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Abstract. In 2000, Croke and Kleiner showed that a CAT(0) group G can admit more than one boundary.

This contrasted with the situation for δ-hyperbolic groups, where it was well-known that each such group

admitted a unique boundary—in a very stong sense. Prior to Croke and Kleiner’s discovery, it had been
observed by Geoghegan and Bestvina that a weaker sort of uniquness does hold for boundaries of torsion

free CAT(0) groups; in particular, any two such boundaries always have the same shape. Hence, the

boundary really does carry significant information about the group itself. In an attempt to strengthen the
correspondence between group and boundary, Bestvina asked whether boundaries of CAT(0) groups are

unique up to cell-like equivalence. For the types of space that arise as boundaries of CAT(0) groups, this is
a notion that is weaker than topological equivalence and stronger than shape equivalence.

In an earlier paper, we introduced a construction which assigns to every pair of boundaries of a CAT(0)

group, an intermediate compactum admitting a group action which comes equipped with equivariant maps
onto the boundaries. We showed that in some simple product examples, these maps are cell-like. Here we

extend our theory to prove that all boundaries of the Croke-Kleiner group are cell-like equivalent. Indeed,

our proof extends to a wider class of CAT(0) groups known as Croke-Kleiner admissible groups.

1. Introduction

One striking difference between the category of negatively curved groups and that of nonpositively curved
groups occurs at their ends; whereas a δ-hyperbolic group admits a topologically unique boundary, a CAT(0)
group can admit uncountably many distinct boundaries [CK00, Wil05, Moo08, Moo10]. On its surface, that
observation might lead one to believe that a boundary for a CAT(0) group is not a useful object, but that is
not the case. Many properties remain constant across the spectrum of boundaries of a given CAT(0) group,
and thus may be viewed as properties of the group itself. One substantial such property, which implies many
others, is the shape of the boundary. That observation was made indirectly by Geoghegan [Geo86] and,
specifically for CAT(0) groups, by Bestvina [Bes96]. The upshot is that all boundaries of a given CAT(0)
group are topologically similar in a manner made precise by shape theory—a classical branch of geometric
topology developed specifically for dealing with spaces with the sort of bad local properties that frequently
occur in boundaries of groups. Looking for an even stronger correlation between CAT(0) groups and their
boundaries, Bestvina posed the following:

Bestvina’s Cell-like Equivalence Question. For a given CAT(0) group G, are all boundaries cell-like
equivalent?

Precise formulations of the notion of ‘shape equivalence’ and ‘cell-like equivalence’ can be found in [GM11]
along with examples illustrating the contrast between the concepts.

Roughly speaking, two finite dimensional compacta X and Y are declared to be shape equivalent if
whenever they are embedded in some high-dimensional Euclidean space, ‘typical neighborhoods’ of one are
homotopy equivalent to typical neighborhoods of the other. So, for instance, the topologist’s sine curve is
shape equivalent to a single point, since ‘typical neighborhoods’ when embedded in R2 are disks. This is for-
malized by writing X and Y as the limits of inverse sequences of polyhedral neighborhoods and constructing
a ladder diagram which commutes up to homotopy (after possibly passing to subsequences).

A compactum X is called cell-like if it is shape equivalent to a point. An equivalent definition for finite
dimensional compacta is to say that X is cell-like if whenever it is embedded in a high-dimensional Euclidean
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space, it contracts in every neighborhood. So contractible sets are cell-like. In fact, all of the cell-like sets
considered in this paper are contractible. Therefore the reader unfamiliar with the term “cell-like space”
may replace it with “contractible space” for the purposes of understanding our results.

A cell-like map is a continuous surjection X → Y such that the preimage of every point is cell-like. A
pair of compacta X and Y are declared to be cell-like equivalent if there exists a third compactum Z and

a pair of cell-like maps X
f1←− Z

f2−→ Y . To obtain an equivalence relation we permit several intermediate
spaces: X and Y are declared to be cell-like equivalent if there exists a diagram of compacta and cell-like
maps of the form:

(1)
Z1 Z3 Z2n+1

↙ ↘ ↙ ↘ ↙ · · · ↘ ↙ ↘
X Z2 Z4 Z2n Y

In this setup we write X
CE∼ Y . Clearly, cell-like equivalence is weaker than topological equivalence; moreover,

if we require that all spaces involved be finite-dimensional, then cell-like equivalence is stronger than shape
equivalence [She72]. Since boundaries of CAT(0) groups are always finite dimensional, this is the case for us
[Swe99].

In addition to lying between the notions of topological equivalence and shape equivalence, cell-like equiva-
lence has the advantage of allowing for an easily understood equivariant variation. Compacta X and Y , each
equipped with a G-action, are declared to be ‘G-equivariantly cell-like equivalent’ if there exists a diagram
of type (1) for which each of the Zi also admits a G-action, and the cell-like maps are equivariant. Bestvina
has indicated an interest in the following:

Bestvina’s Equivariant Cell-like Equivalence Question. For a given CAT(0) group G, are all bound-
aries G-equivariantly cell-like equivalent?

In our previous paper we proposed a general strategy for obtaining an affirmative solution to the equi-
variant version of Bestvina’s question [GM11]. That strategy is straighforward; it is described at the end
of this section. We also presented some specific cases where our strategy works. For the groups in that
paper, all boundaries were already known to be equivariantly homeomorphic [BR96]. However our results
provide something more for those groups; namely, our maps arise naturally as the extensions of equivariant
quasi-isometries.

The purpose of this sequel is to extend our work to a more interesting class of groups, namely Croke-
Kleiner admissible (or CKA) groups. Described in Section 3, this class includes Croke and Kleiner’s original
group and the non-rigid examples of [Moo08]. To our knowledge, we provide the first example where it is
proven for a group G with multiple boundaries that all of its boundaries are cell-like equivalent.

1.1. CAT(0) groups and their boundaries. A geodesic metric space X is called a CAT(0) space if each
of its triangles is at least as thin as the corresponding comparison triangle in the Euclidean plane. A group
G is called a CAT(0) group if it acts geometrically (properly and cocompactly via isometries) on a proper
CAT(0) space. A metric d on a CAT(0) space X satisfies a property called convexity of metric, which says
that given any pair of geodesics α and β parameterized to have constant speed over [0, 1], the function
t 7→ d(α(t), β(t)) is a convex function.

