More specifically, if the macroscopic dimension of X
is n, then dimZ ≤ n− 1.

We close this section with an observation that will be used in Section 6 and can be
found in [GM19]. We repeat it here for easy access and to emphasize the difference
between the metrics d and d mentioned above.

Lemma 3.9. Suppose (X,Z, d) is a model Z-geometry. For each z ∈ Z, neighborhood
U of z in X and r > 0, there is a neighborhood V of z in X such that d(V,X−U) ≥ r
where V = V − Z and U = U − Z.

4. Defining Z-structures and coarse Z-structures

We can now formulate one of our main definitions—that of a “coarse Z-structure”.
The task is made simpler by using the notion of a model Z-geometry. First we
reformulate the classical notion of a Z-structure in this way (see [Bes96, Definition
1.1], [Dra06, Definition 1], or [GMT19, Definition 6.1] for versions of this classical
definition). Lemma 6.4 of [GM19] assures that this formulation is equivalent to the
original.

Definition 4.1. A Z-structure on a groupG consists of a model Z-geometry
(
X,Z, d

)

and a geometric action of G on (X, d). In this case, we call Z a Z-boundary for G.

Remark 4.2. Equivalently, a Z-structure on G is a homomorphism φ : G →
Isom (X) such that ker φ is finite and φ (G) is both cocompact and proper.

We are now ready to generalize.

Definition 4.3. A coarse Z-structure on a group G (cZ-structure for short) consists
of a model Z-geometry

(
X,Z, d

)
and a proper, cobounded, coarse near-action of G

on X . In this case we call Z a coarse Z-boundary (or cZ-boundary) for G.

The “if and only if” nature of Theorem 2.12 allows for a simple equivalent definition.

Definition 4.4 (alternative formulation). A cZ-structure on a finitely generated
group G consists of a model Z-geometry

(
X,Z, d

)
and a coarse equivalence f : G→

(X, d).

Remark 4.5. Proposition 2.10 implies that a group G admitting a cZ-structure is
finitely generated. In that context, we always give G a standard word length metric.

Since every Z-structure is a cZ-structure, we immediately have many groups that
admit cZ-structures. As for new examples, those are produced primarily by applica-
tions of Theorem 0.1. We will look more closely at specific cases in the next section.

For those who prefer working with quasi-isometries and quasi-actions, we formulate
a definition in that category. The situation is complicated slightly by the extra
hypothesis required in the Švarc-Milnor Theorem for quasi-actions (see Remark 2.8).
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Definition 4.6. A quasi-Z-structure on a group G (qZ-structure for short) consists
of a model Z-geometry

(
X,Z

)
and a proper, cobounded quasi-action of G on X . In

that case we call Z a quasi-Z-boundary (or qZ-boundary) for G.

Proposition 4.7. A finitely generated group G admits a qZ-structure based on a
model Z-geometry

(
X,Z, d

)
if G is quasi-isometric to (X, d). If (X, d) is quasi-

geodesic space the converse is true.

Proof. Instead of Theorem 2.12, apply Theorem 8.4 of [Nek97]. �

For the sake of simplicity, we will focus primarily on the coarse category in the
remainder of this paper.

Before moving on, we discuss the general class of groups that are candidates for Z-
and cZ-structures. It is well-known that, for a torsion-free group G to admit a Z-
structure, it must be of Type F, meaning that there exists a finite K(G, 1) complex.
This is true for the following reason: Since G is torsion-free, the assumed proper,
cocompact action on an AR, X , is free; so the quotient map q : X → G\X is a
covering map. As a result, G\X is a compact aspherical ANR. A theorem of West
[Wes77] assures that G\X is homotopy equivalent to a finite CW complex K, which
is our K(G, 1) complex. By passing to universal covers, we can give an alternative
definition: G is Type F if there exists a contractible CW complex admitting a proper,
free, cocompact, rigid cellular G-action.4

All Type F groups are torsion-free, but there are many groups with torsion that
admit Z-structures. To aid in discussing those groups in the coming sections, we
introduce the following definition.

