LINKED PAIRS OF CONTRACTIBLE POLYHEDRA IN Sⁿ

CRAIG R. GUILBAULT

(Communicated by James West)

ABSTRACT. B. Mazur has described a geometrically linked pair of compact contractible polyhedra in S^4 . In this note we exhibit an even more extreme type of linking between compact contractible polyhedra in S^n , $n \ge 5$.

1. INTRODUCTION

Disjoint compacta A_1 , $A_2 \subset S^n$ are geometrically unlinked if there is a PL embedding $f: S^{n-1} \to S^n$ so that $f(S^{n-1})$ separates S^n into components V_1 and V_2 with $A_1 \subset V_1$ and $A_2 \subset V_2$. In this case, \bar{V}_1 and \bar{V}_2 are contractible polyhedra (see (2) from §2), so by taking interiors of sufficiently small regular neighborhoods of \bar{V}_1 and \bar{V}_2 we see that if A_1 and A_2 are geometrically unlinked they also satisfy

Definition. Disjoint compacta A_1 , $A_2 \subset S^n$ are fundamentally unlinked if there is a cover $\{U_1, U_2\}$ of S^n by contractible open sets so that $A_i \subset U_i$ for i = 1, 2 and $A_i \cap U_j = \emptyset$ when $i \neq j$.

If A_1 and A_2 are disjoint compact contractible polyhedra in S^n and $n \leq 3$, then they are geometrically unlinked. Indeed, if $N(A_1)$ is a regular neighborhood of A_1 disjoint from A_2 , then $\partial N(A_1)$ is a PL (n-1)-sphere separating A_1 from A_2 . In [Ma] Mazur made the surprising observation that, in S^4 , a disjoint pair of compact contractible polyhedra may be geometrically linked. To do this, he constructed a compact contractible 4-manifold M (now known as a "Mazur manifold") which has nonsimply connected boundary and may be viewed as a regular neighborhood of a contractible 2-complex D contained in its interior. He then observes that the double, $M_1 \cup_{\partial} M_2$, of M is a PL 4sphere and D_1 and D_2 are geometrically linked therein. Notice, however, that D_1 and D_2 are fundamentally unlinked.

A strategy similar to Mazur's may be used to produce pairs of geometrically linked, but fundamentally unlinked, compact contractible polyhedra in S^n for all $n \ge 4$. In this note we show that for $n \ge 5$ there exist fundamentally linked pairs of compact contractible polyhedra in S^n .

Received by the editors November 6, 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 57N15, 57Q99.

2. Preliminaries

Throughout this paper we work in the PL category; all complexes are simplicial, manifolds are combinatorial, and maps are piecewise linear. All homology is with \mathbb{Z} -coefficients.

A group G is *perfect* if its abelianization, G/[G, G], is the trivial group. A space X is *acyclic* if $\tilde{H}_k(X) = 0$ for all k. A compact acyclic *n*-manifold is called a *homology n-cell*. An *n*-manifold with homology groups isomorphic to those of S^n is called a *homology n-sphere*.

The following facts are well known. They follow from standard results of algebraic topology including the VanKampen, Mayer-Vietoris, and Universal Coefficient theorems, as well as duality, the Hurewicz Theorem, and a theorem of Whitehead. We list them here for easy reference.

(1) The boundary of a homology *n*-cell is a homology (n-1)-sphere.

(2) If $\Sigma^{n-1} \subset S^n$ is a homology (n-1)-sphere and V_1 and V_2 are the components of $S^n - \Sigma^{n-1}$, then \bar{V}_1 and \bar{V}_2 are acyclic. If Σ^{n-1} is simply connected, then \bar{V}_1 and \bar{V}_2 are simply connected and thus contractible. If Σ^{n-1} is locally flat, then \bar{V}_1 and \bar{V}_2 are homology *n*-cells.

(3) The union of two homology n-cells among a common boundary is a homology n-sphere.

3. MAIN RESULT

Theorem 3.1. For any $n \ge 5$, there exists a fundamentally linked pair of compact contractible polyhedra in S^n .

We will need the following lemmas. Both are tailored to the proof of Theorem 3.1 and could be stated in greater generality if so desired.

Lemma 3.2. Let K be a finite acyclic 2-complex with fundamental group G. Then, for any $n \ge 5$, there exists a homology n-sphere Σ^n with $\pi_1(\Sigma^n) \cong G \times G$. Proof. For $n \ge 8$, we may embed $K \times K$ in \mathbb{R}^{n+1} . A regular neighborhood N of this embedding is a homology (n + 1)-cell, so, by (1), ∂N is a homology n-sphere; moreover, by general position, $\pi_1(\partial N) \cong \pi_1(N) \cong G \times G$. Now, since $G \times G$ is the fundamental group of some high-dimensional homology sphere, the proof of Theorem 1 in [Ke], together with the remarks that precede it, show implicitly that there is an acyclic 3-complex, L, with $\pi_1(L) \cong G \times G$. Hence, for $n \ge 6$, we may use the same strategy as above. Finally, for n = 5, apply [St] to obtain a 3-complex $L' \subset \mathbb{R}^6$ which is simple homotopy equivalent to L, and let Σ^n be the boundary of a regular neighborhood of L'. \Box

Remark. Nonsimply connected, acyclic 2-complexes are plentiful. For example, removing the interior of a 3-ball from a nonsimply connected homology 3-sphere produces a homology 3-cell with the same fundamental group. This homology cell may then be collapsed onto a 2-dimensional subcomplex.

Lemma 3.3. Let K be a finite complex with perfect fundamental group G. If K may be written as $U \cup V$, where U and V are open (not necessarily connected) subsets of K, such that loops lying completely within either U or V contract in K, then K is simply connected.