If X is locally compact, then it can be compactified by the addition of its visual boundary ∂X which may
be defined as the space of all equivalence classes of geodesic rays in X, where a pair of rays α, β : [0,∞)→ X
are equivalent if they are asymptotic, i.e., if {d (α (t) , β (t)) | t ∈ [0,∞)} is bounded above. When G acts
geometrically on X we call ∂X a boundary for G. Clearly, the action of G on X induces an action by G on
∂X. We put the cone topology on ∂X by declaring two geodesic rays to be close in ∂X if they track together
for a long time before they diverge.
∂X is seen to be a compactification of X in the following way. Fix a basepoint x0 ∈ X, and identify X

with the space of geodesic line segments emanating from x0 by identifying the point x with the geodesic
[x0, x]. If a sequence of points (xn) remains unbounded, then the geodesics γn = [x0, xn] get longer and
longer. Since X was assumed to be locally compact, convexity of the metric and the Arzela-Ascoli theorem
guarantee that, after possibly passing to a subsequence, (γn) has a limit γ which is a geodesic ray. Formally,
if the γn are parameterized to have constant speed, then γn → γ uniformly on compact subsets of [0,∞). For
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more details on this construction (and other properties of CAT(0) spaces) the reader may wish to consult
[BH99].

Nonuniqueness of the boundary of a CAT(0) group G is possible since G can act on more than one
CAT(0) space. The first example of a group acting on multiple CAT(0) spaces whose boundaries are not
homeomorphic was given by Croke and Kleiner in [CK00]. When the action by G is free, covering space
techniques and other topological tools allowed Bestvina [Bes96] to show that all boundaries of G are shape
equivalent. Later, Ontaneda [Ont05] extended that obsevation to include all CAT(0) groups. In those cases
where all CAT(0) boundaries of a given G are homeomorphic we say that G is rigid. Clearly Bestvina’s
Cell-like Equivalence Question has a positive answer for all such groups. A positive answer has also been
given for groups which split as products with infinite factors [Moo09].

1.2. Quasi-Isometric Embeddings. When a group G acts nicely on multiple spaces, a key relationship
between those spaces is captured by the notion of ‘quasi-isometry’. A function f : (X, d)→ (X ′, d′) between
metric spaces is called a quasi-isometric embedding (QIE) if there exist positive constants λ and ε such that
for all x, y ∈ X

1

λ
d (x, y)− ε ≤ d′ (f (x) , f (y)) ≤ λd (x, y) + ε.

If, in addition, X ′ is contained in some tubular neighborhood of the image of f , then we call f a quasi-
isometry and declare X and X ′ to be quasi-isometric.

By choosing a finite generating set and endowing it with the corresponding word metric, any finitely
generated group can be viewed as a metric space. It follows from the Švarc-Milnor Lemma that, up to
quasi-isometry, this metric space is independent of the choice of generating set; in fact if X is any length
space on which G acts geometrically, then for any base point x0 ∈ X the orbit map G→ X given by g 7→ gx0

is a quasi-isometry [Šva55, Mil68].
Given a subset A of a CAT(0) space X, define the limset of A to be the collection of all limit points of A

lying in ∂X. In other words, limsetA = A−X where the closure is taken in X. Clearly any such limset is
a closed subset of ∂X. If G acts on a proper CAT(0) space properly discontinuously by isometries, then we
denote by limset(X,G) the limset of the image of G under the orbit map. This provides a compactification
G ∪ limset(X,G) for G. This is easily seen to be independent of basepoint, since the Hausdorff distance
between any pair of G-orbits is finite. Note that if this action is cocompact then limset(X,G) = ∂X.

If G acts properly discontinuously on two proper CAT(0) spaces X and Y , then we may compare the two
compactifications Λ = limset(X,G) and Λ′ = limset(Y,G). If the identity map on G extends continuously
to a map G ∪ Λ → G ∪ Λ′, then the restriction Λ → Λ′ is called a limset map. The existence of such a
map is very strong. It means that whenever an unbounded sequence of group elements converges in one
compactification, it also converges in the other. Two limsets are considered equivalent if there is a limset
map between them which is a homeomorphism.

We call G strongly rigid if whenever G acts geometrically on proper CAT(0) spaces X and Y , the bound-
aries ∂X an ∂Y are equivalent in the above sense. Examples of such groups include free abelian groups,
δ-hyperbolic CAT(0) groups (or negatively curved groups), and others [KL97, HK05]. Clearly Bestvina’s
Equivariant Cell-like Equivalence Question has a positive answer for all strongly rigid groups. The question
also has a positive answer for certain products [BR96, Rua99], although these are not strongly rigid in the
sense of this paper. CKA groups are never strongly rigid, as Croke and Kleiner proved in [CK02].

If G acts properly discontinuously by isometries on X, then so does any subgroup H ≤ G. If H has
infinite index, then it does not act geometrically, since cocompactness has been lost. Moreover, even when
H is finitely generated, it is not always the case that H ↪→ G (or equivalently h 7→ hx0) is a QIE. An object
of special interest to us will be limsetH for certain subgroups H of CAT(0) groups.

1.3. The standard strategy and our Main Conjecture. Suppose G acts geometrically on a pair of
proper CAT(0) spaces X1 and X2. Then the l2-metric d =

√
d2

1 + d2
2 makes X1 × X2 a proper CAT(0)

space on which G × G acts geometrically via the product action. It is a standard fact that ∂ (X1 ×X2) is
homeomorphic to the topological join of the original boundaries [BH99, Example II.8.11(6)]. To see this,
first choose a base point (x1, x2) ∈ X1 × X2 and define slopes of segments and rays in X1 × X2 based at
(x1, x2) in the obvious way. A ray α may be projected into X1 and X2 to obtain a pair of rays α1 and α2

—except in those cases where the slope is 0 or ∞ which produce an αi that is constant. Assign to each α
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Figure 1. The Schmear and the Furstenburg Limit Set
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three coordinates: α1, α2, and the slope of α. Keeping in mind the exceptional cases where α has slope 0 or
∞, we get a correspondence between ∂ (X1 ×X2) and the quotient space

∂X1 ∗ ∂X2 = ∂X1 × ∂X2 × [0,∞] / ∼

where (α1, α2, 0) ∼ (α1, α
′
2, 0) for all α2, α

′
2 ∈ ∂X2 and (α1, α2,∞) ∼ (α′1, α2,∞) for all α1, α

′
1 ∈ ∂X1. This

join contains a preferred copy of ∂X1 (all points with slope 0) and a preferred copy of ∂X2 (all points with
slope ∞) which may be identified with the boundaries of convex subspaces X1 × {x2} and {x1} ×X2.

Now consider the diagonal subgroup G∆ = {(g, g) | g ∈ G} of G×G. Clearly, G∆ is isomorphic to G and
acts on X1 ×X2 properly by isometries. For g ∈ G, we will denote g∆ = (g, g). In [GM11, Section 4.1], we
make the following observations:

(i) The map g 7−→ g∆ (x1, x2) is a QIE of G into X1 ×X2, and
(ii) limsetG∆ is a closed subset of ∂X1 ∗ ∂X2 that misses the preferred copies of ∂X1 and ∂X2.