Definition 4.8. A group G is Type F ∗ if there exists a contractible CW complex
admitting a proper, cocompact, rigid cellular G-action. Similarly, G is Type F ∗

AR if
there exists an AR admitting a proper, cocompact G-action.

Remark 4.9. Unfortunately, the trick used above (showing that Type F = Type
FAR) relies on a covering space argument not applicable when G has torsion. Whether
there is a group of Type F ∗

AR that is not of Type F ∗ is an open question. We will
return to this and related questions in Section 8.

There is also room for a definition of Type F , by which we mean a group admitting
a cocompact EG complex, and Type FAR, meaning a group that admits a proper
cocompact action on an AR such that stabilizers of finite subgroups are contractible.
These variations are not needed in this paper.

5. Uniqueness and boundary swapping for cZ-structures

We now begin justifying the definitions of the previous section by extending key
theorems about geometric actions, Z-structures, and Z-boundaries to the realm of
proper cobounded coarse near-actions, cZ-structures, and cZ-boundaries. We start

4By a rigid cellular action, we mean that the stabilizer of each cell, e, acts trivially on e. See
[Geo08].
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with generalized versions of three fundamental theorems about a given group G. See
[GM19] for the classical analogs. For a brief review of the notion of proper homotopy
equivalence, see page 302 of [GM19].

Theorem 5.1 (Coarse uniqueness of geometric models). If a group G admits proper,
cobounded, coarse near-actions on model geometries (X1, d1) and (X2, d2), then there
exists a continuous coarse equivalence f : X1 → X2. As a consequence, X1 is proper
homotopy equivalent to X2.

Theorem 5.2 (cZ-boundary swapping). If G admits a cZ-structure based on a model
Z-geometry

(
X,Z, d

)
and (Y, d′) is a model geometry on which there is a proper,

cobounded, coarse near-action by G, then there is a model Z-geometry of the form(
Y , Z, d′

)
underlying a cZ-structure on G.

Corollary 5.3 (cZ-boundary swapping—alternate version). If G admits a cZ-structure
based on a model Z-geometry

(
X,Z, d

)
and (Y, d′) is a model geometry coarsely equiv-

alent to (X, d) or G, then there is a model Z-geometry of the form
(
Y , Z, d′

)
under-

lying a cZ-structure on G.

Proof. Combine Theorem 5.2 with Theorem 2.12. �

Corollary 5.4. If G admits a cZ-structure with boundary Z and G is type F∗
AR, then

G admits a Z-structure with boundary Z.

Theorem 5.5 (Shape uniqueness of cZ-boundaries). If Z1 and Z2 are cZ-boundaries
for a group G, then Z1 is shape equivalent to Z2.

Each of the above theorems is implied by the following collection of more general
theorems, which involve pairs of quasi-isometric groups. This is where the benefits of
our generalization scheme become clear. For example, Corollary 5.9 is significantly
cleaner and more general than its analog for Z-boundaries.

Remark 5.6. Under word length metrics, finitely generated groups are quasi-geodesic
spaces, so there is no difference between quasi-isometric and coarse equivalent finitely
generated groups. For that reason, we stick with the more common notion of quasi-
isometry when comparing groups.

Theorem 5.7 (Generalized coarse uniqueness of geometric models). If quasi-isometric
groups G and H admit proper, cobounded, coarse actions on model geometries (X1, d1)
and (X2, d2), respectively, then there exists a continuous coarse equivalence f : X1 →
X2. In particular, X1 is proper homotopy equivalent to X2.

Proof. By Theorem 2.12, X1 and X2 are coarsely equivalent; so we may apply [GM19,
Cor.5.4]. Lemmas 3.1 and 3.2 assure the necessary hypotheses. �

Theorem 5.8 (Generalized cZ-boundary swapping ). Suppose G and H are quasi-
isometric groups; H admits a cZ-structure based on a model Z-geometry

(
X,Z, d

)
;

and (Y, dY ) is a model geometry which admits a proper, cobounded, coarse near-action
by G. Then there is model Z-geometry of the form

(
Y , Z, dY

)
underlying a cZ-

structure on G.
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Proof. Apply [GM19, Th.7.1], with Theorem 5.7 providing the setup. �

For emphasis, we state the following corollaries, the first of which is a restatement
of Theorem 0.1:

Corollary 5.9. If G and H are quasi-isometric groups and H admits a cZ-structure,
then so does G. Moreover, if Z is a cZ-boundary for H, then Z is also a cZ-boundary
for G.

