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Buyalo and Lebedeva have shown that the asymptotic dimension of a hyperbolic 
group is equal to the dimension of the group boundary plus one. Among the 
work presented here is a partial extension of that result to all groups admitting 
Z-structures; in particular, we show that asdimG ≥ dimZ + 1 where Z is the 
Z-boundary.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The primary goal of this paper is to establish a connection between the asymptotic dimension of a group 
admitting a Z-structure and the covering dimension of the group’s boundary.

For hyperbolic G, the relationship is strong; Buyalo and Lebedeva [5] have shown that asdimG =
dim∂G + 1. In [6], a partial extension to CAT(0) groups was attempted. Specifically, it was claimed that 
asdimG ≥ dim∂G +1, where ∂G is any CAT(0) boundary of G. However, in MathSciNet review MR3058238, 
X. Xie pointed out a critical error in the proof. Here we recover the same inequality as a special case of a 
more general theorem.
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Theorem 1. Suppose a group G admits a Z-structure, (X, Z). Then dimZ + 1 ≤ asdimG.

By a Z-structure on G, we are referring to the axiomatized approach to group boundaries laid out in 
[2] and expanded upon in [8]. Groups known to admit Z-structures include: hyperbolic groups (with X
being a Rips complex and Z = ∂G) [3]; CAT(0) groups (with X being the CAT(0) space and Z its visual 
boundary) [2]; systolic groups [15], Baumslag–Solitar groups [10]; as well as various combinations of these 
classes, as described in [17,7,13]. Definitions of Z-structure and other key terms used here will be provided 
in the next section. Theorem 1 will be obtained from a more general observation about metric spaces.

Theorem 2. Suppose a proper metric space (X, d) admits a controlled Z-compactification X = X ∪Z. Then 
dimZ + 1 ≤ dimmc X.

Here, dimmc stands for Gromov’s macroscopic dimension, a type of large scale dimension for metric 
spaces that is less restrictive than asymptotic dimension in that, for any (X, d), dimmc X ≤ asdimX. To 
complete the proof of Theorem 1 it will then suffice to show that, for a Z-structure (X, Z) on a group G, 
X is a controlled Z-compactification and asdimX = asdimG.

Theorem 2 is inspired by the main argument in [11] together with the point of view presented in [14].

2. Background and definitions

We begin by providing a few definitions and results for the different dimension theories and then we 
discuss controlled Z-compactifications and Z-structures.

Given a cover U of a metric space X, meshU = sup{diam(U)|U ∈ U}. The cover is uniformly bounded
if there exists some D > 0 such that meshU ≤ D. The order of U is the smallest integer n for which each 
element x ∈ X is contained in at most n elements of U.

Definition 3. The covering dimension of a space X is the minimal integer n such that every open cover of 
X has an open refinement of order at most n + 1.

There are various ways to show that a space has finite covering dimension. When working with compact 
metric spaces, we prefer the following.

Lemma 4. For a compact metric space X, dimX ≤ n if and only if, for every ε > 0, there is an open cover 
U of X with meshU < ε and orderU ≤ n + 1.

Covering dimension can be thought of as a small-scale property. Gromov introduced asymptotic dimension 
as a large scale analog of covering dimension [9].

Definition 5. The asymptotic dimension of a metric space X is the minimal integer n such that for every 
uniformly bounded open cover V of X, there is a uniformly bounded open cover U of X with orderU ≤ n +1
so that V refines U. In this case, we write asdimX = n.

We note here that the covers need not be open in the definition of asymptotic dimension. We chose to 
follow conventional definitions here. For a nice survey of asymptotic dimension, see [1]. Although Theorem 1
is stated for asymptotic dimension, we will prove a stronger result using a weaker notion of large scale 
dimension known as (Gromov) macroscopic dimension.

Definition 6. The Gromov macroscopic dimension of a metric space X is the minimal integer n such 
that there exists a uniformly bounded open cover of X with order at most n + 1. In this case, we write 
dimmc X = n.
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Clearly dimmc X ≤ asdimX for every metric space X.
As noted in the introduction, Theorem 1 about groups and their boundaries will be deduced from a 

broader observation about certain Z-compactifications of metric spaces. Recall that a closed subset, A, of 
an ANR, Y , is a Z-set if there exists a homotopy H : Y × [0, 1] → Y such that H0 = idY and Ht(Y ) ⊂ Y −A

for every t > 0.

Definition 7. A controlled Z-compactification of a proper metric space X is a compactification X = X ∪ Z

satisfying the following two conditions:

• Z is a Z-set in X
• For every ε > 0 and every R > 0, there exists a compact set K ⊂ X so that every ball of radius R in X

not intersecting K has diameter less than ε in X.

In this case, Z is called a Z-boundary, or simply a boundary for X.

