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Preface

During the academic year 2010–2011, the Ohio State University Mathematics
Department hosted a special year on geometric group theory. Over the course of the
year, four-week-long workshops, two weekend conferences, and a week-long
conference were held, each emphasizing a different aspect of topology and/or
geometric group theory. Overall, approximately 80 international experts passed
through Columbus over the course of the year, and the talks covered a large swath
of the current research in geometric group theory. This volume contains contri-
butions from the workshop on “Topology and geometric group theory,” held in
May 2011.

One of the basic questions in manifold topology is the Borel Conjecture, which
asks whether the fundamental group of a closed aspherical manifold determines the
manifold up to homeomorphism. The foundational work on this problem was
carried out in the late 1980s by Farrell and Jones, who reformulated the problem in
terms of the K-theoretic and L-theoretic Farrell–Jones Isomorphism Conjectures
(FJIC). In the mid-2000s, Bartels, Lück, and Reich were able to vastly extend the
techniques of Farrell and Jones. Notably, they were able to establish the FJICs (and
hence the Borel Conjecture) for manifolds whose fundamental groups were
Gromov hyperbolic. Lück reported on this progress at the 2006 ICM in Madrid. At
the Ohio State University workshop, Arthur Bartels gave a series of lectures
explaining their joint work on the FJICs. The write-up of these lectures provides a
gentle introduction to this important topic, with an emphasis on the techniques of
proof.

Staying on the theme of the Farrell–Jones Isomorphism Conjectures, Daniel
Juan-Pineda and Jorge Sánchez Saldaña contributed an article in which both the
K- and L-theoretic FJIC are verified for the braid groups on surfaces. These are the
fundamental groups of configuration spaces of finite tuples of points, moving on the
surface. Braid groups have been long studied, both by algebraic topologists, and by
geometric group theorists.

A major theme in geometric group theory is the study of the behavior “at
infinity” of a space (or group). This is a subject that has been studied by geometric
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topologists since the 1960s. Indeed, an important aspect of the study of open
manifolds is the topology of their ends. The lectures by Craig Guilbault present
the state of the art on these topics. These lectures were subsequently expanded into
a graduate course, offered in Fall 2011 at the University of Wisconsin (Milwaukee).

An important class of examples in geometric group theory is given by CAT(0)
cubical complexes and groups acting geometrically on them. Interest in these has
grown in recent years, due in large part to their importance in 3-manifold theory
(e.g., their use in Agol and Wise’s resolution of Thurston’s virtual Haken conjec-
ture). A number of foundational results on CAT(0) cubical spaces were obtained in
Michah Sageev’s thesis. In his contributed article Daniel Farley gives a new proof
of one of Sageev’s key results: any hyperplane in a CAT(0) cubical complex
embeds and separates the complex into two convex sets.

One of the powers of geometric group theory lies in its ability to produce,
through geometric or topological means, groups with surprising algebraic proper-
ties. One such example was Burger and Mozes’ construction of finitely presented,
torsion-free simple groups, which were obtained as uniform lattices inside the
automorphism group of a product of two trees (a CAT(0) cubical complex!). The
article by Pierre-Emmanuel Caprace and Bertrand Rémy introduces a geometric
argument to show that some nonuniform lattices inside the automorphism group of
a product of trees are also simple.

An important link between algebra and topology is provided by the cohomology
functors. Our final contribution, by Peter Kropholler, contributes to our under-
standing of the functorial properties of group cohomology. He considers, for a fixed
group G, the set of integers n for which the group cohomology functor HnðG;�Þ
commutes with certain colimits of coefficient modules. For a large class of groups,
he shows this set of integers is always either finite or cofinite.

We hope these proceedings provide a glimpse of the breadth of mathematics
covered during the workshop. The editors would also like to take this opportunity to
thank all the participants at the workshop for a truly enjoyable event.

Columbus, OH, USA Michael W. Davis
December 2015 James Fowler

Jean-François Lafont
Ian J. Leary
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Chapter 1
On Proofs of the Farrell–Jones Conjecture

Arthur Bartels

Abstract These notes contain an introduction to proofs of Farrell–Jones Conjecture
for some groups and are based on talks given in Ohio, Oxford, Berlin, Shanghai,
Münster and Oberwolfach in 2011 and 2012.

Keywords K -theory · L-theory · Controlled topology · Controlled algebra ·
Geodesic flow · CAT(0)-Geometry

Introduction

Let R be a ring andG be a group. TheFarrell–JonesConjecture [25] is concernedwith
the K - and L-theory of the group ring R[G]. Roughly it says that theK- and L-theory
of R[G] is determined by the K - and L-theory of the rings R[V ]where V varies over
the family of virtually cyclic subgroups of G and group homology. The conjecture
is related to a number of other conjectures in geometric topology and K -theory,
most prominently the Borel Conjecture. Detailed discussions of applications and the
formulation of this conjecture (and related conjectures) can be found in [10, 32–35].

These notes are aimed at the reader who is already convinced that the
Farrell–Jones Conjecture is a worthwhile conjecture and is interested in recent
proofs [3, 6, 9] of instances of this Conjecture. In these notes I discuss aspects
or special cases of these proofs that I think are important and illustrating. The dis-
cussion is based on talks given over the last two years. It will be much more informal
than the actual proofs in the cited papers, but I tried to provide more details than I
usually do in talks. I took the liberty to express opinion in some remarks; the reader
is encouraged to disagree with me. The cited results all build on the seminal work
of Farrell and Jones surrounding their conjecture, in particular, their introduction of
the geodesic flow as a tool in K - and L-theory [23]. Nevertheless, I will not assume
that the reader is already familiar with the methods developed by Farrell and Jones.

A. Bartels (B)
Mathematisches Institut, Westfälische Wilhelms-Universität Münster,
Einsteinstr. 62, 48149 Münster, Germany
e-mail: a.bartels@uni-muenster.de

© Springer International Publishing Switzerland 2016
M.W. Davis et al. (eds.), Topology and Geometric Group Theory,
Springer Proceedings in Mathematics & Statistics 184,
DOI 10.1007/978-3-319-43674-6_1
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2 A. Bartels

Abrief summaryof these notes is as follows. Section1.1 contains a brief discussion
of the statement of the conjecture. The reader is certainly encouraged to consult
[10, 32–35] for much more details, motivation and background. Section1.2 contains
a short introduction to geometric modules that is sufficient for these notes. Three
axiomatic results, labeled Theorems A, B and C, about the Farrell–Jones Conjecture
are formulated in Sect. 1.3. Checking for a group G the assumptions of these results
is never easy. Nevertheless, the reader is encouraged to find further applications
of them. In Sect. 1.4 an outline of the proof of Theorem A is given. Section1.5
describes the role of flows in proofs of the Farrell–Jones Conjecture. It also contains
a discussion of the flow space for CAT(0)-groups. Finally, in Sect. 1.6 an application
of Theorem C to some groups of the form Z

n
� Z is discussed.

1.1 Statement of the Farrell–Jones Conjecture

Classifying Spaces for Families

Let G be a group. A family of subgroups of G is a non-empty collection F of
subgroups of G that is closed under conjugation and taking subgroups. Examples
are the family Fin of finite subgroups, the family Cyc of cyclic subgroups, the family
of virtually cyclic subgroups VCyc, the family Ab of abelian subgroups, the family
{1} consisting of only the trivial subgroup and the family All of all subgroups. If
F is a family, then the collection VF of all V ⊆ G which contain a member of
F as a finite index subgroup is also a family. All these examples are closed under
abstract isomorphism, but this is not part of the definition. If G acts on a set X then
{H ≤ G | XH �= ∅} is a family of subgroups.

Definition 1.1.1 A G-CW -complex E is called a classifying space for the family
F , if EH is non-empty and contractible for all H ∈ F and empty otherwise.

Such aG-CW -complex always exists and is unique up toG-equivariant homotopy
equivalence. We often say such a space E is a model for EFG; less precisely we
simply write E = EFG for such a space.

Example 1.1.2 Let F be a family of subgroups. Consider the G-set S := ∐
F∈F

G/F . The full simplicial complex Δ(S) spanned by S (i.e., the simplicial complex
that contains a simplex for every non-empty finite subset of S) carries a simplicial
G-action. The isotropy groups of vertices of Δ(S) are all members ofF , but for an
arbitrary point of Δ(S) the isotropy group will only contain a member of F as a
finite index subgroup. The first barycentric subdivision ofΔ(S) is aG-CW -complex
and it is not hard to see that it is a model for EVFG.

This construction works for any G-set S such that F = {H ≤ G | SH �= ∅}.
More information about classifying spaces for families can be found in [31].
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Statement of the Conjecture

The original formulation of the Farrell–Jones Conjecture [25] used homology with
coefficients in stratified and twisted Ω-spectra. We will use the elegant formulation
of the conjecture developed by Davis and Lück [21]. Given a ring R and a group G
Davis–Lück construct a homology theory for G-spaces

X �→ HG
∗ (X; KR)

with the property that HG∗ (G/H ; KR) = K∗(R[H ]).
Definition 1.1.3 Let F be a family of subgroups of G. The projection EFG �
G/G to the one-point G-space G/G induces the F -assembly map

αF : HG
∗ (EFG; KR) → HG

∗ (G/G; KR) = K∗(R[G]).

Conjecture 1.1.4 (Farrell–Jones Conjecture) For all groups G and all rings R the
assembly map αVCyc is an isomorphism.

Remark 1.1.5 Farrell–Jones really only conjectured this for R = Z. Moreover, they
wrote (in 1993) that they regard this and related conjectures only as estimates which
best fit the known data at this time. It still fits all known data today.

For arbitrary rings the conjecture was formulated in [2]. The proofs discussed in
this article all work for arbitrary rings and it seems unlikely that the conjecture holds
for R = Z and all groups, but not for arbitrary rings.

Remark 1.1.6 Let F be a family of subgroups of G. If R is a ring such that
K∗R[F] = 0 for all F ∈ F , then HG∗ (EFG; KR) = 0.

In particular, the Farrell–Jones Conjecture predicts the following: if R is a ring
such that K∗(R[V ]) = 0 for all V ∈ VCyc then K∗(R[G]) = 0 for all groups G.

Transitivity Principle

The family in the Farrell–Jones Conjecture is fixed to be the family of virtually
cyclic groups. Nevertheless, it is beneficial to keep the family flexible, because of
the following transitivity principle [25, A. 10].

Proposition 1.1.7 Let F ⊆ H be families of subgroups of G. Write F ∩ H for
the family of subgroups of H that belong toF . Assume that

(a) αH : HG∗ (EH G; KR) → K∗(R[G]) is an isomorphism,
(b) αF∩H : HH∗ (EF∩H H ; KR) → K∗(R[H ]) is an isomorphism for all H ∈ H .

Then αF : HG∗ (EFG; KR) → K∗(R[G]) is an isomorphism.

Remark 1.1.8 The following illustrates the transitivity principle.
Assume that R is a ring such that K∗(R[F]) = 0 for all F ∈ F . Assumemoreover

that the assumptions of Proposition 1.1.7 are satisfied. Combining Remark 1.1.6
with (b) we conclude K∗(R[H ]) = 0 for all H ∈ H . Then combining Remark 1.1.6
with (a) it follows that K∗(R[G]) = 0.
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Remark 1.1.9 The transitivity principle can be used to prove the Farrell–Jones Con-
jecture for certain classes by induction. For example the proof of the Farrell–Jones
Conjecture for GLn(Z) uses an induction on n [11]. Of course the hard part is still
to prove in the induction step that αFn−1 is an isomorphism for GLn(Z) where the
familyFn−1 contains only groups that can be build from GLn−1(Z) and poly-cyclic
groups. The induction step uses TheoremB from Sect. 1.3. See also Remark1.5.18.

More General Coefficients

Farrell and Jones also introduced a generalization of their conjecture now called the
fibered Farrell–Jones Conjecture. This version of the conjecture is often not harder to
prove than the original conjecture. Its advantage is that it has better inheritance prop-
erties. An alternative to the fibered conjecture is to allow more general coefficients
where the group can act on the ring. As K -theory only depends on the category
of finitely generated projective modules and not on the ring itself, it is natural to
also replace the ring by an additive category. We briefly recall this generalization
from [13].

Let A be an additive category with a G-action. There is a construction of an
additive category A [G] that generalizes the twisted group ring for actions of G
on a ring R. (In the notation of [13, Definition 2.1] this category is denoted as
A ∗G G/G;A [G] is amore descriptive name for it.) There is also a homology theory
HG∗ (−; KA ) forG-spaces such that HG∗ (G/H ; KA ) = K∗(A [H ]). Therefore there
are assembly maps

αF : HG
∗ (EFG; KA ) → HG

∗ (G/G; KA ) = K∗(A [G]).

Conjecture 1.1.10 (Farrell–Jones Conjecture with coefficients) For all groups G
and all additive categories A with G-action the assembly map αVCyc is an isomor-
phism.

An advantage of this version of the conjecture is the following inheritance prop-
erty.

Proposition 1.1.11 Let N � G � Q be an extension of groups. Assume that Q and
all preimages of virtually cyclic subgroups under G � Q satisfies the Farrell–Jones
Conjecture with coefficients 1.1.10. Then G satisfies the Farrell–Jones Conjecture
with coefficients 1.1.10.