Corollary 5.10. If G is quasi-isometric to a group H which admits a cZ-structure
with boundary Z, and G is type F∗

AR, then G admits a Z-structure with boundary Z.

Example 5.11. If G contains a finite index subgroup H which is CAT(0), i.e., G
is virtually CAT(0), it is unclear whether G is also CAT(0) (or even Type F*). As
such, generalized boundary swapping ([GM19]) does not guarantee that G admits a
Z-structure. However, since H →֒ G is a quasi-isometry, Theorem 5.8 shows that
G admits a cZ-structure. By similar reasoning, virtual Baumslag-Solitar groups and
virtual systolic groups admit cZ-structures. By combining this strategy with [Pie18]
in an inductive manner, we can deduce that every poly-(finite or cyclic) group admits
a cZ-structure. By Corollary 5.10, the moment any of these groups can be shown
to act properly and cocompactly on an AR, the cZ-structure can be upgraded to a
Z-structure.

Theorem 5.12 (Uniqueness of coarse-Z-boundaries up to shape). If Z1 and Z2 are
cZ-boundaries for quasi-isometric groups G and H, then Z1 is shape equivalent to
Z2.

Proof. Let
(
X,Z1, dX

)
and

(
Y , Z2, dY

)
be cZ-structures for G and H . By Theorem

2.12, G is coarsely equivalent to (X, dX) so, by hypothesis, H is coarsely equivalent
to (X, dX). Theorem 2.12 provides a proper cobounded coarse near-action of H on X
so, by Theorem 5.8, there is a model Z-geometry (underlying a cZ-structure on H) of

the form
(
X

′
, Z2, dX

)
, where X

′
= X ⊔Z2 is a second controlled Z-compactification

of X . From here, the argument provided in [GM19, §8] goes through unchanged. �

We close this section by placing Theorem 3.8 into a group-theoretic context, where
it generalizes results from [Gro87], [Swe99], and [Mor16].

Theorem 5.13. Every cZ-boundary of a group G has finite Lebesgue covering di-
mension.

6. Further applications of cZ-structures

In this section, we show that many of the theorems from [BM91], [Bes96], [Ont05],
[Dra06], and [GO07] remain valid in the more general context of coarse Z-structures.
We begin with some definitions, notation, and basic facts needed to describe these
results.

Aside from some appeals to group cohomology (see [Bro82]) and coarse cohomology
(see [Roe03]), all cohomology used here is Čech-Alexander-Spanier cohomology (see
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[Mas78]) with coefficients in a PID R. This is a compactly supported cohomology
theory which agrees with classical Čech cohomology on compact metric spaces. As
such, it agrees with singular cohomology on compact ANRs. For locally compact
ANRs it is isomorphic to singular cohomology with compact supports. For that
reason, we will use the notation Ȟ∗( ;R) when applying this functor to compact
metric spaces and Ȟ∗

c ( ;R) for spaces that are not necessarily compact. Since many of
the spaces of interest are non-ANRs, the choice of cohomology theories is crucial. For
relative cohomology, this theory requires subspaces to be closed. A useful property
is that, for every compact metric pair (Y,A), Ȟ∗(Y,A;R) ∼= Ȟ∗

c (Y −A;R). More
generally, if (Y,A) is a closed pair of locally compact metric spaces, Ȟ∗

c (Y,A;R)
∼=

Ȟ∗
c (Y − A;R). As usual, a tilde indicates reduced cohomology.

Lemma 6.1. For any model Z-geometry
(
X,Z, d

)
, ˜̌H

n

(Z;R) ∼= Ȟn+1
c (X ;R) for all

n.