There are a few things to take note of in the above definition. First, we have followed tradition and defined 
Z-sets in ANRs; hence the compactification X must be an ANR. Furthermore, since open subsets of ANRs 
are also ANRs, X must be an ANR to be a candidate for a controlled Z-compactification.1 Secondly, it is 
important to distinguish between the (proper) metric d on X and the metric d on X. The second condition, 
which we call the control condition, says balls of radius R in (X, d) get arbitrarily small near the boundary, 
when viewed in (X, d). The metric d is crucial; it is given in advance and determines the geometry of X. 
For our purposes the metric on X is arbitrary; any d determining the appropriate topology can be used.

Example 8. The addition of the visual boundary to a proper CAT(0) space is a prototypical example in 
Geometric Group Theory of a controlled Z-compactification.

In the presence of nice group actions, controlled Z-compactifications arise rather naturally. As a result, our 
discussion can be extended to asymptotic dimension of groups and covering dimension of group boundaries. 
The following definition is key.

Definition 9. A Z-structure on a group G is a pair of spaces (X, Z) satisfying the following four conditions:

(1) X is a compact AR,
(2) Z is a Z-set in X,
(3) X = X − Z is a proper metric space on which G acts properly, cocompactly, by isometries, and
(4) X satisfies a nullity condition with respect to the action of G on X: for every compact C ⊆ X and any 

open cover U of X, all but finitely many G translates of C lie in an element of U.

Remark 1. This definition of Z-structure is due to Dranishnikov [8]. It generalizes Bestvina’s original defi-
nition from [2] by allowing X to be infinite-dimensional and G to have torsion. We have added an explicit 
requirement that the metric on X be proper; a quick review of [8] reveals that this requirement was assumed 
there as well.

Remark 2. If d is a metric on X and ε > 0, we can consider the open cover U of X that consists of all open 
balls of radius ε (in the d metric). The nullity condition in (4) can then be restated as follows: for every 
compact C ⊂ X, all but finitely many G translates of C have diameter less than ε.

1 See Remark 3.
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3. Proofs

We begin with a proof of Theorem 2, as the other results will be obtained from it. A key ingredient is 
the following classical fact about covering dimension.

Lemma 10. ([12]) For any nonempty locally compact metric space X, dim(X × [0, 1]) = dimX + 1.

Proof of Theorem 2. Suppose X admits a controlled Z-compactification, X = X ∪Z, and let ε > 0. Assume 
that dimmc X = n and let U be a uniformly bounded open cover of X with orderU ≤ n + 1.

Using the control condition, we may choose a compact set K0 such that diamdU ≤ ε
3 for every U ∈ U

with the property that U ∩K0 = ∅. Let U′ = {U ∈ U|U ∩K0 = ∅}.
Since Z is a Z-set, there is a homotopy J : X × [0, 1] → X such that J0 = idX and Jt(X) ∩ Z = ∅

for all t > 0. By compactness there is some T > 0 such that d(z, Jt(z)) < ε
3 for all z ∈ Z and t ∈ [0, T ]. 

Furthermore, we may choose T ′ > 0 so that J(Z × (0, T ′]) ⊂
⋃

U∈U′ U . Set t0 = min{T, T ′}.
Define H : X× [0, 1] → X by setting H(x, t) = J(x, t0 · t). Restrict H to Z× [0, 1]. We will reparametrize 

H : Z × [0, 1] → X in a manner similar to [11], so that pre-images of the open sets in U′ have small mesh. 
After one additional adjustment, those pre-images will form the desired cover of Z × [0, 1]. For convenience 
we will use the �∞ metric on Z × [0, 1], d∞ = max{d, | · |}, where | · | is the standard metric on [0, 1].

Pick n ∈ Z
+ so that 3

n < ε
3 . Choose t1 > t2 > · · · > tn+1 ∈ [0, 1] and compact sets K1, K2, . . .Kn+1 ⊂ X

as follows:

• let t1 = 1 and choose K1 so that H(Z × {1}) ⊂ K1

• for i = 2, 3, . . . , n, choose ti so that H(Z×[0, ti]) ∩Ki−1 = ∅ and Ki ⊂ X so that H(Z×[ti, 1]) ∪Ki−1 ⊂ Ki

and Ki contains all elements of U′ that intersect Ki−1. (By properness, elements of U′ have compact 
closures in X.)

• let tn+1 = 0 and Kn+1 = X.

Let λ : [0, 1] → [0, 1] be a strictly increasing piecewise linear function with λ(0) = 0, λ(1) = 1, and 
λ 
(
i
n

)
= tn−i+1. Reparametrize H using λ and then push Z × [0, 1] completely into X by using the map 

F : Z × [0, 1] → X defined by F (z, s) = H(z, λ(s)) for s ∈
[ 1
n , 1

]
and F (z, s) = H

(
z, 1

n

)
for s ∈

[
0, 1

n

]
.