Remark 1.1.12 Proposition 1.1.11 can be used to prove the Farrell–Jones Conjecture
with coefficients for virtually nilpotent groups using the conjecture for virtually
abelian groups, compare [10, Theorem 3.2].

It can also be used to reduce the conjecture for virtually poly-cyclic groups to
irreducible special affine groups [3, Sect. 3]. The latter class consists of certain groups
G for which there is an exact sequence Δ → G → D, where D is infinite cyclic or
the infinite dihedral group and Δ is a crystallographic group.
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Remark 1.1.13 For additive categories with G-action the consequence from
Remark 1.1.6 becomes an equivalent formulation of the conjecture: A group G sat-
isfies the Farrell–Jones Conjecture with coefficients 1.1.10 if and only if for additive
categories B with G-action we have

K∗(B[V ]) = 0 for all V ∈ VCyc =⇒ K∗(B[G]) = 0.

(This follows from [9, Proposition3.8] because the obstruction category
OG(EFG;A ) is equivalent to B[G] for some B with K∗(B[F]) = 0 for all
F ∈ F .)

In particular, surjectivity implies bijectivity for the Farrell–Jones Conjecture with
coefficients.

Remark 1.1.14 The Farrell–Jones Conjecture 1.1.4 should be viewed as a conjecture
about finitely generated groups. If it holds for all finitely generated subgroups of a
group G, then it holds for G. The reason for this is that the conjecture is stable under
directed unions of groups [27, Theorem 7.1].

With coefficients the situation is even better. This version of the conjecture is
stable under directed colimits of groups [4, Corollary 0.8]. Consequently the Farrell–
Jones Conjecture with coefficients holds for all groups if and only if it holds for all
finitely presented groups, compare [1, Corollary 4.7]. It is therefore a conjecture
about finitely presented groups.

Despite the usefulness of this more general version of the conjecture I will mostly
ignore it in this paper to keep the notation a little simpler.

L-Theory

There is a version of the Farrell–Jones Conjecture for L-Theory. For some applica-
tions this is very important. For example the Borel Conjecture asserting the rigidity
of closed aspherical topological manifolds follows in dimensions ≥5 via surgery
theory from the Farrell–Jones Conjecture in K - and L-theory. The L-theory version
of the conjecture is very similar to the K -theory version. Everything said so far about
the K -theory version also holds for the L-theory version.

For some time proofs of the L-theoretic Farrell–Jones conjecture have been con-
siderably harder than their K -theoretic analoga. Geometric transfer arguments used
in L-theory are considerably more involved than their counterparts in K -theory. A
change that came with considering arbitrary rings as coefficients in [2], is that trans-
fers became more algebraic. It turned out [6] that this more algebraic point of view
allowed for much easier L-theory transfers. (In essence, because the world of chain
complexes with Poincaré duality is much more flexible than the world of manifolds.)
This is elaborated at the end of Sect. 1.4.

I think that it is fair to say that, as far as proofs are concerned, there is as at
the moment no significant difference between the K -theoretic and the L-theoretic
Farrell–Jones Conjecture. For this reason L-theory is not discussed in much detail
in these notes.
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1.2 Controlled Topology

The Thin h-Cobordism Theorem

An h-cobordism W is a compact manifold whose boundary is a disjoint union ∂W =
∂0W  ∂1W of closed manifolds such that the inclusions ∂0W → W and ∂1W → W
are homotopy equivalences. If M = ∂0W , then we sayW is an h-cobordism over M .
If W is homeomorphic to M×[0, 1], then W is called trivial.

Definition 1.2.1 Let M be a closed manifold with a metric d. Let ε ≥ 0.
An h-cobordism W over M is said to be ε-controlled over M if there exists a

retraction p : W → M for the inclusion M → W and a homotopy H : idW → p
such that for all x ∈ W the track

{p(H(t, x)) | t ∈ [0, 1]} ⊆ M

has diameter at most ε.

Remark 1.2.2 Clearly, the trivial h-cobordism is 0-controlled. Thus it is natural to
think of being ε-controlled for small ε as being close to the trivial h-cobordism.

The following theorem is due to Quinn [39, Theorem2.7]. See [18, 19, 28] for
closely related results by Chapman and Ferry.

Theorem 1.2.3 (Thin h-cobordism theorem) Assume dim M ≥ 5. Fix a metric d
on M (generating the topology of M).

Then there is ε > 0 such that all ε-controlled h-cobordisms over M are trivial.

Remark 1.2.4 Farrell–Jones used the thin h-cobordism Theorem1.2.3 and general-
izations thereof to study K∗(Z[G]), ∗ ≤ 1. For example in [23] they used the geo-
desic flow of a negatively curved manifold M to show that any element in Wh(π1M)

could be realized by an h-cobordism that in turn had to be trivial by an application
of (a generalization of) the thin h-cobordism theorem. Thus Wh(π1M) = 0. In later
papers they replaced the thin h-cobordism theorem by controlled surgery theory and
controlled pseudoisotopy theory.

The later proofs of the Farrell–Jones Conjecture that we discuss here do not
depend on the thin h-cobordism theorem, controlled surgery theory or controlled
pseudoisotopy theory, but on a more algebraic control theory that we discuss in the
next subsection.

An Algebraic Analog of the Thin h-Cobordism Theorem

Geometric groups (later also called geometric modules) were introduced by Connell-
Hollingsworth [20]. The theorywas developedmuch further by, among others, Quinn
and Pedersen and is sometimes referred to as controlled algebra. A very pleasant
introduction to this theory is given in [37].

Let R be a ring and G be a group.
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Definition 1.2.5 Let X be a free G-space and p : X → Z be a G-map to a metric
space with an isometric G-action.

(a) A geometric R[G]-module over X is a collection (Mx )x∈X of finitely generated
free R-modules such that the following two conditions are satisfied.

– Mx = Mgx for all x ∈ X , g ∈ G.
– {x ∈ X | Mx �= 0} = G · S0 for some finite subset S0 of X .

(b) Let M and N be geometric R[G]-modules over X . Let f : ⊕
x∈X Mx →⊕

x∈X Nx be an R[G]-linear map (for the obvious R[G]-module structures).
Write fx ′′,x ′ for the composition

Mx ′ �
⊕

x∈X
Mx

f−→
⊕

x∈X
Nx � Nx ′′ .

The support of f is defined as supp f := {(x ′′, x ′) | fx ′′,x ′ �= 0} ⊆ X×X . Let
ε ≥ 0. Then f is said to be ε-controlled over Z if

dZ (p(x ′′), p(x ′)) ≤ ε for all (x ′′, x ′) ∈ supp f.

(c) Let M be a geometric R[G]-module over X . Let f : ⊕
x∈X Mx → ⊕

x∈X Mx

be an R[G]-automorphism. Then f is said to be an ε-automorphism over Z if
both f and f −1 are ε-controlled over Z .

Remark 1.2.6 Geometric R[G]-modules over X are finitely generated free R[G]-
modules with an additional structure, namely an G-equivariant decomposition into
R-modules indexed by points in X . This additional structure is not used to change the
notion of morphisms which are still R[G]-linear maps. But this structure provides
an additional point of view for R[G]-linear maps: the set of morphisms between two
geometric R[G]-modules now carries a filtration by control.

A good (and very simple) analog is the following. Consider finitely generated
free R-modules. An additional structure one might be interested in are bases for
such modules. This additional information allows us to view R-linear maps between
them as matrices.

Controlled algebra is really not much more than working with (infinite) matrices
whose index set is a (metric) space. Nevertheless this theory is very useful and
flexible.

It is a central theme in controlled topology that sufficiently controlled obstructions
(for example Whitehead torsion) are trivial. Another related theme is that assembly
maps can be constructed as forget-control maps. In this paper we will use a variation
of this theme for K1 of group rings over arbitrary rings. Before we can state it we
briefly fix some conventions for simplicial complexes.

Convention 1.2.1 Let F be a family of subgroups of G. By a simplicial (G,F )-
complex we shall mean a simplicial complex E with a simplicial G-action whose
isotropy groups Gx = {g ∈ G | g · x = x} belong toF for all x ∈ E.
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Convention 1.2.2 We will always use the l1-metric on simplicial complexes. Let
Z (0) be the vertex set of the simplicial complex Z. Then every element z ∈ Z can be
uniquely written as z = ∑

v∈Z (0) zv · v where zv ∈ [0, 1], all but finitely many zv are
zero and

∑
v∈Z (0) zv = 1. The l1-metric on Z is given by

d1
Z (z, z′) =

∑

v∈V
|zv − z′

v|.

Remark 1.2.7 If E is a simplicial complex with a simplicial G-action such that
the isotropy groups Gv belong to F for all vertices v ∈ E (0) of E , then E is a
simplicial (G, VF )-complex, where VF consists of all subgroups H of G that
admit a subgroup of finite index that belongs toF .

Theorem 1.2.8 (Algebraic thin h-cobordism theorem) Given a natural number N,
there is εN > 0 such that the following holds: Let

(a) Z be a simplicial (G,F )-complex of dimension at most N ,
(b) p : X → Z be a G-map, where X is a free G-space,
(c) M be a geometric R[G]-module over X,
(d) f : M → M be an εN -automorphism over Z (with respect to the l1-metric on Z).

Then the K1-class [ f ] of f belongs to the image of the assembly map

αF : HG
1 (EFG; KR) → K1(R[G]).

Remark 1.2.9 I called Theorem 1.2.8 the algebraic thin h-cobordism theorem here,
because it can be used to prove the thin h-cobordism theorem. Very roughly, this
works as follows. Let W be an ε-thin h-cobordism over M . Let G = π1M = π1W .
TheWhitehead torsion ofW can be constructed using the singular chain complexes of
the universal covers W̃ and M̃ . This realizes theWhitehead torsion τW ∈ Wh(G)ofW
by an ε̃-automorphism fW over M̃ , i.e. [ fW ]maps to τW under K1(Z[G]) → Wh(G).
Moreover, ε̃ can be explicitly bounded in terms of ε, such that ε̃ → 0 as ε → 0.
Because M̃ is a freeG = π1M-space it follows fromTheorem1.2.8 that [ fW ] belongs
to the image of the assembly map α : HG

1 (EG, KZ) → K1(Z[G]). But Wh(G) is
the cokernel of α and therefore τW = 0. This reduces the thin h-cobordism theorem
to the s-cobordism theorem.

I believe that—at least in spirit—this outline is very close to Quinn’s proof in [39].

Remark 1.2.10 If f : M → M ′ is ε-controlled over Z and f ′ : M ′ → M ′′ is
ε′-controlled over Z , then their composition f ′ ◦ f is ε + ε′-controlled. In particu-
lar, there is no category whose objects are geometric modules and whose morphisms
are ε-controlled for fixed (small) ε. However, there are very elegant substitutes for
this ill-defined category. These are built by considering a variant of the theory over
an open cone over Z and taking a quotient category. In this quotient category every
morphisms has for every ε > 0 an ε-controlled representative. Pedersen–Weibel [38]
used this to construct homology of a space E with coefficients in the K -theory spec-
trum as the K -theory of an additive category. Similar constructions can be used to
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describe the assembly maps as forget-control maps [2, 17]. This also leads to a cat-
egory (called the obstruction category in [9]), whose K -theory describes the fiber
of the assembly map. A minor drawback of these constructions is that they usually
involve a dimension shift.

A very simple version of such a construction is discussed at the end of this section.
See in particular Theorem 1.2.18.

Remark 1.2.11 It is not hard to deduce Theorem 1.2.8 from [6, Theorem5.3]. The
latter result is a corresponding result for the obstruction category mentioned in
Remark 1.2.10. In fact this result about the obstruction is stronger and can be
used to prove that the assembly map is an isomorphism and not just surjective, see
[6, Theorem5.2]. I have elected to state the weaker Theorem 1.2.8 because it is much
easier to state, but still grasps the heart of the matter. On the other hand, I think it is
not at all easier to prove Theorem 1.2.8 than to prove the corresponding statement
for the obstruction category. (The result in [6] deals with chain complexes, but this
is not an essential difference.)

Remark 1.2.12 Results like Theorem 1.2.8 are very useful to prove the Farrell–Jones
Conjecture.But it is not clear tome, that it really provides the best possible description
of the image of the assembly map. For g ∈ G we know that [g] lies in the image of
the assembly map. But its most natural representative (namely the isomorphism of
R[G] given by right multiplication by g) is not ε-controlled for small ε.

It may be beneficial to find other, maybe more algebraic and less geometric,
characterizations of the image of the assembly map. But I do not know how to
approach this.

Remark 1.2.13 The use of the l1-metric in Theorem 1.2.8 is of no particular impor-
tance. In order for εN to only depend on N and not on Z , one has to commit to some
canonical metric.

Remark 1.2.14 IfF is closed under finite index supergroups, i.e., ifF = VF then
there is no loss of generality in assuming that Z is the N -skeleton of the model
for EFG discussed in Example 1.1.2. This holds because there is always a G-map
Z (0) → S := ∐

F∈F G/F and this map extends to a simplicial map Z → Δ(S)(N ).
Barycentric subdivision only changes the metric on the N -skeleton in a controlled
(depending on N ) way.