Proof. Since X = X − Z is an AR, then so is X and hence X is contractible. Then
the isomorphism follows from the above remarks and the exact sequence for the pair(
X,Z

)
. �

For a locally compact metric space Y the cohomological dimension with respect to
R is defined by

dimRX = max
{
n | Ȟn

c (U ;R) 6= 0 for some U ⊆open Y
}

= max
{
n | Ȟn

c (Y,A;R) 6= 0 for some A ⊆closed Y
}

We let dim Y denote Lebesgue covering dimension. It is a classical fact that dimZ Y =
dimY whenever the latter is finite [Wal81]. The global cohomological dimension with
respect to R of a space X is defined by

gcdR Y = max
{
n | Ȟn

c (Y ;R) 6= 0
}

6.1. The group cohomology theorem for cZ-boundaries. One of Bestvina and
Mess’s initial applications of Z-set technology [BM91] was to reveal a connection
between the group cohomology of a torsion-free hyperbolic group G and topological
properties of its Gromov boundary ∂G. A particularly striking assertion is that

Hn+1 (G,RG) ∼= ˜̌H
n

(∂G;R)

for all integers n and PID R. In [Bes96], Bestvina applied the same reasoning to
extend this result to all torsion-free groups admitting a Z-structure; here the Z-
boundary plays the role of ∂G. The following result extends that theorem to cZ-
boundaries and also allows for groups with torsion. The proof relies on coarse coho-
mology of metric spaces as developed by Roe in [Roe03].

Theorem 6.2. If G admits a cZ-structure based on a model Z-geometry
(
X,Z, d

)
,

then Hn+1 (G,RG) ∼= ˜̌H
n

(Z;R) for all integers n and coefficients R.
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Proof. To avoid confusion, we let G denote the group and |G| the corresponding
metric space. By [Roe03, Example 5.21], HX∗ (|G| ;R) ∼= H∗ (G;RG) and, since |G|
is coarsely equivalent to (X, d), HX∗ (|G| ;R) ∼= HX∗ (X ;R). By [Roe03, Theorem
5.28], HX∗ (X ;R) ∼= Ȟ∗

c (X ;R) , so an application of Lemma 6.1 completes the proof.
�

6.2. The Bestvina-Mess formula for cZ-boundaries and model Z-geometries.

Another key insight from [BM91] is that, for a torsion-free hyperbolic group G, ∂G
satisfies:

(6.1) dimR ∂G = gcdR ∂G

and since ∂G is always finite-dimensional:

(6.2) dim ∂G = gcd
Z
∂G

In [Bes96], Bestvina extended these observation to Z-boundaries of torsion-free groups
admitting a slightly more restrictive version of Z-structure. Theorem 3.8 makes
that restriction unnecessary. Later, Dranishnikov [Dra06] expanded the notion of
Z-structure to allow for groups with torsion and showed that the analog of (6.1) still
holds. Another application of Theorem 3.8 implies (6.2). Independently, Geoghegan
and Ontaneda [GO07] verified (6.1) and (6.2) for CAT(0) groups, with the visual
boundary standing in for ∂G. Here we extend these results still further.

Theorem 6.3. Let (X,Z, d) be a cZ-structure on a group G. Then for every PID
R, dimR Z = gcdR Z and, since Z is finite-dimensional, dimZ = gcdZ Z.

Corollary 6.4. For groups admitting a cZ-structure, the dimension of the boundary
and the cohomological dimension of that boundary over each PID R are quasi-isometry
invariants.

Remark 6.5. The point of Corollary 6.4 is that, since a cZ-structure onG guarantees
the existence of a cZ-structure on all groups quasi-isometric to G, these are invariants
of the entire quasi-isometry class of G.

Corollary 6.4 follows from a combination of Theorem 6.3, Lemma 6.1, and any
one of several results from Section 5. Theorem 6.3 is implied by the following more
general result that does not require a proper coarse near-action.

Theorem 6.6. Let (X,Z, d) be a model Z-geometry. Then for every PID R, dimR Z =
gcdR Z. Since Z is finite-dimensional, we also have dimZ = gcd

Z
Z.