We refer to Λ = limsetG∆ as a schmear of ∂X1 and ∂X2. Item (i) above is used in proving (ii) and offers
hope that Λ resembles a boundary for G. Item (ii) allows us to restrict the projections of ∂X1×∂X2× (0,∞)
onto ∂X1 and ∂X2 to obtain a pair of G-equivariant schmear maps φ1 : Λ→ ∂X1 and φ2 : Λ→ ∂X2.

Since Λ lives in the join and misses ∂X1 and ∂X2, we may think of it as living in the product ∂X1 ×
∂X2 × (0,∞). Here the schmear maps are just the coordinate projection maps onto ∂X1 and ∂X2. Let Λ
denote the image of the coordinate projection map Λ → ∂X1 × ∂X2, and φi : Λ → ∂Xi also be coordinate
projections, as in Figure 1. Following the language of Link [Lin10], we refer to Λ as the Furstenberg limit
set (or F-set) of G∆. We will also refer to it as the F-set for the actions of G on X1 and X2, the maps φi
as the associated F-maps, and point preimages of these F-maps as F-fibers. These maps are automatically
continuous, equivariant, and surjective.

Our standard strategy is summed up by the following:

Main Conjecture. Suppose G acts geometrically on a pair of CAT(0) spaces X1 and X2. Then both
F-maps are cell-like; hence ∂X1 and ∂X2 are G-equivariantly cell-like equivalent.

In fact, we hope for something stronger, namely that the schmear maps themselves are cell-like. In the
case where G contains a pair of independent rank-one elements (which includes the groups studied here),
the two conjectures are equivalent by [Lin10, Theorems B and C]. The advantage to the schmear is that it
can be realized as the limit set of an actual group action. When we pass to the F-set, this action is lost,
although there is still a natural action of G on ∂X1 × ∂X2.

1.4. The main results. The main result of [GM11] is the following. We have stated it for a class of actions
slightly more general than geometric actions, although in this paper the actions will all be geometric.

Theorem 1 (G-M,2011). Assume an infinite group G acts properly discontinuously by isometries on CAT(0)
spaces X1 and X2 such that G→ X1 and G→ X2 are QIEs. Then there exists an action of G by isometries
on a third CAT(0) space X such that G→ X is a QIE and there are natural limset maps limsetG→ ∂Xi.
If the action of G on both Xi is by semi-simple isometries, then so is the action on X.

As an application, we used this to prove
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Theorem 2 (G-M,2011). Whenever G = Fm × Zd acts geometrically on two proper CAT(0) spaces, the
corresponding schmear fibers are topological cells. In particular, the schmear maps are cell-like.

Note that since those groups have higher rank, the work of [Lin10] does not apply to them. The main
theorem of this paper is

Theorem 3 (Main Theorem). Let G be a Croke-Kleiner admissible group acting geometrically on two
proper CAT(0) spaces X1 and X2 and Λ denote the F-set of the pair. Then the corresponding F-fibers are
contractible. In particular, the F-maps Λ→ ∂Xi are cell-like.

To illustrate some of the subtlety, the reader should keep in mind that a geodesic ray may be quasi-
isometrically embedded in E2 in such a way that its limit set is the entire circle boundary, which is certainly
not cell-like! In fact, Staley [Sta11] has shown that for the same class of groups considered in Theorem 2,
when the dimension of the boundary is bigger than 1, there are geometric actions on CAT(0) spaces X and
Y for which the images of geodesic rays under equivariant quasi-isometries X → Y have exotic limit sets at
infinity. The lesson learned from our theorem seems to be that “taking the whole schmear” has a tendency
to paint over oddities in the local behavior of limsets.

As mentioned above, when we combine our theorem with the results of [Lin10], we get

Corollary 4. Schmear fibers for Croke-Kleiner admissible groups are cell-like.

In any case, all boundaries of the Croke-Kleiner group are now seen to be equivariantly cell-like equivalent.
Along the way, we prove a much weaker result about schmear maps for general CAT(0) groups.

Theorem 5 (Schmear Fibers are Connected). Let G be a CAT(0) group acting geometrically on two proper
CAT(0) spaces. Then the corresponding schmear fibers are connected.

1.5. Relationship to the Tits Boundary. The Tits metric induces another common topology on a CAT(0)
boundary. This gives it a beautiful geometric structure where geodesics in the boundary correspond to the
presence of “flatness” in the space. It is known, for instance, that the dimension of the Tits boundary is
exactly one less than the dimension of the largest copy of Euclidean space which can be embedded [Kle99].

All Tits boundaries of CKA groups are obviously homeomorphic, so Bestvina’s question does not appear
interesting on that level. Nonetheless we find it curious that in the examples of this paper (and those of our
previous paper), F-fibers turn out also to be contractible when given the Tits topology. This leads us to
wonder if sequences converging to a common boundary point under one group action and which “fan out”
in another, are only allowed to do so in “directions of flatness”.

2. Schmear Fibers are Connected

We begin by proving Theorem 5. Recall that if C is a metric compactum, then the Gromov-Hausdorff
metric on the space C ′ of subcompacta turns C ′ into a metric space. It is an exercise to prove that a
Gromov-Hausdorff limit of connected compacta is connected.

Proof of Theorem 5. Denote X = X1 ×X2 and choose basepoints xi ∈ Xi and x = (x1, x2) ∈ X. It will be
easier to see the proof if G is torsion free. Then

π1(X1/G) = π1(X2/G) = G.

Choose a homotopy equivalence f : X1/G → X2/G which sends the image of x1 to the image of x2. This
can be lifted to an equivariant homotopy equivalence f : X1 → X2 which sends x1 to x2. Since this restricts

to the orbit map Gx1 → Gx2, it is a quasi-isometry. Let f̃ : X1 → X1 ×X2 denote the graph of f , which is
an equivariant (λ, ε)-quasi-isometric proper homeomorphic embedding for some λ ≥ 1 and ε ≥ 0. The image

X̃ contains Gx as a quasi-dense subset, and hence has the same limset. φi is the extension of coordinate

projection X̃ → Xi.
Consider the following claim:

Claim. Let (gn), (hn) ⊂ G be two sequences such that gnx1, hnx1 → ζ1 ∈ ∂X1. Then there exists a sequence

of paths γ̃n in X̃ joining gnx to hnx such that their images γn in X1 converge as a Gromov-Hausdorff limit
in X1 ∪ ∂X1 to the point ζ1.
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ζ1x1

ρ(n)

αm(n)

gmx1

βm(n)

hmx1

Suppose this claim holds. Then choose ν, ν′ ∈ φ−1
1 (ζ1) and sequences (gn), (hn) ⊂ G such that gnx → ν

and hnx → ν′ and (gnx1) and (hnx1) both converge to ζ1. Let γ̃n be the paths prescribed by the claim.
By passing to a subsequence, we may assume this sequence converges in the Gromov-Hausdorff limit to