Remark 1.2.15 There is also a converse to Theorem 1.2.8. If a ∈ K1(R[G]) lies in
the image of the assembly map αF then there is some N such that it can for any
ε > 0 be realized by an ε-automorphism over an N -dimensional simplicial complex
Z with a simplicial G-action all whose isotropy groups belong toF . The simplicial
complex can be taken to be the N -skeleton of a simplicial complex model for EFG.

This is a consequence of the description of the assembly map as a forget-control
map as for example in [2, Corollary 6.3].

Remark 1.2.16 It is not hard to extend the theory of geometric R[G]-modules from
rings to additive categories. In this case one considers collections (Ax )x∈X where each
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Ax is an object from A . In fact [6, Theorem 5.3], which implies Theorem 1.2.8, is
formulated using additive categories as coefficients.

Remark 1.2.17 Results for K1 often imply results for Ki , i ≤ 0, using suspension
rings. For a ring R, there is a suspension ring ΣR with the property that Ki (R) =
Ki+1(ΣR) [44]. This construction can be arranged to be compatible with group
rings: Σ(R[G]) = (ΣR)[G]. A consequence of this is that for a fixed group G
the surjectivity of αF : HG

1 (EFG; KR) → K1(R[G]) for all rings R implies the
surjectivity of αF for all i ≤ 1, compare [2, Corollary7.3].

Because of this trick there is no need for a version of Theorem 1.2.8 for Ki , i ≤ 0.

Higher K-Theory

We end this section by a brief discussion of a version of Theorem 1.2.8 for higher
K -theory. Because there is no good concrete description of elements in higher K -
theory it will use slightly more abstract language.

Let pn : Xn → Zn be a sequence of G-maps where each Xn is a free G-space
and each Zn is a simplicial (G,F )-complex of dimension N . Define a category C
as follows. Objects of C are sequences (Mn)n∈N where for each n, Mn is a geo-
metric R[G]-module over Xn . A morphism (Mn)n∈N → (Nn)n∈N in C is given by a
sequence ( fn)n∈N of R[G]-linear maps fn : ⊕

x∈Xn
(Mn)x → ⊕

x∈Xn
(Nn)x satisfy-

ing the following condition: there is α > 0 such that for each n, fn is α
n -controlled

over Zn . For each k ∈ N,
(Mn)n∈N �→

⊕

x∈Xk

(Mk)x

defines a functor πk from C to the category of finitely generated free R[G]-modules.
The following is a variation of [14, Corollary4.3]. It can be proven using [9, Theo-
rem7.2].

Theorem 1.2.18 Let a ∈ K∗(R[G]). Suppose that there is A ∈ K∗(C ) such that for
all k

(πk)∗(A) = a.

Then a belongs to the image of αF : HG∗ (EFG; KR) → K∗(R[G]).

1.3 Conditions that Imply the Farrell–Jones Conjecture

In [6, 9] the Farrell–Jones Conjecture is proven for hyperbolic and CAT(0)-groups.
Both papers take a somewhat axiomatic point of view. They both contain careful (and
somewhat lengthy) descriptions of conditions on groups that imply the Farrell–Jones
conjecture. The conditions in the two papers are closely related to each other. A group
satisfying them is said to be transfer reducible over a given family of subgroups
in [6]. Further variants of these conditions are introduced in [11, 45]. The existence
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of all these different versions of these conditions seem to me to suggest that we
have not found the ideal formulation of them yet. The notion of transfer reducible
groups (and all its variations) can be viewed as an axiomatization of the work of
Farrell–Jones using the geodesic flow that began with [23]. Somewhat different
conditions—related to work of Farrell–Hsiang [22]—are discussed in [5].

Transfer Reducible Groups—Strict Version

Let R be a ring and G be a group.

Definition 1.3.1 An N -transfer space X is a compact contractible metric space such
that the following holds.

For any δ > 0 there exists a simplicial complex K of dimension at most N and
continuousmaps and homotopies i : X → K , p : K → X , and H : p ◦ i → idX such
that for any x ∈ X the diameter of {H(t, x) | t ∈ [0, 1]} is at most δ.

Example 1.3.2 Let T be a locally finite simplicial tree. The compactification T of
T by equivalence classes of geodesic rays is a 1-transfer space.

Theorem A Suppose that G is finitely generated by S. Let F be a family of sub-
groups of G. Assume that there is N ∈ N such that for any ε > 0 there are

(a) an N-transfer space X equipped with a G-action,
(b) a simplicial (G,F )-complex E of dimension at most N ,
(c) a map f : X → E that is G-equivariant up to ε: d1( f (s · x), s · f (x)) ≤ ε for

all s ∈ S, x ∈ X.

Then αF : HG∗ (EFG; KR) → K∗(RG) is an isomorphism.

Remark 1.3.3 It follows from [8] that Theorem A (with F the family of virtually
cyclic subgroups VCyc) applies to hyperbolic groups.

Example 1.3.4 Let G be a group and K be a finite contractible simplicial com-
plex with a simplicial G-action. Then for the family F := FK the assembly map
αF : HG∗ (EFG; KR) → K∗(RG) is an isomorphism. This follows fromTheoremA
by setting N := dim K and X := K , E := K , f := idK (for all ε > 0). Since K is
finite, the group of simplicial automorphisms of K is also finite. It follow that for all
x ∈ K the isotropy group Gx has finite index in G.

The assumptions of TheoremA should be viewed as a weakening of this example.
The properties of K are reflected in requirements on X or on E and the existence of
the map f yields a strong relationship between X and E .

Remark 1.3.5 Rufus Willet and Guoliang Yu pointed out that the assumption of
Theorem A implies that the group G has finite asymptotic dimension, provided
there is a uniform bound on the asymptotic dimension of groups in F . The latter
assumptions is of course satisfied for the family of virtually cyclic groups VCyc.

Remark 1.3.6 Martin Bridson pointed out that the assumptions of Theorem A are
formally very similar to the concept of amenability for actions on compact spaces. The
main difference is that in the latter context E is replaced by the (infinite dimensional)
space of probability measures on G.
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Remark 1.3.7 Theorem A is a minor reformulation of [9, Theorem1.1]. In this
reference instead of the existence of f the existence of certain covers U of G×X
are postulated. But the first step in the proof is to use a partition of unity to construct
a G-map from G×X to the nerve |U | of U . Under the assumptions formulated in
Theorem A this map is simply (g, x) �→ g · f (g−1x).

Avoiding the open covers makes the theorem easier to state, but there is no real
mathematical difference.

Remark 1.3.8 The proof of TheoremA in [9] really shows a little bitmore: there isM
(depending on N ) such that the restriction of αF to HG∗ (EFG(M); KR) is surjective.
For arbitrary groups and rings with non-trivial K -theory in infinitely many negative
degrees there will be no such M . It is reasonable to expect that groups satisfying the
assumptions of Theorem A will also admit a finite dimensional model for the space
EFG.

Remark 1.3.9 Let E be a simplicial complex of dimension N . Let g be a simplicial
automorphism of E . Let x = ∑

v∈E (0) xv · v be a point of E . Let supp x := {v ∈ E (0) |
xv �= 0}. It is a disjoint union of the sets

Px := {v ∈ supp x | ∀n ∈ N : gn ∈ supp x},
Dx := {v ∈ supp x | ∃n ∈ N : gn /∈ supp x}.

Observe that for v ∈ Dx , we have d1(x, gx) ≥ xv. Assume now that d1(x, gx) <
1

N+1 . As
∑

v xv = 1 there is a vertex v with v ≥ 1
N+1 . Such a vertex v belongs then

to Px and it follows that {gnv | n ∈ N} is finite and spans a simplex of E whose
barycenter is fixed by g.

Assume now that f : X → E is as in assumption (c) of Theorem A. If Gx is
the isotropy group for x ∈ X (and if Gx is finitely generated by Sx say) then if ε is
sufficiently small it follows that d1( f (x), g f (x)) < 1

N+1 . The previous observation
implies then Gx ∈ F .

On the other hand one can apply the Lefschetz fixed point theorem to the simplicial
dominations to X and finds for fixed g ∈ G and each ε > 0 a point xε ∈ X such that
d(gxε, xε) ≤ ε. The compactness of X implies that there is a fixed point in X for
each element of G. Altogether, it follows thatF will necessarily contain the family
of cyclic subgroups.

Remark 1.3.10 Frank Quinn has shown that one can replace the family of virtually
cyclic groups in the Farrell–Jones Conjecture by the family of (possibly infinite)
hyper-elementary groups [40].

It is an interesting question whether one can (maybe using Smith theory) build
on the argument from Remark 1.3.9 to conclude that in order for the assumptions of
Theorem A to be satisfied it is necessary for F to contain this family of (possibly
infinite) hyper-elementary groups.

Remark 1.3.11 One can ask for which N -transfer spaces X with a G-action it is
possible to find for all ε > 0 a map f : X → E as in assumptions (b) and (c).
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Remark 1.3.9 shows that a necessary condition is Gx ∈ F for all x ∈ X , but it is
not clear to me that this condition is not sufficient.

In light of the observation of Willet and Yu from Remark 1.3.5 a related question
is whether there is a group G of infinite asymptotic dimension for which there is an
N -transfer space with a G-action such that the asymptotic dimension of Gx , x ∈ X
is uniformly bounded.

Remark 1.3.12 The reader is encouraged to try to check that finitely generated free
groups satisfy the assumptions of TheoremAwith respect to the family of (virtually)
cyclic subgroups. In this case one can use the compactification T̄ of the usual tree by
equivalence classes of geodesic rays as the transfer space. I am keen to see a proof
of this that is easier than the one coming out of [8] and avoids flow spaces. Maybe a
clever application of Zorn’s Lemma could be useful here.

I am not completely sure whether or not it is possible to write down the maps
f : T̄ → E in assumption (c) explicitly for finitely generated free groups.

Transfer Reducible Groups—Homotopy Version

Let R be a ring.

Definition 1.3.13 Let G = 〈 S | R 〉 be a finitely presented group. A homotopy
action of G on a space X is given by

• for all s ∈ S ∪ S−1 maps ϕs : X → X ,
• for all r = s1 · s2 · · · sl ∈ R homotopies Hr : ϕs1 ◦ ϕs2 ◦ · · · ◦ ϕsl → idX

Theorem B Suppose that G = 〈 S | R 〉 is a finitely presented group. Let F be a
family of subgroups of G. Assume that there is N ∈ N such that for any ε > 0 there
are

(a) an N-transfer space X equipped with a homotopy G-action (ϕ, H),
(b) a simplicial (G,F )-complex E of dimension at most N ,
(c) a map f : X → E that is G-equivariant up to ε: for all x ∈ X, s ∈ S ∪ S−1,

r ∈ R

– d1( f (ϕs(x)), s · f (x)) ≤ ε,
– {Hr (t, x) | t ∈ [0, 1]} has diameter at most ε.

Then αF : HG
i (EFG; KR) → Ki (RG) is an isomorphism for i ≤ 0 and surjective

for i = 1.

Remark 1.3.14 It follows from [7] that TheoremB applies to CAT(0)-groups (where
F is the family of virtually cyclic groups). We will sketch the proof of this fact in
Sect. 1.5.

Wegner introduced the notion of a strong homotopy action and proved a version
of Theorem Bwhere the conclusion is that αF is an isomorphism in all degrees [45].
This result also applies to CAT(0)-groups.
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Remark 1.3.15 Theorem B is a reformulation of [6, Theorem1.1] (just as in
Remark 1.3.7).

The assumptions of Theorem A feel much cleaner than the assumptions of
Theorem B. It would be very interesting if one could show, maybe using some
kind of limit that promotes a (strong) homotopy action to an actual action, such that
the latter (or Wegner’s variation of them) do imply the former.

In light of Remark 1.3.5 this would imply in particular that CAT(0)-groups have
finite asymptotic dimension and is therefore probably a difficult (or impossible) task.

Remark 1.3.16 I do not know whether semi-direct products of the form Z
n

� Z

satisfy the assumptions of Theorem B, for example if F is the family of abelian
groups. On the other hand the Farrell–Jones Conjecture is known to hold for such
groups and more general for virtually poly-cyclic groups [3].

Remark 1.3.17 Remark 1.3.8 also applies to Theorem B.

Remark 1.3.18 There is an L-theory version of TheoremB, see [6, Theorem 1.1(ii)].
There, the conclusion is that the assembly map αF2 is an isomorphism in L-theory
where F2 is the family of subgroups that contain a member of F as a subgroup of
index at most 2. Of course VCyc = VCyc2. There is no restriction on the degree i in
this L-theoretic version and so this also provides an L-theory version of Theorem A.

Farrell–Hsiang Groups

Definition 1.3.19 A finite group H is said to be hyper-elementary if there exists a
short exact sequence

C � H � P

where C is a cyclic group and the order of P is a prime power.

Quinn generalized this definition to infinite groups by allowing the cyclic group to
be infinite [40].

Hyper-elementary groups play a special role in K -theory because of the following
result of Swan [43]. For a group G we denote by Sw(G) the Swan group of G. It can
be defined as K0 of the exact category of Z[G]-modules that are finitely generated
free as Z-modules. This group encodes information about transfer maps in algebraic
K -theory.