To obtain the main assertion of Theorem 6.6 we appeal to the argument presented
in [Dra06]. A little additional care must be taken since our hypotheses are weaker
than his: rather than a geometric action on X , we only assume that X is cocompact.
Fortunately, that presents only minor challenges. A few adjustments are necessary,
but mostly it suffices to reexamine each step of the earlier proof and observe that the
weaker hypothesis is sufficient. As for the adjustments, those were anticipated when
we stated and proved Lemmas 3.1-3.3.
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In [Dra06], the reader will come across frequent uses of inclusion induced homo-
morphisms Ȟn

c (V ;R) → Ȟn
c (U ;R) where V ⊆ U are open sets of a metric space X .

At first counterintuitive, since cohomology is a contravariant functor5, these homo-
morphisms are discussed briefly in [Hat02, §3.3] and in more detail in [GH81, p.216]
and [Mas78]. The following lemma is a rephrased and slightly generalized version of
the key lemma in Dranishnikov’s proof.

Lemma 6.7 (see [Dra06, Lemma 3]). Let (X, d) be a model geometry and R a PID.
Suppose Ȟ i

c (X ;R) = 0 for all i > n. Then there is a number r such that for every
open set U ⊆ X, the inclusion induced map Ȟ i

c(U ;R) → Ȟ i
c(Nr(U);R) is trivial for

all i > n.

The necessary generalization is accomplished by inserting Lemmas 3.1-3.3 in the
appropriate places. From there the proof of Theorem 1 in [Dra06] carries over to
provide a proof of Theorem 6.6. The idea is to use Lemma 6.7 to conclude that
any corresponding controlled Z-boundary would necessarily have dimension ≤ n− 1.
Combined with Lemma 6.1, this provides the key inequality, dimR Z ≤ gcdR Z. In
the lowest dimension, this argument provides more than is contained in the statement
of Theorem 6.6. This difference is significant since it allows us to obtain extensions
of [BM91, Corollary 1.3 (d)] and the d = 0 case of [GO07, Main Theorem] (which is
already covered by Theorem 6.6 when d > 0).

Proposition 6.8. Suppose (X,Z, d) is a model Z-geometry and dimR Z = 0. Then

(1) Ȟ1
c (X ;R) 6= 0, and

(2) Z is not a one-point set.

Proof. First note that Ȟ i
c(X ;R) = 0 for all i > 1, otherwise gcdR Z ≥ 1, contradicting

the assumption that dimR Z = 0. Since X is connected and noncompact, Ȟ0
c (X ;R) =

0. So, if Ȟ1
c (X ;R) = 0, then Ȟ i

c(X ;R) = 0 for all i, and the above argument would
imply that Z = ∅, a contradiction. Assertion 1) follows.

For assertion 2), apply Lemma 6.1 to conclude that ˜̌H
0

(Z;R) 6= 0. �

Corollary 6.9. The boundary of a model Z-geometry never has the Čech cohomology
of a point.

6.3. Generalization of Ontaneda’s Almost Geodesic Completeness Theo-

rem. Recall that a metric space (X, d) is almost geodesically complete if there exists
R > 0 such that, for every x, y ∈ X , there is a geodesic ray r : [0,∞)→ X such that
r (0) = x and d (r, y) ≤ R. Our next goal is an application of Theorem 6.6 which
can be viewed as a generalization of the “Almost Geodesic Completeness Theorems”
found in [Ont05] and [GO07] for CAT(0) spaces, and in [BM91] (attributed to M.
Mihalik) for hyperbolic spaces.

Let
(
X,Z, d

)
be a model Z-geometry and H : X × [0, 1]→ X be a homotopy that

instantly pulls X off from Z. Using the contractibility of X , we can assume further

5To make cohomology with compact supports a functor, one must restrict to proper maps.
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that H contracts X to a point x0 ∈ X . Let

CZ = Z × [0,∞] / ∼ and OZ = Z × [0,∞)/ ∼

be the cone and open cone on Z, where ∼ identifies Z×{0} to a point. We view Z as
a subset CZ by identifying it with Z×{∞}. By reversing and reparameterizing H , we
obtain a map F : (CZ,Z)→

(
X,Z

)
whose restriction to the open cone F : OZ → X

is proper. These maps, and any others with the same properties, are the topic of the
next theorem.