Proof. By [Wr, Lemma 7.2], G must be a free group, but the only perfect free group is trivial. \Box

Proof of Theorem 3.1. Let K be an acyclic 2-complex with nontrivial fundamental group G. By Lemma 3.2, we may choose a homology *n*-sphere, Σ^n with $\pi_1(\Sigma^n, q) \cong G \times G$. Let $G_1, G_2, G_3 < \pi_1(\Sigma^n, q)$ correspond to $G \times \{1\}$, $\{1\} \times G, \Delta_G = \{(g, g) | g \in G\} < G \times G,$ respectively. Choose PL embeddings $e_i: (K, p) \to (\Sigma^n, q)$ for i = 1, 2, 3 so that $\operatorname{image}((e_i)_{\#}: \pi_1(K, p) \to \mathbb{C}^n)$ $\pi_1(\Sigma^n, q)) = G_i$, for each *i*. By general position, we may homotope e_1 and e_2 to embeddings e'_1 and e'_2 so that e'_1 and e'_2 , and e_3 have pairwise disjoint images which we will denote by K_1 , K_2 , and K_3 . Choose regular neighborhoods N_1 and N_2 of K_1 and K_2 so that N_1 , N_2 , and K_3 are pairwise disjoint. Let $W = \Sigma^n - \operatorname{int}(N_1 \cup N_2)$, and choose embedded arcs α_1 and α_2 in W from q to points $q_1 \in \partial N_1$ and $q_2 \in \partial N_2$, respectively. Since G_1 is a normal subgroup of $\pi_1(\Sigma^n, q)$ (thus, invariant under conjugation), $\operatorname{image}(\pi_1(N_i \cup \alpha_i)) = G_i$ for i = 1, 2. Furthermore, since K_i has codimension ≥ 3 , the inclusions $\Sigma^n - (K_1 \cup K_2) \subset \Sigma^n$ and $N_i - K_i \subset N_i$ (i = 1, 2) induce π_1 -isomorphisms. Utilizing the collar structures on $N_i - K_i$, we may conclude that $W \subset \Sigma^n$ and $\partial N_i \subset N_i$ induce π_1 -isomorphisms. By a slight abuse of notation, we write $\pi_1(W, q) = G_1 \times G_2$ with $\text{image}(\pi_1(\partial N_i \cup \alpha_i, q) \to \pi_1(W, q)) = G_i, i = 1, 2.$

By (1) of §2, ∂N_1 and ∂N_2 are homology (n-1)-spheres; so, by [Ke, p. 71], there exist (combinatorial) compact contractible manifolds C_1 and C_2 with $\partial C_i \approx \partial N_i$ for each *i*. If $W \cup_{\partial} C_i$ denotes the space obtained by gluing ∂C_i to W along ∂N_i , VanKampen's theorem gives an isomorphism $\pi_1(W \cup_{\partial} C_i, q) \rightarrow (G_1 \times G_2)/G_i$, for i = 1, 2. Furthermore, since the composition $G_3 \rightarrow G_1 \times G_2 \rightarrow (G_1 \times G_2)/G_i$ is an isomorphism for i = 1, 2, we have inclusion induced isomorphisms, $\pi_1(K_3) \rightarrow \pi_1(W \cup_{\partial} C_i)$.

Reasoning as above,

$$\pi_1(W \cup_{\partial} (C_1 \cup C_2), q) \cong (G_1 \times G_2) / \langle G_1 \cup G_2 \rangle = \{1\}.$$

Furthermore, by two applications of (3), $W \cup_{\partial} (C_1 \cup C_2)$ is a homology sphere. Hence, by the PL Generalized Poincaré Conjecture [Sm], $W \cup_{\partial} (C_1 \cup C_2) \approx S^n$.

Claim. C_1 and C_2 are fundamentally linked in $W \cup_{\partial} (C_1 \cup C_2) \approx S^n$.

Suppose there is an open cover $\{U_1, U_2\}$ of $W \cup_{\partial} (C_1 \cup C_2)$ by contractible sets with $C_i \subset U_i$ for i = 1, 2 and $C_i \cap U_j = \emptyset$ when $i \neq j$. Then $\{U_1 \cap K_3, U_2 \cap K_3\}$ is an open cover of K_3 . By Lemma 3.3, we may assume without loss of generality that $U_1 \cap K_3$ contains a loop λ which is nontrivial in K_3 . Now, U_1 is contractible, so λ contracts in $U_1 \subset W \cup_{\partial} C_1$. But, since $K_3 \subset W \cup_{\partial} C_1$ induces a π_1 -isomorphism, this is impossible. \Box

Remark. In the above construction, the contractibility of U_i was only used to assert that a loop $\lambda \subset U_i$ contracts in U_i . Hence, we have actually shown that S^n cannot be covered by simply connected open sets U_1 and U_2 containing C_1 and C_2 , respectively, and with $U_i \cap C_i = \emptyset$ for $i \neq j$.

Question. Does there exist a pair of fundamentally linked compact contractible polyhedra in S^4 ?

References

- [Ke] M. A. Kervaire, Smooth homology spheres and their fundamental groups, Trans. Amer. Math. Soc. 144 (1969), 67-72.
- [Ma] B. Mazur, A note on some contractible 4-manifolds, Ann. of Math. (2) 73 (1961), 221-228.

C. R. GUILBAULT

- [Sm] S. Smale, Generalized Poincaré conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391-406.
- [St] J. R. Stallings, *The embedding of homotopy types into manifolds*, Mimeographed notes, Princeton Univ., 1965.
- [Wr] D. G. Wright, Contractible open manifolds which are not covering spaces, Topology 3 (1992), 281-291.

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF WISCONSIN-MILWAUKEE, MILWAUKEE, WISCONSIN 53201

E-mail address: craigg@csd4.csd.uwm.edu

1274