Theorem 1.3.20 (Swan) For a finite group F the induction maps combine to a
surjective map ⊕

H∈H (F)

Sw(H) � Sw(F),

where H (F) denotes the family of hyper-elementary subgroups of F.

Let R be a ring and G be a group.



1 On Proofs of the Farrell–Jones Conjecture 15

Theorem C Suppose that G is finitely generated by S. Assume that there is N ∈ N

such that for any ε > 0 there are

(a) a group homomorphism π : G → F where F is finite,
(b) a simplicial (G,F )-complex E of dimension at most N
(c) a map f : ∐

H∈H (F) G/π−1(H) → E that is G-equivariant up to ε: d1( f (sx),
s · f (x)) ≤ ε for all s ∈ S, x ∈ ∐

H∈H (F) G/π−1(H).

Then αF : HG∗ (EFG; KR) → K∗(RG) is an isomorphism.

Remark 1.3.21 Theorem C is proven in [5] building on work of Farrell–Hsiang [22].
The main difference to Theorems A and B is that the transfer space X is replaced by
the discrete space

∐
H∈H (F) G/π−1(H). It is Swan’s Theorem1.3.20 that replaces

the contractibility of X .
I have no conceptual understanding of Swan’s theorem. For this reason TheoremC

is tomenot as conceptually satisfying asTheoremA.Moreover, I expect that a version
of Theorem C for Waldhausen’s A-theory will need a larger family than the family
of hyper-elementary subgroups.

Remark 1.3.22 Groups satisfying the assumption of Theorem C are called Farrell–
Hsiang groups with respect to F in [5].

Remark 1.3.23 Theorem C can be used to prove the Farrell–Jones Conjecture for
virtually poly-cyclic groups [3, Sects. 3 and 4]. We will discuss some semi-direct
products of the form Z

n
� Z in Sect. 1.6.

Remark 1.3.24 Remark 1.3.8 also applies to Theorem C.

Remark 1.3.25 Theorem C holds without change in L-theory as well [5].

Remark 1.3.26 It would be good to find a natural commonweakening of the assump-
tions in Theorems A, B and C that still implies the Farrell–Jones Conjecture. Ideally
such a formulation should have similar inheritance properties as the Farrell–Jones
Conjecture, see Propositions 1.1.7 and 1.1.11.

Injectivity

It is interesting to note that injectivity of the assembly map α{1} or αFin is known for
seeminglymuchbigger classes of groups, than the class of groups known to satisfy the
Farrell–Jones Conjecture. Rational injectivity of the L-theoretic assemblymapα{1} is
of particular interest, as it implies Novikov’s conjecture on the homotopy invariance
of higher signatures. Yu [46] proved the Novikov conjecture for all groups admitting
a uniform embedding into a Hilbert-space. This class of groups contains all groups
of finite asymptotic dimension. Integral injectivity of the assembly map α{1} for
K - and L-theory is known for all groups that admit a finite CW -complex as a model
for BG and are of finite decomposition complexity [30, 41]. The latter property is a
generalization of finite asymptotic dimension. Rational injectivity of the K -theoretic
assembly map α{1} for the ring Z is proven by Bökstedt–Hsiang–Madsen [15] for
all groups G satisfying the following homological finiteness condition: for all n the
rational group-homology H∗(G; Q) is finite dimensional.
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1.4 On the Proof of Theorem A

Using the results from controlled topology discussed in Sect. 1.2 we will outline a
proof of the surjectivity of

αF : HG
1 (EFG; KR) → K1(R[G])

under the assumptions of Theorem A.

Step 1: Preparations

Let G be a finitely generated group and F be a family of subgroups of G.
Let N ∈ N be the number appearing in Theorem A. Let a ∈ K1(R[G]). Then
a = [ψ]whereψ : R[G]n → R[G]n is an R[G]-right linear automorphism.Wewrite
R[G]n = Z[G]⊗ZRn . There is a finite subset T ⊆ G and there are R-linear maps
ψg : Rn → Rn , ψ−1

g : Rn → Rn , g ∈ T such that

ψ(h⊗v) =
∑

g∈T
hg−1⊗ψg(v) and ψ−1(h⊗v) =

∑

g∈T
hg−1⊗ψ−1

g(v).

Because of Theorem 1.2.8 it suffices to find

• a G-space Y ,
• a (G,F )-complex E of dimension at most N ,
• a G-map Y → E ,
• a geometric R[G]-module M over Y ,
• an εN -automorphism over E , ϕ : M → M ,

such that [ϕ] = a ∈ K1(R[G]). Here εN is the number depending on N , whose
existence is asserted in Theorem 1.2.8.

Let L be a (large) number. We will later specify L; it will only depend on N . From
the assumption of Theorem A we easily deduce that there are

(a) an N -transfer space X equipped with a G-action,
(b) a simplicial (G,F )-complex E of dimension at most N ,
(c) a map f : X → E such that d1( f (g · x), g · f (x)) ≤ εN/2 for all x ∈ X and all

g ∈ G that can be written as g = g1 . . . gL with g1, . . . , gL ∈ T .

By compactness of X there is δ0 > 0 such that d1( f (x), f (x ′)) ≤ εN/2 for all x, x ′ ∈
X with d(x, x ′) ≤ Lδ0. We will use Y := G×X with the G-action defined by g ·
(h, x) := (gh, x). We will also use the G-map G×X → E , (g, x) �→ g f (x). The
action of G on X will be used later.

Step 2: A Chain Complex Over X

To simplify the discussion let us assume that for X the maps i and p appearing in
Definition 1.3.1 can be arranged to be δ-homotopy equivalences. This means that in
addition to H there is also a homotopy H ′ : i ◦ p → idK such that for any y ∈ K the
diameter of {H ′(t, y) | t ∈ [0, 1]} with respect to the l1-metric on K is at most δ.
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Let C∗ be the simplicial chain complex of the l-fold simplicial subdivision of K .
Using p : K → X we can view C∗ as a chain complex of geometric Z-modules over
X . If we choose l sufficiently large, then we can arrange that the boundary maps
∂C∗ of C∗ are δ0-controlled over X . Moreover, using the action of G on X and a
δ-homotopy equivalence between K and X (for 0 < δ � δ0) and enlarging l we can
produce chain maps ϕg : C∗ → C∗, g ∈ G, chain homotopies Hg,h : ϕg ◦ ϕh → ϕgh

satisfying the following control conditions

• if g ∈ T and (x ′, x) ∈ suppϕg then d(x ′, gx) ≤ δ0 (recall that we view C∗ as a
chain complex over X ),

• if g, h ∈ T and (x ′, x) ∈ supp Hg,h then d(x ′, ghx) ≤ δ0.

Remark 1.4.1 Ifwe drop the additional assumption on X (i.e., if we no longer assume
the existence of the homotopy H ′), then it is only possible to construct the chain
complex C∗ in the idempotent completion of geometric Z-modules over X . This is
a technical but—I think—not very important point.

Remark 1.4.2 A construction very similar to this step 2 is carried out in great detail
in [6, Sect. 8].

Step 3: Transfer to a Chain Homotopy Equivalence

Recall our automorphism ψ of R[G]n = Z[G]⊗ZRn . We will now replace the
R-module Rn by the R-chain complex C∗⊗ZRn to obtain the chain complex
D∗ := Z[G]⊗ZC∗⊗ZRn . AsC∗ is a chain complex of geometric Z-modules over X ,
D∗ is naturally a geometric R[G]-module over G×X . Here (D∗)h,x = {h⊗w⊗v |
v ∈ Rn,w ∈ (C∗)x } for h ∈ G, x ∈ X . Recall that we use the left action defined
by g · (h, x) = (gh, x) on G×X . We can now use the data from Step 2 to trans-
fer ψ to a chain homotopy equivalence Ψ = ∑

g∈T g⊗ϕg⊗ψg : D∗ → D∗. Simi-
larly, there is a chain homotopy inverse Ψ ′ for Ψ and there are chain homotopies
H : Ψ ◦ Ψ ′ → idD∗ and H ′ : Ψ ′ ◦ Ψ → idD∗ . In more explicit formulas these are
defined by

Ψ (h⊗w⊗v) =
∑

g∈T
hg−1⊗ϕg(w)⊗ψg(v),

Ψ ′(h⊗w⊗v) =
∑

g∈T
hg−1⊗ϕg(w)⊗ψ−1

g(v),

H (h⊗w⊗v) =
∑

g,g′∈T
h(gg′)−1⊗Hg,g′(w)⊗ψg ◦ ψ−1

g′(v),

H ′(h⊗w⊗v) =
∑

g,g′∈T
h(gg′)−1⊗Hg,g′(w)⊗ψ−1

g ◦ ψg′(v),

for h ∈ G, w ∈ C∗, v ∈ Rn .
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Digression on Torsion

Let S be a ring. If Φ is a self-homotopy equivalence of a bounded chain complex
D∗ of finitely generated free S-modules then its self-torsion τ(Φ) ∈ K1(S) is the
K -theory class of an automorphism τ̃ (Φ) of

⊕
n∈Z

Dn . There is an explicit formula
for τ̃ (Φ) that involves the boundary map of D∗, Φ, a chain homotopy inverse Φ ′ for
Φ and chain homotopies Φ ◦ Φ ′ → idD∗ , Φ

′ ◦ Φ → idD∗ . The ingredients for such
a formula can be found for example in [2, Sect. 12.1]. A key property is that given a
commutative diagram

D∗ D∗

D′∗ D′∗

Φ1

q q

Φ2

where Φ1, Φ2 and q are chain homotopy equivalences one has τ(Φ1) = τ(Φ2) ∈
K1(S).

Remark 1.4.3 It is possible to formulate Theorem 1.2.8 directly for self-chain homo-
topy equivalences of chain complexes of geometric modules of bounded dimension.
Then the discussion of torsion can be avoided here. This is the point of view taken
in [6, Theorem 5.3].

Step 4: τ(Ψ ) = a

Because X is contractible, the augmentationmapC∗ → Z induces a homotopy equiv-
alence

q : D∗ = Z[G]⊗ZC∗⊗ZR
n → Z[G]⊗ZZ⊗ZR

n = Z[G]⊗ZR
n.

Moreover, q ◦ Ψ = ψ ◦ q. It follows that

a = [ψ] = τ(ψ) = τ(Ψ ) = [τ̃ (Ψ )]

Step 5: control of τ̃ (Ψ )

In order to understand the support of τ̃ (Ψ ) we first need to understand the support of
its building blocks. If ((h′, x ′), (h, x)) ∈ (G×X)2 belongs to the support of ∂D∗ , then
h′ = h and d(x ′, x) ≤ δ0. If ((h′, x ′), (h, x)) belongs to the support of Ψ or of its
homotopy inverse Ψ ′, then there is g ∈ T such that h′ = hg−1 and d(x ′, gx) ≤ δ0.
If ((h′, x ′), (h, x)) belongs to the support of the chain homotopy H or H ′ then
there are g, g′ ∈ T such that h′ = h(gg′)−1 and d(x ′, gg′x) ≤ δ0. From the explicit
formula for τ̃ (Ψ ) one can then read off that there is a number K , depending only
on the dimension of D∗ (which is in our case bounded by N ), such that the support
of τ̃ (Ψ ) satisfies the following condition: if ((h′, x ′), (h, x)) ∈ supp τ̃ (Ψ ) then there
are g1, . . . , gK ∈ T such that

h′ = h(g1. . .gK )−1 and d(x ′, g1. . .gK x)≤K δ0.

Note that we specified K in this step; note also that K does only depend on N .
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Remark 1.4.4 The actual value of K is of course not important. It is not very large;
for example K := 10N works—I think.

Step 6: Applying f

Using the map f : X → E we define the G-map F : G×X → E by F(h, x) :=
h f (x). Combining the estimates from the end of step 2 and the analysis of supp(τ̃ (Ψ ))

it is not hard to see that τ̃ (Ψ ) is an εN -automorphism over E (with respect to F).
This finishes the discussion of the surjectivity of αF : HG

1 (EFG; KR) →
K1(R[G]) under the assumptions of Theorem A. Surjectivity of this map under the
assumptions of Theorem B follows from a very similar argument; mostly step 2 is
slightly more complicated. For Theorem C the transfer can no longer be constructed
using a chain complex associated to a space; instead Swan’s Theorem 1.3.20 is used
to construct a transfer. Otherwise the proof is again very similar.

L-Theory Transfer

Theproof of the L-theoryversionofTheoremsAandB follows the sameoutline.Now
elements in L-theory are given by quadratic forms. The analog of chain homotopy
self-equivalences in L-theory are ultra-quadratic Poincaré complexes [42]. These are
chain complex versions of quadratic forms. The main difference is that to construct
a transfer it is no longer sufficient to have just the chain complex C , in addition
we need a symmetric structure on this chain complex. Moreover, this symmetric
structure needs to be controlled (just as the boundary map ∂ is controlled). While
there may be no such symmetric structure onC , there is a symmetric structure on the
product of C with its dual D := C⊗C−∗. This symmetric structure is given (up to
signs) by 〈a⊗α, b⊗β〉 = α(b)β(a) and turns out to be suitably controlled. This is
the only significant change from the proof in K -theory to the proof in L-theory.