K ⊂ X̃∪Λ. Since f̃ is a quasi-isometric embedding, the sequence of paths γ̃n eventually leave every compact
set, which guarantees that K ⊂ Λ. Certainly K contains ν and ν′. Furthermore, every point of K can be
written as the limit of a sequence of points (ỹn) where ỹn ∈ γ̃n. By construction, the image of this sequence
in X1 gives a sequence converging to ζ1. It follows that φ1(K) = {ζ1}. Therefore for every pair of points in
φ−1

1 (ζ1), we have found a connected subset of φ−1
1 (ζ1) containing both. Therefore φ−1

1 (ζ1) is connected.
We now prove the claim. Consider the geodesics αm = [x1, gmx1], βm = [x1, hmx1] both parameterized

to have unit speed and let ρ be the ray based at x1 going out to ζ1. Choose a basis {Un} of ζ1 in X1 ∪ ∂X1.
Given any n ≥ 0, there is an Nn ≥ 0 such that whenever m ≥ Nn, d(αm(n), ρ(n)) and d(βm(n), ρ(n)) are
both less than 1. For Nn ≤ m ≤ Nn+1, we choose γm to be the path from gmx1 which follows αm back down
to αm(n), jumps over to βm(n) by a path of length ≤ 2, and heads back up βm, ending at hmx1. Convexity

of the metric guarantees that γn ⊂ Un. It is easy to verify that γ̃n = f̃(γn) satisfies the claim.
In closing, we observe that by replacing the paths γ̃n with k-chains in Gx, we get an argument which does

not require the group to be torsion-free. �

3. Croke-Kleiner Admissible Groups

Recall that a geodesic space is called δ-hyperbolic if given any triangle (possibly with ideal vertices) then
each side lies in the δ-tubular neighborhood of the union of the other two sides.

In the language of [CK02], a graph of groups G is called admissible if it satisfies all of the following:

(1) G is a finite graph with at least one edge.

(2) Each vertex group Gv has center Z(Gv) ∼= Z, Hv = Gv/Z(Gv) is nonelementary hyperbolic, and
every edge subgroup Ge is isomorphic to Z2.

(3) Let e1 and e2 be distinct directed edges entering a vertex v, and for i = 1, 2 let Ki ⊂ Gv be the
image of the edge homomorphism Gei → Gv. Then for every g ∈ Gv, gK1g

−1 is not commensurable
with K2, and for every g ∈ Gv \Ki, gKig

−1 is not commensurable with Ki.

(4) For every edge group Ge, if αi : Ge → Gvi are the edge monomorphisms, then the subgroup generated
by α−1

1 (Z(Gv1)) and α−1
2 (Z(Gv2)) have finite index in Ge ∼= Z2.

The fundamental group of such a graph of groups will be called Croke-Kleiner Admissible (CKA).
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The conditions listed above are satisfied by Croke and Kleiner’s original example of a non-rigid CAT(0)
group, and the non-rigid knot groups discussed in [Moo08]. They also include many other examples, for which
the rigidity question is not known. Some of these may even have locally connected boundaries. However, as
a Corollary to their main theorem, CKA groups are never strongly rigid.

3.1. Decompositions of CKA Spaces. Let G be a CKA group acting geometrically on a proper CAT(0)
space X. As shown in [CK02, Section 3.2], X admits a decomposition corresponding to the decomposition
of G as a graph of groups. Let T be the Bass-Serre tree for the underlying graph of groups. Given a
simplex σ of T , its stabilizing subgroup is denoted by by Gσ (these are isomorphic copies of the groups Gσ
coming from the graph of groups.) For every vertex v ∈ T , Z(Gv) is infinite cyclic and Hv = Gv/Z(Gv) is a
nonelementary hyperbolic group.

Recall that the minset of an isometry i of a CAT(0) space X is the set of points x ∈ X such that d(x, ix)
is minimal. For a group Γ of isometries, the minset of Γ is the intersection of the minsets its elements. This
is a closed conved subspace of X. For vertices v of T , let Yv denote the minset in X of Z(Gv). The family
{Yv} is clearly periodic. Choose also a periodic family {Ye} of Ge-invariant 2-flats (e ranging over the edges
of T ). Both familes {Ye} and {Yv} are locally finite by [CK02, Lemma 3.10].

The following Lemma summarizes the results of [CK02, Section 3.2] which are relevant here.

Lemma 3.1. There is a periodic family of closed, convex subspaces {Xσ}σ∈T and a K > 0 satisfying the
following properties:

(1) Both familes {Xe} and {Xv} cover X.

(2) For every simplex σ of T , Xσ is Gσ-invariant with compact quotient.

(3) For every simplex σ of T , Yσ ⊂ Xσ ⊂ NK(Yσ).

(4) For every vertex v of T , Yv splits as Yv × R where Z(Gv) acts only in the R-coordinate and Hv

projects to a cocompact action of Yv. In particular, Yv is δ-hyperbolic.

(5) Whenever an edge e separates a pair of vertices u and v of T , any path α from a point of Xu to
a point of Xv must pass through Xe. In fact, the point at which α leaves Xu is a point interior to Xe.

The spaces Xσ are called vertex or edge spaces depending on whether σ is a vertex or an edge.

3.2. Boundaries of CKA Groups. A large part of a boundary of a CKA group is just the union of
boundaries of vertex spaces. If v is a vertex of T , then parts (3) and (4) of Lemma 3.1 tells us that ∂Xv

decomposes as the suspension of ∂Yv. The suspension points are the endpoints of the R-factor. We will refer
to the suspenion points as poles and the suspension arcs as longitudes.

Points of
⋃
v∈T 0 ∂Xv are called rational, and points in the complement are called irrational. Denote the

former set by RX and the latter by IX. IX is very easy to understand – components are either singletons
or intervals [CK02, Proposition 7.3].

This next result tells us that a geodesic ray limits out to an irrational point iff it eventually stays far away
from every vertex space (thus it is safe to refer to geodesic rays themselves as irrational and rational). As
discussed in [CK02], there is a G-equivariant coarse Lipschitz map ρ : X → T 0, and the vertex and edge
spaces may be chosen so that the following holds [CK02, Lemmas 3.19 and 3.22].

Lemma 3.2. Let γ be a geodesic ray going out to ζ ∈ ∂X. Then exactly one of the following is true:

(1) ρ ◦ γ is unbounded and its image lies in a uniform tubular neighborhood of a unique geodesic ray, τ ,
in T starting at ρ(γ(0)). The geodesic γ intersects Xe for all but finitely many edges e of τ . In this
case, ζ ∈ IX. Furthermore, whenever γ′ is an asymptotic ray ρ◦γ′ is also in a tubular neighborhood
of the same τ .
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(2) ρ◦γ is bounded, and γ eventually stays inside Xv for some vertex v. In this case, there is a subcomplex
Tγ ⊂ T defined by the property that for each simplex σ of T , σ is in Tγ if and only if γ is asymptotic
to a ray in Xσ. The possibilities for Tγ are:
(a) a single vertex v (in which case ζ ∈ ∂Xv is not in the boundary of any edge space).