Theorem 6.10. Given a model Z-geometry
(
X,Z, d

)
and a map F : (CZ,Z) →(

X,Z
)
which takes Z identically onto Z and OZ into X, there exists R > 0 such

that F (OZ) is R-dense in X.

Proof. The map F induces a commuting diagram of long exact sequences

← Ȟk (Z) ← Ȟk
(
X
)
← Ȟk

(
X,Z

)
← Ȟk−1 (Z) ← Ȟk−1

(
X
)
←

∼= ↓ id ∼= ↓ ↓ F
∗ ∼= ↓ id ∼= ↓

← Ȟk (Z) ← Ȟk (CZ) ← Ȟk (CZ,Z) ← Ȟk−1 (Z) ← Ȟk−1 (CZ) ←

By the Five-Lemma, F
∗
is an isomorphism for all k. From this we may conclude that

the restriction map F : OZ → X , which is necessarily proper, induces isomorphisms
F ∗ : Ȟ i

c (X)→ Ȟ i
c (OZ) for all i.

For each integer i, let Bi = Bd(x0, i) to obtain an exhaustion B1 ⊆ B2 ⊆ · · · of
X by open sets with compact closures, and let Ci = F−1 (Bi) to get a corresponding
exhaustion C1 ⊆ C2 ⊆ · · · of OZ. Then

Ȟk
c (X) = lim−→Ȟ

k (X,X −Bi) and Ȟk
c (OZ) = lim−→Ȟ

k (OZ,OZ − Ci)

and there is a commuting diagram between direct sequences

→ Ȟk (X,X −Bj−1) → Ȟk (X,X −Bj) → Ȟk (X,X −Bj+1) →
↓ F ∗ ↓ F ∗ ↓ F ∗

→ Ȟk (OZ,OZ − Cj−1) → Ȟk (OZ,OZ − Cj) → Ȟk (OZ,OZ − Cj+1) →

By Theorem 6.6, there exist k ≥ 1 for which Ȟk
c (X) contains a nontrivial element α,

and by properties of direct limits, j can be chosen sufficiently large that there exists
αj ∈ Ȟ

k (X,X − Bj) which projects to α ∈ Ȟk
c (X). Then F ∗ (αj) likewise projects

to the nontrivial element F ∗ (α) ∈ Ȟk
c (OZ).

Suppose now that our theorem fails. Then, for all R > 0, there exists xR ∈ X such
that Bd (xR;R) ∩ F (OZ) = ∅. By choosing R > 2j and using the cocompactness of
X , we may choose g ∈ Isom (X) such that gBj ⊆ Bd (xR, R). For each integer i, let
B′

i = gBi = Bd(gx0, i) and let Di = F−1 (B′
i) to get a commuting diagram

→ Ȟk
(
X,X − B′

j−1

)
→ Ȟk

(
X,X −B′

j

)
→ Ȟk

(
X,X − B′

j+1

)
→

↓ F ∗ ↓ F ∗ ↓ F ∗

→ Ȟk (OZ,OZ −Dj−1) → Ȟk (OZ,OZ −Dj) → Ȟk (OZ,OZ −Dj+1) →

Since g is a homeomorphism, α′ = (g∗)−1 (α) is a nontrivial element of Ȟk
c (X) =

lim−→Ȟ
k (X,X − B′

i) and α
′
j = (g∗)−1 (αj) is an element of Ȟk

c

(
X,X − B′

j

)
that projects
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to α′. By commutativity, F ∗ (α′) projects to the corresponding nontrivial element of
Ȟk

c (OZ) = lim−→Ȟ
k (OZ,OZ −Di). But, since B′

j is disjoint from F (OZ), Dj = ∅,

so Ȟk (OZ,OZ −Dj) = 0, giving a contradiction. �

Remark 6.11. Given F : (CZ,Z) →
(
X,Z

)
as above, we can (by restriction)

associate to each z ∈ Z the proper (not necessarily embedded) ray rz : [0,∞) → X
which emanates from x0 and limits to z in X . Theorem 6.10 can be interpreted as
saying that every x ∈ X is at a distance < R from one of these rays. By cocompactness
we have:

Corollary 6.12. Given a model Z-geometry
(
X,Z, d

)
and a map F : (CZ,Z) →(

X,Z
)
which takes Z identically onto Z and OZ into X, there exists S > 0 such that,

for every x1, x2 ∈ X, there exists z ∈ Z and g ∈ Isom (X) such that d (gx0, x1) < S
and d (grz, x2) < S.