Transfer for Higher K-Theory

We end this section with a very informal discussion of one aspect of the proof of
Theorem A for higher K -theory. Again, we focus on surjectivity. In this case we use
Theorem 1.2.18 in place of Theorem 1.2.8. Thus we need to produce an element in
K∗(C ). Recall that objects of C are sequences (Mν)ν∈N of geometric R[G]-modules
and that morphisms are sequences of R[G]-linear maps that becomemore controlled
with ν → ∞. The general idea is to apply the transfer fromStep 3 to each ν to produce
a functor from R[G]-modules to C . The problem is, however, that the construction
from Step 3 is not functorial. The reason for this in turn is that the group G only acts
up to homotopy on the chain complex C∗. The remedy for this failure is to use the
singular chain complex of Cs∗ing(X) in place of C∗. It is no longer finite, but it is
homotopy finite, which is finite enough. For the control consideration from Step 5 it
was important, that the boundary map of C∗ is δ0-controlled. This is no longer true
for Csing∗(X). One might be tempted to use the subcomplex Csing,δ0(X) spanned
by singular simplices in X of diameter ≤ δ0. However, the action of G on X is not
isometric and therefore there is no G-action on Csing,δ0(X). Finally, the solution is
to use Cs∗ing(X) together with its filtration by the subcomplexes (Csing,δ

∗ (X))δ>0.
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Using this idea it is possible to construct a transfer functor from the category of R[G]-
modules to a category c̃hh f dC . The latter is a formal enlargement of theWaldhausen
category chh f dC of homotopy finitely dominated chain complexes over the category
C [12, Appendix]. Both the higher K -theory of chh f dC and of c̃hh f dC coincide
with the higher K -theory of C . Similar constructions are used in [9, 45].

1.5 Flow Spaces

Convention 1.5.1 A CAT(0)-group is a group that admits a cocompact, proper and
isometric action on a finite dimensional CAT(0)-space.

The goal of this section is to outline the proof of the fact [7] that CAT(0)-groups
satisfy the assumptions of Theorem B. Note that CAT(0)-groups are finitely pre-
sentable [16, TheoremIII.Γ .1.1(1), p. 439].

Proposition 1.5.1 Let G be aCAT(0)-group. Exhibit G as a finitely presented group
〈S | R〉. Then there is N ∈ N such that for any ε > 0 there are

(a) an N-transfer space X equipped with a homotopy G-action (ϕ, H),
(b) a simplicial (G,VCyc)-complex E of dimension at most N ,
(c) a map f : X → E that is G-equivariant up to ε: for all x ∈ X, s ∈ S ∪ S−1,

r ∈ R

– d1( f (ϕs(x)), s · f (x)) ≤ ε,
– {Hr (t, x) | t ∈ [0, 1]} has diameter at most ε.

An (α, ε)-Version of the Assumptions of Theorem B

Let G be a group.

Definition 1.5.2 An N -flow space FS forG is a metric space with a continuous flow
φ : FS×R → FS and an isometric proper action of G such that

(a) the flow is G-equivariant: φt (gx) = gφt(x) for all x ∈ X , t ∈ R and g ∈ G;
(b) FS \ {x | φt (x) = x for all t ∈ R} is locally connected and has covering dimen-

sion at most N .

Notation 1.5.1 Let α, ε ≥ 0. For x, y ∈ FS we write

dfol
FS(x, y) ≤ (α, ε)

if there is t ∈ [−α, α] such that d(φt (x), y) ≤ ε.

Of course, ε will usually be a small number while α will often be much larger.

Proposition 1.5.3 Let G be aCAT(0)-group. Exhibit G as a finitely presented group
〈S | R〉. Then there exists N ∈ N and a cocompact N-flow space for G and α > 0
such that for all ε > 0 there are
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(a) an N-transfer space X equipped with a homotopy G-action (ϕ, H),
(b) a map f : X → FS that is G-equivariant up to (α, ε): for all x ∈ FS, s ∈ S ∪

S−1, r ∈ R, t ∈ [0, 1]
– dfol

FS( f (ϕs(x)), s · f (x)) ≤ (α, ε),
– dfol

FS( f (Hr (t, x)), f (x)) ≤ (α, ε).

The proof of Proposition 1.5.3 will be discussed in a later subsection. The key
ingredient that allows to deduce Proposition 1.5.1 from Proposition 1.5.3 are the long
and thin covers for flow spaces from [8], that in turn generalize the long and thin cell
structures of Farrell–Jones [23, Sect. 7].

Definition 1.5.4 Let R > 0. A collection U of open subsets of FS is said to be an
R-long cover of A ⊆ FS if for all x ∈ A there is U ∈ U such that

φ[−R,R](x) := {φt (x) | t ∈ [−R, R]} ⊆ U.

Notation 1.5.2 (Periodic orbits) Let γ > 0. Write FS≤γ for the subset of FS consist-
ing of all points x for which there are 0 < τ ≤ γ and g ∈ G such that φτ (x) = gx.

Theorem 1.5.5 (Existence of long thin covers) Let FS be a cocompact N-flow space
for G. Then there is Ñ such that for all R > 0 there exists γ > 0 and a collection
U of open subsets of FS such that

(a) dimU ≤ Ñ : any point of FS is contained in at most Ñ + 1 members of U ,
(b) U is an R-long cover of FS \ FS≤γ ,
(c) U is G-invariant: for g ∈ G, U ∈ U we have g(U ) ∈ U ,
(d) U has finite isotropy: for all U ∈ U the group GU := {g ∈ G | g(U ) = U } is

finite.

Example 1.5.6 Let G := Z. Consider FS := R with the usual Z-action and the flow
defined byφt (x) := x + t . IfUR is an R-longZ-invariant cover ofR of finite isotropy
then the dimension of UR grows linearly with R.

Theorem 1.5.5 states that this is the only obstruction to the existence of uniformly
finite dimensional arbitrary long G-invariant covers of FS of finite isotropy.

Remark 1.5.7 Theorem 1.5.5 is more or less [8, Theorem1.4], see also [7, Theo-
rem5.6]. The proof depends only on fairly elementary constructions, but is never-
theless very long. (It would be nice to simplify this proof—but I do not know where
to begin.)

In these references in addition an upper bound for the order of finite subgroups
of G is assumed. This assumption is removed in recent (and as of yet unpublished)
work of Adam Mole and Henrik Rüping.

Remark 1.5.8 For the flow spaces, that have been relevant for the Farrell–Jones
conjecture so far, it is possible to extend the cover U from FS \ FS≤γ to all of FS.
The only price one has to pay for this extension is that in assertion (d) one has to
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allow virtually cyclic groups instead of only finite groups. Note that with this change
Example 1.5.6 is no longer problematic; we can simply set UR := {R}.

It is really at this point where the family of virtually cyclic subgroups plays a
special role and appears in proofs of the Farrell–Jones Conjecture.

Remark 1.5.9 In the case of CAT(0) groups the extension of the cover fromFS \ FSγ

to FS is really the most technical part of the arguments in [7].
It would be more satisfying to have a result that provides this extension (after

allowing virtually cyclic groups) for general cocompact flow spaces.

Remark 1.5.10 One may think of Theorem 1.5.5 as a (as of now quite difficult!)
parametrized version of the very easy fact that Z has finite asymptotic dimension.

Sketch of Proof for Proposition 1.5.1 using Proposition 1.5.3

The idea is easy. We produce a map F : FS → E that is suitably contracting along
the flow lines of φ. Then we can compose f : X → FS from Proposition 1.5.3 with
F to produce the required map F ◦ f : X → E .

Let G be a CAT(0)-group. Let ε > 0 be given. Let FS be the cocompact N -flow
space for G from Proposition 1.5.3. As discussed in Remark 1.5.8 there is Ñ such
that for all R > 0 there exists a collection U of open subsets of FS such that

(a) dimU ≤ Ñ ,
(b) U is an R-long cover of FS,
(c) U is G-invariant,
(d) U has virtually cyclic isotropy: for all U ∈ U the group GU := {g ∈ G |

g(U ) = U } is virtually cyclic.

Let now E := |U | be the nerve of the cover U . The vertex set of this simpli-
cial complex is U and we have |U | = {∑U∈U tUU | tU ∈ [0, 1], ∑

U∈U tU =
1 and

⋂
tU �=0U �= ∅}. Note that |U | is a simplicial (G,VCyc)-complex. To con-

struct the desired map F : FS → E we first change the metric on FS. For (large)
Λ > 0 we can define a metric that blows up the metric transversal to the flow φ, and
corresponds to time along flow lines. More precisely,

dΛ(x, y) := inf
{ n∑

i=1

αi + Λεi |∃x = x0, x1, . . . , xn such that

dfol
FS(xi−1, xi ) ≤ (αi , εi ) for i = 1, . . . , n

}

For U ∈ U , x ∈ FS let aU (x) := dΛ(x,FS \U ) and define F : FS → |U | by

F(x) :=
∑

U∈U

aU (x)
∑

V∈U aV (x)
U.

As U is G-invariant, F is G-equivariant. If R > 0 is sufficiently large (depending
only on ε), then there are Λ > 0 and δ > 0 (depending on everything at this point)
such that
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dfol
FS(x, x

′) ≤ (α, δ) =⇒ d1(F(x), F(x ′)) ≤ ε.

(More details for similar calculations can be found in [9, Sect. 4.3, Proposition5.3].)
Thus we can compose with F and conclude that Proposition 1.5.3 implies Proposi-
tion 1.5.1.

The Flow Space for a CAT(0)-Space

This subsection contains an introduction to the flow space for CAT(0)-groups
from [7]. Let Z be a CAT(0)-space.

Definition 1.5.11 A generalized geodesic in Z is a continuous map c : R → Z for
which there exists an interval (c−, c+) such that c|(c−,c+) is a geodesic and c|(−∞,c−)

and c|(c+,+∞) are constant. (Here c− = −∞ and/or c+ = +∞ are allowed.)

Definition 1.5.12 The flow space for Z is the space FS(Z) of all generalized geo-
desics c : R → Z . It is equipped with the metric

dFS(c, c
′) :=

∫

R

d(c(t), c′(t))
2e|t | dt

and the flow
φτ (c)(t) := c(t + τ).

Remark 1.5.13 The fixed point space for the flow FS(Z)R := {c | φt (c) = c
for all t} is via c �→ c(0) canonically isometric to Z .

The flow space FS(Z) is somewhat singular around Z = FS(Z)R. For example
there are well defined maps c �→ c(±∞) from FS(Z) to the bordification [16, Chap.
II.8] Z̄ of Z , but these maps fail to be continuous at Z .

Remark 1.5.14 The metric dFS(c, c′) cares most about d(c(t), c′(t)) for t close to 0.
For example if c(0) = c′(0) thendFS(c, c′) is boundedby

∫ ∞
0

t
et dt . For this reasonone

can think of c(0) asmarking the generalized geodesic c. If c(0) is different from both
c(c−) and c(c+) (equivalently if c− < 0 < c+) then the triple (c(c−), c(0), c(c+))

uniquely determines c.

Remark 1.5.15 An isometric action ofG on Z induces an isometric action on FS(Z)

via (g · c)(t) := g · c(t). If the action of G on Z is in addition cocompact, proper
and Z has dimension at most N , then FS(Z) is a cocompact 3N + 2-flow space for
G in the sense of Definition 1.5.2, see [7, Sect. 2].

For cocompactness it is important that we allowed c− = −∞ and c+ = +∞ in
the definition of generalized geodesics.

Remark 1.5.16 For hyperbolic groups there is a similar flow space constructed by
Mineyev [36]. This space is an essential ingredient for the proof that hyperbolic
groups satisfy the assumptions of Theorem A. Mineyev’s construction motivated the
flow space for CAT(0) groups.
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However, for hyperbolic groups the construction is really much more difficult. A
priori, there is really no local geometry associated to a hyperbolic group, hyperbolic-
ity is just a condition on the large scale geometry andMineyev extracts local informa-
tion from this in the construction of his flow space. In contrast, for a CAT(0)-group
the corresponding CAT(0)-space provides local and global geometry right from the
definition.

Sketch of Proof for Proposition1.5.3

Let Z be a finite dimensional CAT(0)-space with an isometric, cocompact, proper
action of the group G. Let G = 〈S | R′〉 be a finite presentation of G. Pick a base
point x0 ∈ Z . For R > 0 let BR(x0) be the closed ball in Z of radius R around x0.
This will be our transfer space. Let ρR : Z → BR(x0) be the closest point projection.
For x, x ′ ∈ Z , t ∈ [0, 1]we write t �→ (1 − t) · x + t · x ′ for the straight line from x
to x ′ parametrized by constant speed d(x, x ′). For g, h ∈ G, t ∈ [0, 1], x ∈ BR(x0)
let

ϕR
g (x) := ρR(g · x),

HR
g,h(t, x) := ρR((1 − t) · gϕR

h (x) + t · ghx).

Then HR
g,h is a homotopy ϕR

g ◦ ϕR
h → ϕR

gh . This data also specifies a homotopy action
(ϕR, HR) on BR(x0). We will use the map ιR : BR(x0) → FS(Z) where ιR(x) is the
unique generalized geodesic c in Z with c− = 0, c+ = d(x, x0), c(c−) = c(0) = x0
and c(c+) = x , i.e., the generalized geodesic from x0 to x that starts at time 0 at x0.
For T ≥ 0 let f T,R := φT ◦ ιR : BR(x0) → FS(x0). Proposition 1.5.3 follows from
the next Lemma; this will conclude the sketch of proof for Proposition 1.5.3.