(b) an edge e (in which case ζ ∈ ∂Xe).

(c) the closed star at a vertex v (in which case ζ is one of the suspension points of ∂Xv).

Part (1) says that if γ and γ′ are asymptotic irrational geodesic rays, then their image in T completely
determines which vertex spaces and edge spaces they pass through. Specifically, if e1, e2, ... are the sequence
of edges in the ray τ , then both γ and γ′ must pass through Xei for all but finitely many i. Even further, if
we put this together with Lemma ??, we see that if vi is the vertex shared by ei and ei+1, then γ must pass
through Xv, and when it leaves, it does so at a point of Xei+1

.

4. Notes on δ-Hyperbolic Spaces

There are many statements about δ-hyperbolic spaces of the form “For every C > 0, there is a constant
R depending only on δ and C such that whenever x and y are points satisfying property P (C), then
d(x, y) < R”. Thus R is a measure of coarse closeness. Since often times C also was a measure of coarse
closeness, these constants can pile up quickly and make it difficult to keep track of precisely. Really all that
is necessary is keeping track of the order of statements and imagining that there is one universal constant
large to satisfy everything. In this paper we will simply use the word near or close or say that the distance
is bounded in a statement to mean that a distance is bounded by a constant depending only on δ, and any
other constant which may arise in the statement. When α and β are geodesics for which α(t) and β(t) are
close for every t, we say the geodesics track eachother.

Here is a well-known fact.

Lemma 4.1 (Bounded Tracking Property). Let α and β be a pair of geodesics in a hyperbolic space param-
eterized to have constant speed over [0, 1]. α and β track eachother.

When there is a (λ, ε)-quasi-isometry or quasi-isometric embedding of another space into the hyperbolic
space, then we will assume that “near” also takes into account the unlisted constants. Recall that quasi-
geodesic is a QIE of an interval. These behave well in hyperbolic spaces [BH99, Theorem III.H.1.7]:

Lemma 4.2 (Stability of Quasi-Geodesics). A quasi-geodesic in a hyperbolic space remains close to a geodesic
joining its endpoints.

A point p in a hyperbolic space is called a center for a triangle 4xyz (possibly with ideal vertices) if it is
close to each of the three sides. It is well-known the set of centers for a triangle is bounded. Since the proof
of this fact is in the flavor of later proofs, we include it here.

Whenever 4xyz is a triangle in a hyperbolic space (without ideal vertices), there are points x ∈ [y, z],
y ∈ [x, z], and z ∈ [x, y] such that d(x, y) = d(x, z), d(y, x) = d(y, z), and d(z, x) = d(z, y). These points are
called the internal points of the triangle. Internal points close to eachother and the geodesics joining them
to the vertices of the triangle track together [BH99, Proposition III.H.1.17].

Lemma 4.3. If p and q are a pair of points close to all three sides of a common triangle, then p and q are
close.

Proof. Suppose the triangle in question has no ideal vertices. Choose unit speed parameterizations α, β, and
γ for the three sides of the triangle so that α(0), β(0), and γ(0) are the internal points, and α(a) = β(−a),
β(b) = γ(−b), and γ(c) = α(−c) for positive numbers a, b, and c. Let α(r), β(s), and γ(t) be the points on
the respective sides of the triangle which are closest to p. Then two of the numbers r, s, and t must have
the same sign. Without loss of generality, assume r and s are both positive. Since α(r) is close to β(−r)
and β(s) and α(r) are both close p, it follows that β(−r) is close to β(s). Since β(0) is between these two,
it must be close to β(s) and hence to p. Similarly, q is also close to β(0). So p and q are close.
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Now what if the triangle has some ideal vertices? Suppose x is an ideal vertex of 4xyz. Let α and β be
the sides [x, y] and [x, z] parameterized to have unit speed and so that α(t) and β(t) go out to x as t→∞.
Find points α(a) and β(b) on these sides close to p and α(a′) and β(b′) close to q. Take T larger than a, b, a′,
and b′. By Bounded Tracking, p and q are also close to (any geodesics) [α(T ), z] and [α(T ), y]. So can replace
x with α(T ), thereby removing an ideal vertex. Continue until all ideal vertices have been removed. �

Lemma 4.4. Let α and β be a pair of lines in a hyperbolic space and a pair of points and p on α and q on
β such that p is closest to β and q is closest to α. If x is close to α and y is close to β, then any geodesic
[x, y] passes near both p and q.

Proof. By Bounded Tracking, we may assume x and y lie on α and β respectively. Look at the triangle
4yqp where [y, q] is chosen as a subsegment of β. Since the internal point on [y, q] is no closer to the internal
point on [q, p] than q, q is close to this internal point. Then the internal point on [y, p]is also close to q.
Thus we have shown that [y, p] passes near q. Similarly, [x, q] passes near p. Something missing – what
if p = q? �

5. F-Fibers of CKA Groups

Assume now that G acts geometrically on another CAT(0) space X ′ which also has a decomposition into
vertex and edge spaces. When we wish to refer to aspects of the decomposition of X ′, we will use primes.

Let Λ ⊂ ∂X × ∂X ′ denote the F-set of the pair X and X ′, φ : Λ→ ∂X and φ′ : Λ→ ∂X ′ be the F-maps.
Since these are just coordinate projection maps, for any ζ ∈ ∂X, φ′ restricts to a homeomorphic embedding
of the F-fiber φ−1(ζ) ⊂ {ζ} × ∂X ′. Therefore to prove that this F-fiber is contractible, it suffices to prove
that its image, Λ′(ζ) in ∂X ′ is contractible.

Remark 5.1. Since Yv is quasi-dense in Xv, whenever a geodesic γ in X passes through Xv, there is a
geodesic β in Yv which tracks with γ as long as it passes through Xv. Saying that its projection passes near
a point x ∈ Yv is the same as saying that β (hence γ) passes near the line {x} × R.

Let v be a vertex and e an edge in its star with w the other endpoint of e. Property (4) above tells us
that Ge/Z(Gv) is a vitually cyclic subgroup of Hv. Let L = L(v, e) ⊂ Yv be an axis for this subgroup, so
that the 2-flat Y (v, e) = L(v, e)× R is Ge-invariant.

Let Lv denote the collection of such lines in Yv; this collection is locally finite. Let xv ∈ Yv be chosen
basepoints for every vertex v of T and that yv is the Yv-coordinate of xv.