Proof. Let R > 0 be the constant promised in Theorem 6.10 and note that for each
g ∈ Isom (X), every x ∈ X is at a distance < R from a ray grz for some z ∈ Z. Choose
R′ > 0 so that {gx0 | g ∈ Isom (X)} is R′-dense in X and let S = max {R,R′}. �

Corollary 6.13 (after [GO07, Corollary 3]). Every cocompact proper CAT(0) space
(X, d) is almost geodesically complete.

Proof. Let
(
X, ∂∞X, d

)
be the model Z-geometry obtained by attaching to X its

visual boundary, and let the contraction H : X×[0, 1]→ X be the geodesic retraction
to x0. Then the rays rz are precisely the geodesic rays in X emanating from x0 and
the rays grz are the geodesic rays emanating from gx0.

Let S > 0 be the constant promised by Corollary 6.12 and let x, y ∈ X . Then
there exists g ∈ Isom (X) such that d (gx0, x) < S and d (grz, y) < S. By a standard
construction in CAT(0) geometry there exists a geodesic ray r emanating from x and
asymptotic to grz. That same construction assures that d (grz (t) , r (t)) ≤ S for all
t > 0, so d (y, r) ≤ 2S. �

The nature of Theorem 6.10 brings to mind another theorem about geodesic rays in
CAT(0) spaces. Geoghegan and Swenson [GS19] (also see their arXiv update which
contains slightly stronger conclusions) showed that a 1-ended proper CAT(0) space
(X, d) is semistable (all proper maps r : [0,∞)→ X are properly homotopic) if and
only if all geodesic rays in X emanating from a common x0 ∈ X are properly homo-
topic. After analyzing their proof, we conclude that we have nothing new to offer,
except the observation that their proof already imples the following generalization.

Theorem 6.14. Let X = X ⊔Z be a (not necessarily controlled) Z-compactification
of a (not necessarily cocompact) proper metric 1-ended AR (X, d). Let x0 ∈ X and
{rz}z∈Z be the family of (singular) proper rays described above. Then X is semistable
if and only if rz is properly homotopic to rz′ for all z, z′ ∈ Z.
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7. EZ-structures and coarse-EZ-structures

A discussion of Z-structures would be incomplete without some mention of EZ-
structures. Here we show how the concepts introduced in this paper can be extended
to allow for coarse EZ-structures.

Definition 7.1. Each model Z-geometry
(
X,Z, d

)
determines a corresponding uni-

form subgroup of Isom (X) defined by:

U
(
X,Z, d

)
=

{
γ ∈ Isom (X) | γ extends to a homeomorphism γ : X → X

}

A coarse analog of this is the following.

Definition 7.2. Each model Z-geometry
(
X,Z, d

)
determines a corresponding coarse

uniform subset of Coarse (X) defined by:

cU
(
X,Z, d

)
= {γ ∈ Coarse (X) | γ extends to a map γ : X → X

that is continuous at all points of Z}

Example 7.3. Recall the model Z-geometries
(
R2, S1, dE

)
and

(
H2, S1, dH

)
dis-

cussed in Example 3.6. In each case, the corresponding uniform subgroup is the
entire isometry group. By contrast, if we quotient out the upper half-circle in either
boundary, we get a new model Z-geometry where the Z-boundary is still a circle,
but now many isometries do not extend. Similar comments can be made regarding
Example 3.7.