Lemma 1.5.17 Let α := maxs∈S d(x0, sx0). For any ε > 0 there are T, R > 0 such
that for all x ∈ FS, s ∈ S ∪ S−1, r ∈ R′, t ∈ [0, 1] we have
• dfol

FS( f
T,R(ϕR

s (x)), s · f T,R(x)) ≤ (α, ε),
• dfol

FS( f
T,R(HR

r (t, x)), f T,R(x)) ≤ (α, ε).

Proof (Sketch of proof)Wewill only discuss the first inequality; the second inequality
involves essentially no additional difficulties.

Let us first visualize the generalized geodesics c := f T,R(ϕR
s (x)) and c′ := s ·

f T,R(x). The generalized geodesic c starts at c(c−) = x0 and ends at c(c+) = ϕR
s (x).

If d(x0, sx) ≤ R, then the endpoint ϕR
s (x) coincides with sx ; otherwise we can

prolong c (as a geodesic) until it hits sx . If T ≤ d(x0, ϕR
s (x) then c(0) is the unique

point on the image of c of distance T from x0, otherwise c(0) = c(c+) = ϕR
s (x) =

ρR(sx). The generalized geodesic c′ starts at c′(c′−) = sx0 and ends at c′(c′−) = sx .
If T ≤ d(sx0, sx), then c′(0) is the unique point on the image of c′ of distance T
from sx0, otherwise c′(0) = c′(c′+) = sx . We draw this as
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sx0

x0

sx

ρR(sx)

c′(0)

c(0)

There are two basic cases to consider.

Case I: d(sx, x0) is small.
Then ρR(sx) = sx , and both c and c′ converge to the constant geodesic at sx with
T → ∞. Consequently dFS(c, c′) is small for large T .

Case II: d(sx, x0) is large.
Then we may have ρR(sx) �= sx . Note that d(ρR(sx), sx) ≤ d(x0, sx0) ≤ α. Let
t := d(c(0), sx) − d(c′(0), sx) ∈ [−α, α]. Using the CAT(0)-condition one can
then check that dFS(φt (c), c′) will be small provided that T , R − T , R

R−T are large.
A more careful analysis of the two cases shows that it is possible to pick R and T

(depending only on ε) such that for any x one of the two cases applies and therefore
dfol
FS(c, c

′) ≤ (α, ε).

Remark 1.5.18 The assumption that the action of G on the CAT(0)-space Z is
cocompact is important for the proof of Proposition 1.5.1, because it implies that
the action of G on the flow space FS(Z) is also cocompact. This in turn is impor-
tant for the construction of R-long covers: Theorem 1.5.5 otherwise only allows the
construction of R-long covers for a cocompact subspace of the flow space.

Nevertheless, there are situations where it is possible to construct R-long covers
for flow spaces that are not cocompact. For example GLn(Z) acts properly and
isometrically but not cocompactly on a CAT(0) space. But it is possible to construct
R-long covers for the corresponding flow space [11]. This uses as an additional input
a construction of Grayson [29] and enforces a larger family of isotropy groups for
the cover. This is the familyFn−1 mentioned in Remark 1.1.9.

There are very general results of Farrell–Jones [26] without a cocompactness
assumption, but I have no good understanding of these methods.

1.6 Z
n

� Z as a Farrell–Hsiang Group

For A ∈ GLn(Z) let Z
n

�A Z be the corresponding semi-direct product. We fix a
generator t ∈ Z. Then for v ∈ Z

n we have t · vt−1 = Av inZ
n

�A Z. The goal of this
section is to outline a proof of the following fact from [3]. Recall that Ab denotes the
family of abelian subgroups. In the case of Z

n
�A Z these are all finitely generated

free abelian.

Proposition 1.6.1 Suppose that no eigenvalue of A over C is a root of unity. Then
the groupZ

n
�A Z is a Farrell–Hsiang group with respect to the familyAb of abelian

groups, i.e., there is N such that for any ε > 0 there are



26 A. Bartels

(a) a group homomorphism π : Z
n

�A Z → F where F is finite,
(b) a simplicial (Zn

�A Z,Ab)-complex E of dimension at most N
(c) a map f : ∐

H∈H (F) Z
n

�A Z/π−1(H) → E that isZ
n

�A Z-equivariant up to
ε: d1( f (sx), s · f (x)) ≤ ε for all s ∈ S, x ∈ ∐

H∈H (F) G/π−1(H).

Here S is any fixed generating set for G.

Remark 1.6.2 The Farrell–Jones Conjecture holds for abelian groups. Thus using
Theorem C and the transitivity principle 1.1.7 we deduce from Proposition 1.6.1 that
the Farrell–Jones Conjecture holds for the group Z

n
�A Z from Proposition 1.6.1.

Finite Quotients of Z
n

�A Z.

We write Z/s for the quotient ring (and underlying cyclic group) Z/sZ. Let As

denote the image of A in GLn(Z/s). Choose r, s ∈ N such that the order |As | of As

in GLn(Z/s) divides r . Then we can form (Z/s)n �As Z/r and there is canonical
surjective group homomorphism

π : Z
n

�A Z � (Z/s)n �As Z/r.

Hyper-Elementary Subgroups of (Z/s)n �As Z/r .

Lemma 1.6.3 Let s = p1 · p2 be the product of two primes. Let r := s · |As |. If H
is a hyper-elementary subgroup of (Z/s)n �As Z/r then there is q ∈ {p1, p2} such
that

(a) π−1(H) ∩ Z
n ⊆ (qZ)n or

(b) the image of π−1(H) under Z
n

�As Z � Z is contained in qZ.

To prove Lemma 1.6.3 we recall [3, Lemma 3.20].

Lemma 1.6.4 Let s be any natural number. Let r := s · |As |. Let C be a cyclic
subgroup of Z/sn �As Z/r that has nontrivial intersection with (Z/s)n.

Then there is a prime power qN (N ≥ 1) such that

• qN divides r = r ′s,
• qN does not divide the order of the image of C in Z/r ,
• q divides the order of C ∩ (Z/s)n.

Proof (Proof of Lemma 1.6.3)Let H ⊆ (Z/s)n �As Z/r be hyper-elementary. There
is a short exact sequence C � H � P with P a p-group and C a cyclic group. The
cyclic group C can always be arranged to be of order prime to p.

(Z/s)n (Z/s)n�As Z/r Z/r

H ∩ (Z/s)n H pr(H)

C∩ (Z/s)n C pr(C)

pr

pr

pr
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There are two cases.

Case I: C ∩ (Z/s)n is trivial.
Then H ∩ (Z/s)n is a p-group. Let q be the prime from {p1, p2} that is different
from p. Then (a) will hold.
Case II: C ∩ (Z/s)n is nontrivial.
Then there is a prime q as in Lemma 1.6.4. As q divides |C ∩ (Z/s)n| we have
q ∈ {p1, p2} and q �= p. It follows that q divides [Z/r : pr(H)]. This implies (b).

Contracting Maps

Example 1.6.5 Consider the standard action of Z
n on R

n . Let H̄ := (lZ)n ⊆ Z
n and

ϕ : H̄ → Z
n be the isomorphism v �→ v

l . Let resϕ R
n be the H̄ -space obtained by

restricting the action of Z
n on R

n with ϕl . Then x �→ x
l defines an H̄ -map F : Z

n →
resϕ R

n . Thismap is contracting. In fact by increasing l we canmake F as contracting
as we like, while we can keep the metric on R

n fixed.
A variant of this simple construction will be used to produce maps as in (c) of

Proposition 1.6.1. This will finish the discussion of the proof of Proposition 1.6.1.

Proposition 1.6.6 Let S ⊆ Z
n

�A Z be finite. For any ε > 0 there is l0 such that for
all l ≥ l0 the following holds.

Let H̄ := Z
n

�A (lZ) ⊆ Z
n

�A Z. Then there is a simplicial (Zn
�A Z,Ab)-

complex E of dimension 1 and an H̄-equivariant map

F : Z
n

�A Z → E

such that d1(F(g), F(h)) ≤ ε whenever g−1h ∈ S.

Proof We apply the construction of Example 1.6.5 to the quotient Z of Z
n

�A Z.
Let E := R. We use the standard way of making E = R a simplicial complex

in which Z ⊆ R is the set of vertices. Let H̄ act on E via (vtk) · ξ := k
l ξ ; this is a

simplicial action. Finally define F : Z
n

�A Z → E by F(vtk) := k
l . It is very easy

to check that F has the required properties for sufficiently large l.

Proposition 1.6.7 Let S ⊆ Z
n

�A Z be finite. There is N ∈ N depending only on n
such that for any ε > 0 there is l0 such that for all l ≥ l0 the following holds.

Let H̄ := (lZ)n �A Z ⊆ Z
n

�A Z. Then there is a simplicial (Zn
�A Z,Cyc)-

complex E of dimension at most N and an H̄-equivariant map

F : Z
n

�A Z → E

such that d1(F(g), F(h)) ≤ ε whenever g−1h ∈ S.

Proof (Sketch of proof) As in the proof of Proposition 1.6.6 we start with the con-
struction fromExample 1.6.5, now applied to the subgroupZ

n ⊆ Z
n

�A Z. However,
unlike the quotient Z, there is no homomorphism from Z

n
�A Z to the subgroup and

it will be more difficult to finish the proof.
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Let Z
n

�A Z act on R
n×R via vtk · (x, ξ) := (v + Ak(x), k + ξ). Let ϕ : H̄ →

Z
n

�A Z be the isomorphism vtk �→ v
l t

k . The map F0 : Z
n

�A Z → resϕ R
n×R,

(vtk) �→ (v/ l, k) is H̄ -equivariant and contracting in the Z
n-direction, but not in the

Z-direction. In order to produce a map that is also contracting in the Z-direction we
use the flow methods from Sect. 1.5.

There isZ
n

�A Z-equivariant flow onR
n×R defined by φτ (x, ξ) = (x, τ + ξ). It

is possible to produce a simplicial (Zn
�A Z,Cyc)-complex E of uniformly bounded

dimension (depending only on n) and Z
n

�A Z-equivariant map F1 : R
n×R → E

that is contracting in the flow direction (but expanding in the transversal R
n-

direction). To do so one uses Theorem 1.5.5; E will be the nerve of a suitable long
cover of R

n × R.
The fact that F1 is expanding in the R

n-direction can be countered by the con-
tracting property of F0. All together, the composition F1 ◦ F0 : Z

n
�A Z → resϕ E

has the desired properties.

Remark 1.6.8 As many other things, the idea of using a flow space in the proof of
Proposition 1.6.7 originated in the work of Farrell and Jones [24]. I found this trick
very surprising when I first learned about it.

Lemma 1.6.9 Let H̄ be a subgroup of Z
n

�A Z and l, k ∈ N such that

(a) H̄ ∩ Z
n ⊆ lZ,

(b) H̄ maps to kZ under the projection Z
n

�A Z → Z,
(c) the index [Zn : (id − Ak)Zn] is finite and l ≡ 1 modulo [Zn : (id − Ak)Zn].
Then H̄ is subconjugated to (lZ)n �A Z.

Proof Consider the image H̄l of H̄ underZn
�A Z → (Z/ l)n �A Z. Then (a) implies

that the restriction of the projection (Z/ l)n �A Z → Z to H̄l is injective. In particular
H̄l is cyclic. By (b) there is v ∈ Z

n such that vtk ∈ Z
n

�A Z maps to a generator of
H̄l . Assumption (c) implies that there is w ∈ Z

n such that v ≡ (id − Ak)w modulo
(lZ)n . A calculation shows that w conjugates H̄ to a subgroup of (lZ)n �A Z.

Proof (Proof of Proposition 1.6.1) Let L be a large number. Since A has no roots
of unity as eigenvalues, the index ik := [Zn : (id − Ak)Zn] is finite for all k. Let
K := i1 · i2 · · · · · iL . By a theorem of Dirichlet there are infinitely many primes
congruent to 1 modulo K . Let s = p1 · p2 be the product of two such primes, both
≥ L , and set r := s · |As |.

We use the group homomorphism π : Z
n

�A Z � (Z/s)n �As Z/r . Because of
Lemma 1.6.3 we find for any hyper-elementary subgroup H of (Z/s)n �As Z/r
an q ∈ {p1, p2} such that π−1(H) ⊆ Z

n
�A (qZ) or π−1(H) ∩ Z

n ⊆ (qZ)n . In the
first case we set l := q. In the second case we have either π−1(H) ⊆ Z

n
�A (lZ)

for some l > L or we can apply Lemma 1.6.9 to deduce that (up to conjugation)
π−1(H) ⊆ (qZ)n �A Z and we again set l := q.