If (xn) ⊂ Yv is a sequence of points converging to a point ζ ∈ ∂Yv not a pole of ∂Yv, then it is easy
to check which longitude ζ lies in by looking at the image yn of the sequence under coordinate projection
Yv → Yv. By identifying Yv with the subspace Yv × {0} of Yv, yn must converge to a point in the same
longitude as xn. Conversely, if yn converges to a point in a longitude l of ∂Yv, then ζ lies in the closure of l
(either it lies in l or it is a pole of ∂Yv).

Remark 5.2. Since Hv is negatively curved, fv extends to a homeomorphism ∂fv : ∂Yv → ∂Y ′V . As proven
in [BR96], this extends to a Gv-equivariant homeomorphism ∂Xv → ∂X ′v taking poles to poles and longitudes
to longitudes (in fact, this is an isometry in the Tits metric). If l is a longitude of ∂Xv, we will refer to its
image under this homeomorphism as the corresponding longitude of ∂X ′v.

5.1. Types of Sequences. Assume that ζ ∈ RX, v is a vertex of T , and (gn) ⊂ G is a sequence such that
gnxv → ζ. We may assume, after possibly passing to a subsequence, that (gn) has one of the following types.
In each case, [v, gnv] denotes the geodesic edge path in T from v to gnv.

• (Type A) gnv = v for all n.

• (Type B) dT (v, gnv) ≥ 1 but no pair of [v, gnv] shares the same first edge.

• (Type C) gnv = w for some w in the link of v.

• (Type D) dT (v, gnv) ≥ 2 and all [v, gnv] share the first edge, but no pair shares a second.
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• (Type E) dT (v, gnv) ≥ 2 and all [v, gnv] share the same first two edges.

Lemma 5.3 (Type E). Suppose (gn) has Type E and ζ ∈ ∂Xv. Then ζ is a pole of ∂Xw for some w in the
link of v.

Proof. Denote the geodesic ray emanating from xv and going out to ζ by γ. Let e1 and e2 denote the first
two edges shared by all geodesics [v, gnv], w denote the vertex shared by e1 and e2. Let γn be the geodesic
[xv, gnxv]; then γn → γ. In Yw, let p ∈ L1 = L(w, e1) be a closest point to L(w, e2). By Lemma 4.4 and
Remark 5.1, every γn passes near a point xn ∈ {p} ×R; If (xn) is bounded, then γ leaves Xv, and ζ /∈ ∂Xv.
So (xn) must be unbounded, and ζ must be a pole of ∂Xw. �

Lemma 5.4 (Types A and B). If (gn) has Type A or B, then ζ ∈ ∂Xv.

Proof. Assume ζ /∈ ∂Xv. Let γn denote the geodesic [xv, gnxv]. By hypothesis, γn converges to some geodesic
ray γ emanating from xv and going out to ζ. Since we assumed that ζ /∈ ∂Xv, γ leaves Xv at some point z
interior to Xe for an edge e in the star of v. After leaving Xv, γ must immediately pass through the interior
of Xw where w is the other endpoint e. Since γn → γ and γ passes through the interior of Xw \Xv, so does
γn (when n is large). If the sequence has Type A, then {gnxv} is contained in Xv and ζ ∈ ∂Xv. If it has
Type B, then convexity of Xv guarantees that w lies between v and gnv (which means that all [v, gnv] share
the same first edge). Either way, we are in trouble. �

5.2. F-Fibers of Rational Non-Poles. The purpose of this section is to prove

Proposition 5.5. Suppose ζ ∈ ∂Xv is not a pole. Then Λ(ζ) is a subset of an arc. To be precise

(1) If ζ /∈ ∂Xw for any vertex w in the link of v, then Λ(ζ) is contained in the closure of the longitude
of ∂X ′v corresponding to the longitude containing ζ.

(2) If ζ ∈ ∂Xw for some vertex w in the link of v, then it lies in an intersection of two longitudes – one
from ∂Xv and one from ∂Xw. Then Λ(ζ) lies in the union of the corresponding longitudes of ∂X ′v
and ∂X ′w.

Since Λ(ζ) is connected, the intermediate value theorem guarantees that it is an arc. So

Corollary 5.6. If ζ ∈ RXv is not a pole, then Λ(ζ) is contractible.

We will assume for the remainder of this subsection that (gn) ⊂ G is a sequence such that gnxv → ζ ∈ ∂X
and gnx

′
v → ζ ′ ∈ ∂X ′. Let fv : Yv → Y ′v be an Hv-equivariant quasi-isometry.

Lemma 5.7. Let v be a vertex of T and e1 and e2 be two edges in the star of v. Let p ∈ L2 = L(v, e2) be
a closest point to L1 = L(v, e1) and p′ ∈ L′2 = L′(v, e2) be a closest point to L′1 = L′(v, e1). Then fv(p) is
close to p′.

Proof. We know that L1 and L′1 are axes for the same group element h1 ∈ Hw. Similarly, L2 and L′2 are
axes for the same group element h2. Let A be a geodesic line in Yv joining the points h∞1 and h∞2 , B be a
geodesic line in Yv joining the points h∞1 and h−∞2 , and A′ and B′ be chosen analogously in Y ′v . By Stability
of Quasi-Geodesics, fv(A) tracks with A, fv(B) tracks with B, and fv(L2) tracks with L′2. In particular,
fv(p) is close to A′, B′, and L′2. Now apply Lemma 4.3. �

Lemma 5.8 (Containment in Vertex Space Boundary). If ζ ′ ∈ ∂X ′v and ζ ′ is not a pole of ∂X ′w for any w
in the link of v, then ζ ∈ ∂Xv.

Proof. Assume ζ /∈ ∂Xv. Types A, B and E are impossible by Lemmas 5.3 and 5.4.
Suppose the sequence has Type D. Let e be the edge in the link of v shared by all [v, gnv], w be its second

endpoint, and en denote the second edge in [v, gnv]. Denote L = L(w, e) and Ln = L(w, en), and let qn ∈ Ln
be a closest point to L. Denote by γn the geodesic [xv, gnxv]. Lemma 4.4 and Remark 5.1 guarantees that
γn passes near qn × R. If the set {qn} is bounded, then by local finiteness of L, the lines Ln cannot be all
distinct. So {qn} is unbounded, and by passing to a subsequence, we may assume that qn → ν ∈ ∂Yw. Note
that ν /∈ ∂L, since otherwise we would have ζ ∈ ∂Xe ⊂ ∂Xv.
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Now let γ′n denote the geodesic [x′v, gnx
′
v]. Get analogous lines L′ and L′n in Y ′w and q′n ∈ L′n. Again,

each γn passes near {qn′} × R where qn
′ ∈ L′n is a closest point to L′. By Lemma 5.7, the sequence {qn′}

is unbounded and converges to ν′ = ∂fw(ν). Since L and L′ are axes of the same group element and fw is
equivariant, ν /∈ ∂L′. So ζ ′ /∈ ∂X ′v for a contradiction.