Recall from Section 4 that a Z-structure on G is a homomorphism φ : G →
Isom (X) such that ker φ is finite and φ (G) is both cocompact and proper. If, in
addition, φ (G) ⊆ U(X,Z, d), we call this an EZ-structure and Z an EZ-boundary
for G. We generalize this established definition as follows:

Definition 7.4. A coarse EZ-structure on a group G (cEZ-structure for short) is a
cZ-structure (X,Z, d, ψ) with the additional property that, for each γ ∈ G, the coarse

equivalence ψ (γ) : X → X extends to a map ψ (γ) : X → X that is continuous at all
points of Z. More succinctly, we require ψ (G) ⊆ cU

(
X,Z, d

)
.

Remark 7.5. By properness, each ψ (γ) in the above definition maps Z into Z;
moreover, by upgrading the cZ-structure to a coarse near-action by continuous maps
(see [GM19, §5]), we can require that ψ (γ) : X → X be continuous. Lemma 7.4 of
[GM19] ensures that every coarse self-equivalence of X that is boundedly close to idX

extends (continuously and uniquely) over Z via the identity. As a result ψ (1)
∣∣∣
Z
= idZ ,

and for each γ ∈ G, both ψ (γ) ◦ ψ (γ−1) and ψ (γ−1) ◦ ψ (γ) are the identity when

restricted to Z. It follows that each ψ (γ)
∣∣∣
Z
: Z → Z is a homeomorphism and, with

a little more effort, that restriction gives an actual G-action on Z. So, if desired, this
requirement could be added to Definition 7.4 without a loss of generality.
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Theorem 7.6. Suppose G admits a cEZ-structure
(
Y , Z, d

)
and (X, d′) is another

model geometry coarsely equivalent to G. Then G admits a cEZ-structure of the form(
X,Z, d′

)
.

Proof. Corollary 5.3 ensures that there is a cZ-structure of the form (X,Z, d′)for

G. By Remark 7.5, we can ensure that ψ (γ)|Z : Z → Z is a homeomorphism
that gives rise to an actual G-action on Z. An application of Proposition 7.5 from
[GM19] guarantees that the coarse near action of G on X extends to an action by
homeomorphisms on Z. �

Corollary 7.7. Suppose G admits a cEZ-structure. If G is type F*
AR then G admits

an EZ-structure. If, in addition, G is torsion-free, the Novikov Conjecture holds for
G.

Proof. The first assertion is clear. From there one can make the conclusion regarding
the Novikov Conjecture by applying [FL05], which requires that G be torsion-free. �

8. Open questions

We close by shining a light on some open questions. To streamline the discussion,
we introduce a few more definitions.

Definition 8.1. A group G is of Type Z [resp., Type EZ] if it admits a Z-structure
[resp., EZ-structure]. It is of Type cZ [resp., Type cEZ] if it admits a cZ-structure
[resp., cEZ-structure].

The best-know questions about [E]Z structures have been raised by Bestvina and
Farrell-Lafont. We supplement their questions with our own variations.

Question 1. Does every Type F group have Type Z? Type EZ? Does every Type F ∗

or Type F ∗
AR group have Type Z? Type EZ?

With the benefit of Definition 8.1, Theorem 0.1 can be rephrased as follows: Type
cZ is a quasi-isometry invariant. That begs the question.

Question 2. Are any of the following quasi-isometry invariants: Type F ∗, Type F ∗
AR,

Type Z, Type EZ, Type cEZ?

As noted in Remark 4.9, a beautifully simple question from ANR theory asks:

Question 3. Are Type F ∗ and F ∗
AR equivalent?

Another purely topological question asks:

Question 4. Under what conditions does a model geometry admit a controlled Z-
compactification? Any Z-compactification?

The reader interested in Question 4 might want to look at [CS76] and [Gui01].

Finally, the usefulness of EZ-structures in attacks on the Novikov Conjecture
makes the following question natural.
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Question 5. Does every group G which admits an EZ-structure satisfy the Novikov
Conjecture? [Yes by [FL05] when G is torsion-free, and in some additional cases by
[Ros06]; but the general question seems to be open.]. Does every [torsion-free] group
that admits a cEZ-structure satisfy the Novikov conjecture?

References
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