Therefore it suffices to find simplicial (Zn
�A Z,Ab)-complexes E1, E2 whose

dimension is bounded by a number depending only on n (and not on l) and maps
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f1 : Z
n

�A Z/(lZ)n �A Z → E1

f2 : Z
n

�A Z/Z
n

�A (lZ) → E2

that are G-equivariant up to ε. If f : Z
n

�A Z → E is the map from Proposi-
tion 1.6.7, then we can set E1 := (Zn

�A Z)×(lZn)�AZE and define f1 by f (vtk) :=(
(vtk), f ((vtk)−1)

)
. Similarly, we can produce f2 using Proposition 1.6.6.
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Chapter 2
The K and L Theoretic Farrell-Jones
Isomorphism Conjecture for Braid Groups

Daniel Juan-Pineda and Luis Jorge Sánchez Saldaña

Abstract We prove the K and L theoretic versions of the Fibered Isomorphism
Conjecture of F.T. Farrell and L.E. Jones for braid groups on a surface.

Keywords Braid groups · K and L-theory

2.1 Introduction

Aravinda, Farrell, and Roushon in [1] showed that the Whitehead group of the clas-
sical pure braid groups vanishes. Later on, in [10], Farrell and Roushon extended
this result to the full braid groups. Computations of the Whitehead group of braid
groups for the sphere and the projective space were performed byD. Juan-Pineda and
S. Millán in [12–14]. In all cases the key ingredient was to prove the Farrell-Jones
isomorphism conjecture for the Pseudoisotopy functor, this allows computations for
lower algebraic K theory groups. In this note, we use results by Bartels, Lück and
Reich [6] for word hyperbolic groups and Bartels, Lück and Wegner [5, 18] for
CAT(0) groups to prove that the algebraic K and L theory versions of the conjecture
holds for braid groups on surfaces.
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2.2 The Farrell-Jones Conjecture and Its Fibered Version

In this work we are interested in the formulations of the Farrell-Jones Isomorphism
Conjecture, in both, its fibered and nonfibered versions. Let K be the Davis-Lück
algebraic K theory functor, see [8, Sect. 2] and let L be the Davis-LückL −∞ theory
functor, see [8, Sect. 2] and [9, Sect. 1.3] for the definition of L −∞-theory (or L
theory for short). The validity of this conjecture allows us, in principle, to compute
the algebraic K or L theory groups of the group ring of a given group G from (a) the
corresponding K or L theory groups of the group rings of virtually cyclic subgroups
ofG and (b) homological information.More precisely, letL∗() be any of the functors
K or L.

Conjecture 2.2.1 (Farrell-Jones Isomorphism Conjecture, IC) Let G be a discrete
group. Then for, all n,∈ Z the assembly map

AVcyc : HG
n (EG;L∗()) → HG

n (pt;L∗()) (2.1)

induced by the projection EG → pt is an isomorphism, where the groups HG∗ (−−;
L∗()) build up a suitable equivariant homology theory with local coefficients in the
functor L∗(), and EG is a model for the classifying space for actions with isotropy
in the family of virtually cyclic subgroups of G.

A generalization of the Farrell-Jones conjecture is what is known as the Fibered
Isomorphism Conjecture (FIC). This generalization has better hereditary properties
(see [4, 6]).

Definition 2.2.2 Given a homomorphism of groups ϕ : K → G and a family of
subgroups F of G closed under conjugation and finite intersections, we define the
induced family

ϕ∗F = {H ≤ K|ϕ(H) ∈ F }.

If K is a subgroup of G and ϕ is the inclusion we denote ϕ∗F = F ∩ K .

In this note, we will use FIC to refer to the Fibered Isomorphism Conjecture with
respect to the family Vcyc (of virtually cyclic subgroups), for either K- or L- theory.

Definition 2.2.3 Let G be a group and letF be a family of subgroups of G. We say
that the pair (G,F ) satisfies the Fibered Farrell-Jones Isomorphism Conjecture
(FIC) if for all group homomorphisms ϕ : K → G the pair (K, ϕ∗F ) satisfies that

Aϕ∗F : HK
n (Eϕ∗FK;L∗()) → HK

n (pt;L∗())

is an isomorphism for all n ∈ Z.

One of themost interesting hereditary properties of FIC is the so calledTransitivity
Principle [6, Theorem 2.4]:



2 The K and L Theoretic Farrell-Jones Isomorphism Conjecture … 35

Theorem 2.2.4 Let G be a group and let F ⊂ G be two families of subgroups of
G. Assume that N ∈ Z ∪ {∞}. Suppose that for every element H ∈ G the group H
satisfies FIC for the family F ∩ H for all n ≤ N. Then (G,G ) satisfies FIC for all
n ≤ N if and only if (G,F ) satisfies FIC for all n ≤ N.

LetG be a group, we denote Vcyc(G) for the family or virtually cyclic subgroups
of G. The next two theorems are fundamental for later sections, see [6, lemma 2.8].

Theorem 2.2.5 Let f : G → Q be a surjective homomorphism of groups. Suppose
that Q, satisfies FIC and for all f −1(H) with H ∈ Vcyc(Q), (f −1(H),

Vcyc(f −1(H))) FIC is true. Then G, satisfies FIC.

Theorem 2.2.6 If G satisfies FIC then every subgroup of G satisfies FIC as well.

2.3 Pure Braid Groups on Aspherical Surfaces

Definition 2.3.1 [1, Definition 1.1] We say that a group G is strongly poly-free
if there exists a filtration 1 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G such that the following
conditions hold:

(a) Gi is normal in G for each i.
(b) Gi+1/Gi is a finitely generated free group.
(c) For eachg ∈ G there exists a compact surfaceF and adiffeomorphism f : F → F

such that the action by conjugation of g inGi+1/Gi can be geometrically realized,
i.e., the following diagram commutes:

where ϕ is an suitable isomorphism.

In this situation we say that G has rank lower or equal than n. Now we enunciate
some theorems that will be useful later.

Theorem 2.3.2 Every word hyperbolic group satisfies FIC. In particular, every
finitely generated free group satisfies FIC.

Proof See [6, Theorem 1.1] for K-theory and [5, Theorem B] for L-theory.

Theorem 2.3.3 Every CAT(0) group satisfies FIC.

Proof See [18] for K-theory and [5, Theorem B] for L-theory.
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Remark 2.3.4 BothTheorems 2.3.2 and 2.3.3were proven for amore general version
of the Farrell-Jones Isomorphism conjecture stated here, namely they were proven
for generalized homology theories with coefficients in any additive category, these
versions imply the one given here and also Theorems 2.2.4, 2.2.5 and 2.2.6, see [7].

Theorem 2.3.5 Let M be a simply connected complete Riemannian manifold whose
sectional curvatures are all nonpositive and let G be a group. Assume that G acts
by isometries on M, properly discontinuously and cocompactly, then G is a CAT(0)
group. In particular, G satisfies FIC.

Proof This is the basic example of a CAT(0) group. See [3].

Lemma 2.3.6 Let F be a finitely generated free group and f : F → F be an auto-
morphism that can be geometrically realized, in the sense of Definition 2.3.1(c), then
F � Z, with the action of Z in F given by f , satisfies FIC.

Proof It is proven in [1, Lemma 1.7] that under our hypotheses F � Z is isomorphic
to the fundamental group of a compact Riemannian 3-manifold M that supports
in its interior a complete Riemannian metric with nonpositive sectional curvature
everywhere and the metric is a cylinder near the boundary, in fact, near the boundary
is diffeomorphic to finitely many components of the form R × N where N is either
a torus or a Klein bottle. Let DM be the double of M, by the description of the
boundary, we can endow the closed manifold DM with a Riemannian metric with
nonpositive curvature everywhere as in [2, Proposition 6]. As DM is now compact
and complete, it follows that the fundamental group π1(DM) is CAT(0), hence it
satisfies FIC. Moreover, F � Z ∼= π1(M) injects into π1(DM) our result follows by
Theorem 2.2.6 and Theorem 2.3.5.

Our main theorem is now the following.

Theorem 2.3.7 Every strongly poly-free group G satisfies FIC.

Proof Let us proceed by induction on the rank ofG. The induction base, whenG has
rank ≤ 1, is true as in this caseG is a finitely generated free group, thus the assertion
follows from Theorem 2.3.2.

Assume that strongly poly-free groups of rank≤ n satisfy FIC and letG be a group
of rank≤ n + 1withn > 0.WeapplyTheorem2.2.5 to the surjective homomorphism
q : G → G/Gn. Observe thatG/Gn is a finitely generated free group, hence it satisfies
FIC. Let C ⊂ G/Gn be a virtually cyclic (and hence cyclic) subgroup, not excluding
the possibility of C being G/Gn. We have the following cases:

(a) If C = {1} then q−1(C) = Gn, which is strongly poly-free of rank ≤ n, hence it
satisfies FIC.

(b) Assume now that C is an infinite cyclic subgroup of G/Gn. Let

f : q−1(C) → q−1(C)

Gn−1



2 The K and L Theoretic Farrell-Jones Isomorphism Conjecture … 37

be the natural projection and observe that

q−1(C)

Gn−1

∼= Gn � C

Gn−1

∼= Gn

Gn−1
� C.

Moreover, the group Gn
Gn−1

� C satisfies the hypotheses of Lemma 2.3.6 by the

condition (c) for SPF groups, thus q−1(C)

Gn−1
satisfies FIC and we apply Theorem

2.2.5 to the homomorphism f : q−1(C) → q−1(C)

Gn−1
. Let V ⊆ q−1(C)

Gn−1
be a cyclic

subgroup, again we have the following cases:

a. V = 1 it follows that f −1(V ) = Gn−1 which is anSPFgroupof rank≤ n − 1,
and it does satisfy FIC by induction.

b. V is an infinite cyclic subgroup. By the definition of V it fits in a filtration

1 = G0 ⊂ G1 ⊂ · · · ⊂ Gn−1 ⊂ f −1(V ),

which gives that f −1(V ) is an SPF group of rank ≤ n, hence it satisfies FIC
by induction.

It follows that q−1(C) satisfies FIC and therefore G satisfies FIC.

We now recall the definition of the pure braid groups on a surface.

Definition 2.3.8 Let S be a surface with boundary (possibly empty) and Pk =
{y1, . . . , yk} ⊂ S be a finite subset of interior points. Define the configuration space to
beMk

n (S) = {(x1, x2, . . . , xn)|xi ∈ S − Pk, xi �= xj for i �= j}. The Pure Braid group
on S with n-strings Bn(S) is by definition π1(M0

n (S)).

Lemma 2.3.9 Let S be a surface with boundary. For n > r ≥ 1 and k ≥ 0, the pro-
jection on the first r coordinatesMk

n (S
0) → Mk

r (S
0) is a fibration with fiberMk+r

m−r(S),
where S0 = S − ∂S.

Proof See [15, Lemma 1.27].

Lemma 2.3.10 Suppose that S = C or that S is a compact surface with nonempty
boundary. Then for all m ≥ 0, n ≥ 1 the manifold Mm

n (S) is aspherical.

Proof Consider the fibration Mm
n (S0) → Mm

1 (S0) = S0 − Pm with fiber Mm+1
n−1 (S0)

given by previous lemma. The exact sequence associated to this fibration is as follows

· · · → πi+1(S − Pm) → πi(M
m+1
n−1 (S)) → πi(M

m
n (S)) → πi(S − Pm) → · · · .

Since S − Pm is aspherical, because the boundary is nonempty, πi(S − Pm) = 0 for
all i ≥ 2. Hence for all i ≥ 2, πi(M

m+1
n−1 (S)) ∼= πi(Mm

n (S)). An inductive argument
shows that for all i ≥ 2 we have

πi(M
m
n (S)) ∼= πi(M

m+n−1
1 (S)) ∼= πi(S − Pm+n−1) = 0.



38 D. Juan-Pineda and L.J. Sánchez Saldaña

Theorem 2.3.11 Suppose that S = C or that S is a compact surface with nonempty
boundary different from S

2 or RP2. Then the pure braid group Bn(S) is strongly
poly-free of rank ≤ n for all n ≥ 1.

Proof See [1, Theorem 3.1].

Recall that the braid groups on C or on a compact surface other than S
2 or RP2

are torsion free. The above Theorem and Theorem 2.3.7 now gives:

Theorem 2.3.12 Suppose that S = C or S is a compact surface other than S
2 or

RP2. Then the pure braid groups Bn(S) satisfy FIC for all n ≥ 1.

2.4 Full Braid Groups on Aspherical Surfaces

The main goal of this section is to prove that any extension of a finite group by an
SPF group satisfies FIC. In order to prove this we shall need some results.

Definition 2.4.1 LetG andH be groups, withH finite. We define de wreath product
G � H to be the semidirect productG|H|

� H, whereG|H| is the group of |H|-tuples of
elements inG indexed by elements inH,H acts onG|H| by permuting the coordinates
as the action of H on H by right translation.

Wreath products have been widely studied, the following properties are well
known.

Lemma 2.4.2 Let 1 → G → Γ → H → 1 be a group extension with H finite. Then
there are injective homomorphisms δ : Γ → G � H and θ : G → G|H| which together
with id : H → H defineamap to the group extension1 → G|H| → G � H → H → 1.

Proof See [10, Algebraic Lemma].

The following lemmas contain standard facts about wreath products.

Lemma 2.4.3 Let A, B, S and H be groups with S and H finite.

(a) If A is a subgroup of B, then A � H is a subgroup of B � H.
(b) A|H| � S is a subgroup of A � (H × S).