We show that V = {F−1(U)|U ∈ U′} is an open cover of Z × [0, 1] with mesh at most ε and order at 
most n + 1.

Let (z, s), (z′, s′) ∈ F−1(U) and set y = F (z, s), y′ = F (z′, s′) and t = λ(s), t′ = λ(s′). Choose j ∈
{1, 2, . . . , n + 1} such that y ∈ Kj −Kj−1. By the choice of Ki and ti values from above, tj+1 < t < tj−1. 
Thus, n−j

n < s < 2+n−j
n . Since y, y′ ∈ U and y ∈ Kj , then U∩Kj = ∅, so y′ ∈ Kj+1. Furthermore, y′ /∈ Kj−2

because if it were, U ∩Kj−2 �= ∅ and U ⊂ Kj−1, a contradiction to the choice of j. Thus, y′ ∈ Kj+1 −Kj−2. 
Similar reasoning as above for t shows that tj+2 < t′ < tj−2 and n−1−j

n < s′ < n+3−j
n . Thus,

|s− s′| < n + 3 − j

n
− n− j

n
= 3

n
< ε

Moreover,

d(z, z′) ≤ d(z, y) + d(y, y′) + d(y′, z′)

= d(z,H(z, λ(s))) + d(y, y′) + d(z′H(z′, λ(s′)))

<
ε + ε + ε = ε
3 3 3
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By the above d∞((z, s), (z′, s′)) < ε, proving meshd∞V < ε. Since V consists of the pre-images of U′ and 
orderU′ ≤ n +1, then orderV ≤ n +1. Using the definition of dimension in Lemma 4 we have dim(Z×[0, 1]) ≤
n and an application of Lemma 10 finishes the claim. �
Remark 3. We have chosen to follow the traditional definition of Z-sets and require X to be an ANR. 
However, the above proof also applies to more general metric spaces. In particular, we make no use of the 
ANR properties of X or X; if Z is a closed subset of any compact metric space X and it is possible to 
instantly homotope X off of Z, then the proof of Theorem 2 will go through as above.

From Theorem 2 we obtain a correct proof of the main assertion of [6, Cor. 1.2], which does not involve 
groups.

Corollary 11. If X is a proper CAT(0) space, then asdimX ≥ dim ∂X + 1.

To obtain Theorem 1, we first must show that the notion of controlled Z-compactification applies to a 
Z-structure 

(
X,Z

)
on a group G. Since Z ⊆ X is a Z-set, all that remains to show is that open balls in X

become small near the boundary. The cocompact action by isometries combined with the nullity condition 
will grant that control.

Lemma 12. Suppose a group G admits a Z-structure, (X, Z). Then X is a controlled Z-compactification of 
X = X − Z.

Proof. Fix a metric d on X and d on X and let ε > 0 and R > 0. By cocompactness, there is a compact 
set C ⊂ X such that X ⊂ GC. Choose r > 0 and x0 ∈ X such that C ⊂ B(x0, r) ⊂ X. By the 
nullity condition, all but finitely many G translates of B(x0, r + R) have diameter less than ε in X (see 
Remark 2). Set Γ = {g ∈ G|diamdgB(x0, r + R) ≥ ε} and let K ′ = X − ∪g∈G−ΓgB(x0, r + R). Thus, K ′

is a compact subset of X that satisfies the property that if gB(x0, r + R) ∩K ′ = ∅ for some g ∈ G, then 
diamdgB(x0, r +R) < ε. Let K = N2r+R(K ′) be the closed 2r +R neighborhood of K ′ in X. We show this 
is the desired compact set. Thus, let B(x, R) ⊂ X for some x ∈ X with B(x, R) ∩ K = ∅. Choose g ∈ G

such that gx ∈ C. Then, B(x, R) ⊂ g−1B(x0, r + R) since for any y ∈ B(x, R),

d(y, g−1x0) ≤ d(y, x) + d(x, g−1x0) < R + r

Furthermore, g−1B(x0, r + R) ∩K ′ = ∅. Otherwise, there would be some z ∈ g−1B(x0, r + R) ∩K ′ and 
d(x, z) ≤ d(x, g−1x0) + d(g−1x0, z) < 2r + R. However, B(x, R) ∩K = ∅, so, d(x, K ′) > 2r + R. Because 
z ∈ K ′, we obtain the required contradiction.

Thus diamdg
−1B(x0, r + R) < ε. B(x, R), being a subset of g−1B(x0, r + R), will also have diameter 

smaller than ε. �
Proof of Theorem 1. Suppose a group G admits a Z-structure (X, Z). By Lemma 12, X is a controlled 
Z-compactification of X. Thus, by Theorem 2, asdimX ≥ dimZ + 1. Since G acts geometrically on X, 
G is coarsely equivalent to X (see Corollary 0.9 in [4]). Moreover, by [16], asymptotic dimension is a coarse 
invariant; so asdimX = asdimG. �
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