Finally, suppose the sequence has type C. Let γ and γ′ denote the geodesic rays in X and X ′ based at xv
and x′v going out to ζ and ζ ′ respectively and L = L(w, e). Since ζ ′ is not a pole of ∂X ′w, it is contained in
a longitude, say determined by the point ζ ∈ ∂Yw.

Now, ζ is also the limit of the sequence an = gng
−1
1 ⊂ Gg1v, and ζ is the limit of the sequence bn =

anZ(Gg1v) ⊂ Hg1v. The hypothesis that ζ /∈ ∂Xv means that ζ /∈ ∂L. As in the previous case, strong

rigidity of Hw guarantees that in Y ′w, the sequence (bn) cannot converge to either boundary point of L′(w, e).
In X ′w, this means that the sequence (an) does not converge to a point of ∂Xe other than a pole of ∂X ′w.
That is, either ζ ′ is a pole of ∂X ′w or ζ ′ /∈ ∂X ′v which is a contradiction. �

Proof of Proposition 5.5. By Lemma 5.8, we know that ζ ′ ∈ ∂X ′v. The sequence cannot be of Type E by
Lemma 5.3. If the sequence has Type A, then write hn = gnZ(Gv) ∈ Hv. Since hnyv converges to a point of
lv, Remark 5.2 guarantees that hny

′
v will converge to a point of l′v and so ζ ′ must lie in the closure of l′v. If

the sequence has Type B, then denote by en the first edge in the geodesic edge path [v, gnv], Ln = L(v, en),
and L′n = L′(v, en). Choose pn ∈ Ln to be a point closest to yv and p′n ∈ L′n to be a point closest to y′v. Since
the {en} are all distinct, the sequences (pn) and (p′n) remain unbounded and converge to points ν ∈ ∂Yv and
ν′ ∈ ∂Yv. Since the geodesics [xv, gnxv] and [x′v, gnx

′
v] pass near the lines {pn} × R and {p′n} × R, ν ∈ lv,

and, by Remark 5.2, ν′ lies in the closure of l′v.
Finally suppose the sequence has Type C or D. Let e denote the common edge, w the other endpoint of

e, and en the second edge in the geodesic edge path [v, gnv]. Denote also L = L(w, e). If (gn) has Type
C, choose for all n a point pn ∈ L closest to gng

−1
1 Z(Gw)yw. If (gn) has Type D, then let en denote the

second edge of [v, gnv] and choose pn ∈ L to be a closest point to L(v, en). Either way, [xv, gnxv] passes
near the line {pn} ×R in Yv. If (pn) remains bounded, then gnxv converges to a point of ∂Xw \ ∂Xe, which
is a contradiction, since we assumed that ζ ∈ ∂Xe. So (pn) converges to an endpoint ν of L. Let lw denote
the longitude of ∂Xw containing ν. Remark 5.2 guarantees that (fw(pn)) converges to the endpoint of L′

corresponding to ν. Since the geodesics [x′v, gnx
′
v] all pass near the lines {fw(pn)}×R (lines in Yw), it follows

that ζ ′ is in the closure of l′w, as desired. �

5.3. F-Fibers of Poles. Here we deal with the pole case. We will show

Proposition 5.9. Let ζ ∈ ∂Xv be a pole. Then Λ(ζ) is homeomorphic to a cone. To be precise, Λ(ζ)
contains exactly one pole ζ ′ of ∂X ′v, and whenever ν′ ∈ Λ(ζ) is another point and η′ is between ζ ′ and ν′

(on the longitude containing ν′), then η′ ∈ Λ(ζ).

This leads to

Corollary 5.10. If ζ ∈ ∂Xv is a pole, then Λ(ζ) is contractible.

The following technical lemma is an exercise in real analysis.

Lemma 5.11. Let b > a and
{
Q(n,m)

∣∣n,m are nonnegative integers
}
⊂ [a, b] such that all of the following

hold:

(1) limn→∞ Q(n, 0) = a.

(2) For fixed n ≥ 0, limm→∞ Q(n,m) = b.

(3) For all ε > 0, there is an N ≥ 0 large enough so that whenever n ≥ N , Q(n,m+ 1) < Q(n,m) + ε.

Then given any q ∈ [a, b], there are increasing sequences nk and mk such that

lim
k→∞

Q(nk,mk) = q.

Recall that the Alexandrov angle between a pair of geodesics (either segments or rays) α and β emanating
from a common basepoint x0 is defined as the limit as t→ 0 of corresponding angles in comparison triangles
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4xα(t)β(t) in Euclidean space. If the other endpoints of α are y and z, then this angle is denoted by
∠x(y, z).

Things to mention:

• Continuity with fixed basepoint

• CAT(0) angles smaller than flat angles

• Triangle inequality

Lemma 5.12. Let ε > 0 be given. Then there exists a D ≥ 0 such that whenever w is a vertex next to v
such that d(yv, L(v, e)) ≥ D and z ∈ X such that [xv, z] passes through Xw, then

∠xv (c−∞, cz) ≤ ∠xv (c−∞, z) + ε.

Proof. Let ye ∈ L(v, e) be the closest point to yv. By Lemma 4.4, both geodesics [xv, z] and [xv, cz] pass
near the line L = {ye} × R. By convexity of metric, they must remain close to the flat strip [yv, ye] × R
before this time. Let xe ∈ L be a point near [xv, z] and α be the geodesic ray emanating from cxe going
out to c−∞. Now, [xv, cz] either passes near [cxv, cxe] or it passes near α. If the former holds, then it also
passes near [cxv, cz] before this passes near cxe and remains close afterwards. Hence [xv, cz] also passes near
cxe. Either way, there is a constant R ≥ δ depending only on δ such that [xv, cz] passes within a distance
of R from α. Now let D ≥ 0 be large enough so that whenever 4abc is a triangle in Euclidean space such
that d(a, b) and d(a, c) both exceed D and d(b, c) ≤ R, then ∠a(b, c) < ε/3 and such that arctan(τ/D) < ε/3
where τ is the minimal translation length of c (τ = d(xe, cxe)). Then ∠xv(xe, cxe) < ε/3 and the conclusion
follows from the triangle inequality for Alexandrov angles. �

Lemma 5.13. Suppose (gn) ⊂ G is a sequence such that gnxv → c∞ in ∂X. Then gnxv cannot converge to
c−∞ in ∂X ′.

Proof. Given any vertex w in the link of v, choose a point aw ∈ L(v, w) and let Mw be the line joining
the poles of ∂Xw which contains the point (aw, 0) ∈ Yv. Choose also a′w ∈ L′(v, w) such that a′w is close
to fv(aw), and let M ′w be the corresponding line in Y ′v . Since gn → c∞, kn → ∞ and since gn → c−∞,
kn → −∞. This is a contradiction. �

Proof of Proposition 5.9. We will assume that ζ = c∞ in ∂Xv. Certainly the corresponding pole ζ ′ = c∞ ∈
∂X ′v is also in Λ(ζ), since cn converges to c∞ in both ∂Xv and ∂X ′v. Let (gn) ⊂ G be a sequence of group
elements such that gnxv → ζ and gnxv → ν′ ∈ ∂X ′. By Lemma ??, ν′ ∈ ∂X ′v, and by the previous
Lemma, ν′ is not a pole of ∂X ′v. So it must lie in a longitude l′. Consider what Lemma 5.11 says about
Q(n,m) = ∠x′

v
(c−∞, cmgnx

′
v) with a = ∠xv

(c−∞, ζ) and b = π. Item (1) is satisfied by continuity of
Alexandrov angles with fixed basepoint, (2) is satisfied because cmx → c∞ regardless of which x ∈ X is
chosen, and (3) is Lemma 5.12. Therefore, for any θ ∈ [a, π], there is a sequence hk = cmkgnk

such that
∠x′

v
(c−∞, hkx

′
v)→ θ.

Next we verify that hkx
′
v converges to a point on l′. There is a sequence (yk) ⊂ Yv converging to a point

on l′ and such that every geodesic [x′v, gnk
x′v] passes near the line yk×R. But these lines are axes of c, which

means that [x′v, hkx
′
v] also pass near them. Therefore all limit points of {hkx′v} also lie in l′. But of course,

since the angles converge, there is only one.
Finally, we check that hkxv → ζ. Take yk to be the image of y′k under the quasi-isometry Y ′v → Yv.

Again, each geodesic [xv, hkxv] passes near the line Lk = {yk}×R. Since {yk} is unbounded, we may apply
Lemma 5.12, to show that ∠xv (c∞, hkxv) → 0. Since the lines Lk have all their limit points in ∂Xv, hkxv
has no choice but to converge to ζ. �

5.4. F-Fibers of Irrational Points. The summary of the previous two subsections is that F-fibers of
rational points are contractible. It remains to prove that F-fibers of irrational points are contractible. This
turns out to be very easy.

Proposition 5.14. Let ζ ∈ IX. Then Λ(ζ) is a subset of an arc. To be precise, Λ(ζ) is contained in the
set of points of ∂X ′ with the same infinite itinerary as ζ (shown in [CK02] to be a Tits arc).
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Proof. It follows from 5.8 that Λ(ζ) ⊂ IX. Since components of IX in both topologies are arcs and Λ(ζ) is
connected, the proposition is clear. �

The main Theorem follows from Propositions 5.5, 5.9, and 5.14.
Say more?

6. Notes for the Authors on Hyperbolic Spaces

Throughout this section, X will be a δ0-hyperbolic space. That is, whenever 4xyz is a triangle in X
(possibly with some ideal vertices), then each side is contained in the δ0-tubular neighborhood of the other
two sides.

Pairs of geodesics in X satisfy the following bounded tracking property. Whenever α and β are geodesics
(parameterized arbitrarily over [0, 1]) such that d(α(0), β(0)) ≤ C and d(α(1), β(1)) ≤ C, then the Hausdorff
distance between α and β is bounded by C + 2δ0.

Recall that whenever 4xyz is a triangle in a geodesic space X, there are points x ∈ [y, z], y ∈ [x, z], and
z ∈ [x, y] such that d(x, y) = d(x, z), d(y, x) = d(y, z), and d(z, x) = d(z, y). These points are called the
internal points of the triangle. If X is δ0-hyperbolic, then there is a δ1 (depending only on δ0) such that given
any triangle, the distance between any pair of internal points is bounded above by δ1 [BH99, Proposition
III.H.1.17]. Furthermore, if c(t) and c′(t) are unit speed parameterizations of the sides [x, y] and [x, z] such
that c(0) = c′(0) = x and c(T ) and c′(T ) are the internal points on these sides, then d(c(t), c′(t)) ≤ δ1.

Lemma 6.1. Let C ≥ 0 be given, 4xyz be a triangle, and p ∈ X such that all three sides of the triangle
pass within a distance of C from p. Then p is within a distance of 3C+ 2δ1 from each of the internal points.

Proof. Choose unit speed parameterizations α, β, and γ for the three sides of the triangle so that α(0), β(0),
and γ(0) are the internal points, and α(a) = β(−a), β(b) = γ(−b), and γ(c) = α(−c) for positive numbers
a, b, and c. Let α(r), β(s), and γ(t) be the points on the respective sides of the triangle which are closest to
p. Then two of the numbers r, s, and t must have the same sign. Without loss of generality, assume r and s
are both positive. Since d(α(r), β(−r)) ≤ δ1 and d(β(s), α(r)) ≤ 2C, d(β(−r), β(s)) ≤ 2C + δ1. Since β(0)
lies between these two, d(β(0), β(s)) ≤ 2C + δ1. The conclusion is now clear. �

Lemma 6.2. Let 4xyz be a triangle (possibly with some ideal vertices) in a δ0-hyperbolic space, C ≥ 0,
and p, q ∈ X be a pair of points both of which lie within a distance of C from all three sides of the triangle.
Then there is a constant R depending only on δ0 and C such that d(p, q) ≤ R.

Proof. Suppose x is an ideal vertex. Denote the sides of the triangle by A = [x, y], B = [x, z], and C = [y, z].
Let a ∈ A and b ∈ B be closest points to p and a′ ∈ A and b′ ∈ B be closest points to q. Choose x ∈ A and
y ∈ B such that d(x, y) ≤ δ0 and a and a′ both lie in the same component of A \ {x} and b and b′ both lie in
the same component of B \ {y}. Then [x, z] passes within 3δ0 of both b and b′. Therefore both p and q lie
within a distance of C + 3δ0 of all three sides of a triangle 4xyz which has one fewer ideal vertex. Continue
until all ideal vertices are gone and apply the previous lemma. �

Here is another application of internal points. If 4xyz is a triangle in X such that y is a point on the
side [x, y] closest to z, then y lies in the δ1-neighborhood of the internal point on the side [y, z]. Therefore
[x, z] passes through the 2δ1-neighborhood of y. Extending this idea we can get

Lemma 6.3. Let X be a δ0-hyperbolic geodesic space, C ≥ 0, A and B be a pair of lines and p ∈ A and
q ∈ B be a pair of closest points. If x lies within a distance of C from A and y lies within a distance of C
from B, then any geodesic [x, y] passes within a distance of C + 6δ1 + 6δ0 from both p and q.

Proof. Let x ∈ A and y ∈ B be points within C of x and y, and a be a point on [x, p] closest to y. Then a
geodesic [p, y] passes within 2δ1 of both q and a. Using bounded tracking, q is a distance of 4δ1 + 2δ0 from
[a, y]. Similarly, since [x, y] also passes within 2δ1 of a, it passes within 6δ1 + 4δ0 of q. The conclusion now
follows from bounded tracking. �
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