Lemma 2.4.4 ([1, Fact 2.4]) Let G be a group andH a finite subgroup of Aut(G). We
define G|H|

� Z, where the generator of Z acts on the left factor via f = ⊕
h∈H h ∈

Aut(G|H|), and G �h Z for each h ∈ H in the obvious way. Then G|H|
� Z is a sub-

group of
∏

h∈H G �h Z.

Theorem 2.4.5 If G is a CAT(0) group and H is a finite group, then G � H is a
CAT(0) group, and hence satisfies FIC.
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Proof Let G act properly, isometrically and cocompactly on the CAT(0) space X,
then G � H acts properly, isometrically and cocompactly on X |H| with G|H| acting
coordinate wise on X |H| and H by permuting the coordinates.

Theorem 2.4.6 Let G be an SPF group, and let H be a finite group. Then G � H
satisfies FIC.

Proof Let us proceed by induction on the rank n ofG.When n = 0 it follows thatG =
1 and hence G � H is finite, thus is hyperbolic and it satisfies FIC by Theorem 2.3.2.

Now assume G has rank ≤ n, where n > 1, and consider the filtration 1 = G0 ⊂
G1 ⊂ · · · ⊂ Gn = G given in the definition of a strongly poly-free group.

Note that G|H|
1 is a normal subgroup of G � H and hence, we have the group

extension
1 → G|H|

1 → G � H → (G/G1) � H → 1.

Let p : G � H → (G/G1) � H denote the above epimorphism.Wewill apply Theorem
2.2.5, note that this is possible because G/G1 is an SPF of rank ≤ n − 1. Hence
(G/G1) � H satisfies FIC by induction hypothesis.

Next, let S ⊂ (G/G1) � H be a virtually cyclic subgroup. We have to prove that
p−1(S) satisfies FIC. There are two cases to consider.

Case 1: S is finite. We have an exact sequence 1 → G|H|
1 → p−1(S) → S → 1.

Using Lemmas 2.4.2 and 2.4.3, we get

p−1(S) ⊂ G|H|
1 � S ⊂ G1 � (H × S),

Now by Theorems 2.4.5 and 2.2.6, p−1(S) satisfies FIC.

Case 2: S is infinite. S contains a normal subgroup T of finite index such that T is
infinite cyclic and T ⊂ (G/G1)

|H|. In fact, we assume T = S ∩ (G/G1)
|H|. We have

the exact sequence 1 → p−1(T) → p−1(S) → S/T → 1. By Lemma 2.4.2 we get
p−1(S) ⊂ T1 � (S/T), where T1 = p−1(T). By Theorem 2.2.6 it suffices to show that
T1 � (S/T) satisfies FIC.

Fix t = (th)h∈H ∈ G|H|, which maps to a generator of T . Note that each th acts
geometrically on G1. Then, by Lemma 2.4.4

T1 = G|H|
1 �t Z ⊂

∏

h∈H
(G1 �th Z),

now using Definition 2.3.1, Lemma 2.3.6, and the fact that the finite product of
CAT(0)-groups is a CAT(0)-group we conclude that

∏
h∈H(G1 �th Z) is a CAT(0)-

group. Hence by Theorems 2.4.5 and 2.2.6, T1 � (S/T) satisfies FIC. Thus, p−1(S)
also satisfies FIC. Thus G � H satisfies FIC.

Corollary 2.4.7 Every extension Γ of a finite group by an SPF satisfies FIC.

Proof It is immediate from the previous Theorem and Lemma 2.4.2 and Theorem
2.2.6.
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Theorem 2.4.8 Suppose that M = C or M is a compact surface other than S
2 or

RP2. Let Γ be an extension of a finite group H by Bn(M) for some n ≥ 1. Then Γ

satisfies FIC.

Proof If M has nonempty boundary or M = C then Bn(M) is SPF by Theorem
2.3.11, so by the previous Corollary the assertion is true. From now on, we assume
thatM has empty boundary. By Lemma 2.4.2 and Theorem 2.2.6 it suffices to prove
that Bn(M) � H satisfies FIC. Considering the fiber bundle projection p : M0

n (M) →
M0

1 (M) = M withfiberM1
n−1(M) = M0

n−1(M − pt)wehave the following short exact
sequence

1 → A = Bn−1(M − pt) → Bn(M)
p→ π1(M) → 1.

Consider the exact sequence

1 → A|H| → Bn(M) � H → π1(M) � H → 1.

Let p : Bn(M) � H → π1(M) � H be the surjective homomorphism in the above
sequence. We proceed to apply Theorem 2.2.5 to p. Note that π1(M) � H satisfies
FIC by Theorem 2.4.5. Let S be a virtually cyclic subgroup of π1(M) � H. We claim
that p−1(S) contains a SPF of finite index. Let T = S ∩ π1(M)|H|. Then p−1(T) is of
finite index in p−1(S). Now, asA is SPF, it follows thatA|H| is also SPF by considering
the filtration

1 = G0 ⊂ · · ·Gn = A ⊂ A × G1 ⊂ · · ·A × A ⊂ · · · ⊂ A|H|−1 × Gn−1 ⊂ A|H|

where 1 = G0 ⊂ G1 ⊂ · · ·Gn = A is an SPF structure on A. On the other hand, we
have an exact sequence 1 → A|H| → p−1(T) → T → 1. Now, from the monodromy
action on the pure braid group ofM it can be checked that p−1(T) is SPF. The proof
now follows from the previous Corollary.

Definition 2.4.9 We recall from Definition 2.3.8 that

M0
n (M) = {(x1, x2, . . . , xn)|xi ∈ S, xi �= xj if i �= j}.

The symmetric group Sn acts on M0
n . We define the Full Braid Group FBn(M) on a

surfaceM to be π1(M0
n/Sn).

It is not difficult to see that we have an exact sequence

1 → Bn(M) → FBn(M) → Sn → 1,

hence by our previous Theorem we have the following:

Theorem 2.4.10 Suppose that M = C or M is a compact surface other than S
2 or

RP2. Then the full braid group FBn(M) satisfies FIC.
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2.5 Braid Groups on S
2 and RP2

Theorem 2.5.1 The pure braid groups Bn(S
2) satisfy FIC for all n > 0.

Proof Wehave thatB1(S
2) = B2(S

2) = 0, andB3(S
2) ∼= Z2 (see [11]), so they satisfy

FIC because they are finite. For n > 3, we consider the fiber bundle M0
n (S

2) →
M0

3 (S
2) with fiber M3

n−3(S
2) ∼= M2

n−3(C). Applying the long exact sequence of the
corresponding fibration and the fact that π2(M0

3 (S
2)) is trivial we get

1 → π1(M
2
n−3(C)) → π1(M

0
n (S

2)) → π1(M
0
3 (S

2)) → 1.

Note that π1(M2
n−3(C)) is SPF because it is part of the filtration of Bn−3(C), hence

by Corollary 2.4.7 we have that π1(M0
n (S

2)) = Bn(S
2) satisfies FIC.

Lemma 2.5.2 Let 1 → K → G → Q → 1 be an extension of groups. Suppose that
K is virtually cyclic and Q satisfies FIC. Then G satisfies FIC.

Proof See [6] Lemma 3.4.

Theorem 2.5.3 The full braid groups FBn(S
2) satisfy FIC for all n > 0.

Proof In [16], Theorem 24 it is proven that FBn(S
2) fits in an exact sequence

1 → Γn → FBn(S
2))/Z2 → Sn → 1

where Γn is SPF. Hence FBn(S
2)/Z2 satisfies FIC by Corollary 2.4.7. Now consider

the exact sequence

1 → Z2 → FBn(S
2) → FBn(S

2)/Z2 → 1

applying the previous Lemma, we conclude that FBn(S
2) satisfies FIC.

Theorem 2.5.4 The pure braid groups Bn(RP2) satisfy FIC for all n > 0.

Proof In [17] it is proven that B1(RP2) = Z2, B2(RP2) ∼= Q8 and B3(RP2) ∼= F2 �

Q8, where Q8 is the quaternion group with eight elements and F2 is the free group
on two generators. Hence B1(RP2) and B2(RP2) satisfy FIC because they are finite,
while F2 � Q8 does as it is hyperbolic. In [16, Theorem 27] it is proven that Bn(RP2)

fits in an exact sequence

1 → Λn → Bn(RP2) → Q8 → 1

where Λn is SPF, for all n > 3. Hence Bn(RP2) satisfies FIC by Corollary 2.4.7.

Theorem 2.5.5 The full braid groups FBn(RP2) satisfy FIC for all n > 0.
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Proof In [17] it is proven that FB1(RP2) = Z2 and FB2(RP2) is isomorphic to a
dicyclic group of order 16. Hence FB1(RP2) and FB2(RP2) satisfy FIC because they
are finite. In [16] Theorem 29 it is proven that FBn(RP2) fits in an exact sequence

1 → Sn → FBn(RP2) → FBn(RP2)/S → 1

where Sn is a normal SPF subgroup of FBn(RP2) with finite index, for all n > 2.
Hence by Corollary 2.4.7 we conclude that FBn(RP2) satisfies FIC for all n > 2.

Recall that if the groups G and H satisfy FIC then F × H also satisfies FIC.
Therefore we have the following

Theorem 2.5.6 Let G be a braid group of a surface in any number of strands then
G × Z

n satisfies FIC for all n ≥ 1.
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Chapter 3
Ends, Shapes, and Boundaries in Manifold
Topology and Geometric Group Theory

Craig R. Guilbault

Abstract This survey/expository article covers a variety of topics related to the
“topology at infinity” of noncompactmanifolds and complexes. Inmanifold topology
and geometric group theory, the most important noncompact spaces are often con-
tractible, so distinguishing one from another requires techniques beyond the standard
tools of algebraic topology. One approach uses end invariants, such as the number
of ends or the fundamental group at infinity. Another approach seeks nice compact-
ifications, then analyzes the boundaries. A thread connecting the two approaches
is shape theory. In these notes we provide a careful development of several topics:
homotopy and homology properties and invariants for ends of spaces, proper maps
and homotopy equivalences, tameness conditions, shapes of ends, and various types
ofZ -compactifications andZ -boundaries. Classical and current research from both
manifold topology and geometric group theory provide the context. Along the way,
several open problems are encountered. Our primary goal is a casual but coherent
introduction that is accessible to graduate students and also of interest to active
mathematicians whose research might benefit from knowledge of these topics.

Keywords End · Shape · Boundary · Manifold · Group · Fundamental group at
infinity · Tame · Open collar · Pseudo-collar · Z-set · Z-boundary · Z-structure

Preface

In [87], a paper that plays a role in these notes, Siebenmann mused that his work
was initiated at a time “when ‘respectable’ geometric topology was necessarily com-
pact”. That attitude has long since faded; today’s topological landscape is filled
with research in which noncompact spaces are the primary objects. Even so, past
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traditions have impacted today’s topologists, many of whom developed their math-
ematical tastes when noncompactness was viewed more as a nuisance than an area
for exploration. For that and other reasons, many useful ideas and techniques have
been slow to enter the mainstream. One goal of this set of notes is to provide quick
and intuitive access to some of those results and methods by weaving them together
with more commonly used approaches, well-known examples, and current research.
In this way, we attempt to present a coherent “theory of ends” that will be useful to
mathematicians with a variety of interests.

Numerous topics included here are fundamental to manifold topology and geo-
metric group theory: Whitehead and Davis manifolds, Stallings’ characterization of
Euclidean spaces, Siebenmann’s Thesis, Chapman and Siebenmann’s Z -compact-
ification Theorem, the Freudenthal-Hopf-Stallings Theorem on ends of groups, and
applications of the Gromov boundary to group theory—to name just a few. We hope
these notes give the reader a better appreciation for some of that work. Many other
results and ideas presented here are relatively new or still under development: gen-
eralizations of Siebenmann’s thesis, Bestvina’s Z -structures on groups, use of Z -
boundaries in manifold topology, and applications of boundaries to non-hyperbolic
groups, are among those discussed. There is much room for additional work on these
topics; the natural path of our discussion will bring us near to a number of interesting
open problems.

The style of these notes is to provide a lot of motivating examples. Key definitions
are presented in a rigorous manner—often preceded by a non-rigorous, but (hope-
fully) intuitive introduction. Proofs or sketches of proofs are included for many of the
fundamental results, while many others are left as exercises. We have not let issues
of mathematical rigor prevent the discussion of important or interesting work. If a
theorem or example is relevant, we try to include it, even when the proof is too long
or deep for these pages. When possible, an outline or key portions of an argument
are provided—with implied encouragement for the reader to dig deeper.

These notes originated in a series of four one-hour lectures given at the work-
shop on Geometrical Methods in High-dimensional Topology, hosted by Ohio State
University in the Spring of 2011. Notes from those talks were expanded into a one-
semester topics course at the University of Wisconsin-Milwaukee in the fall of that
year. The author expresses his appreciation to workshop organizers Jean-François
Lafont and Ian Leary for the opportunity to speak, and acknowledges all fellow
participants in the OSU workshop and the UWM graduate students in the follow-up
course; their feedback and encouragementwere invaluable. Special thanks go toGreg
Friedman and the anonymous referee who read the initial version of this document,
pointed out numerous errors, and made many useful suggestions for improving both
the mathematics and the presentation. Finally, thanks to my son Phillip Guilbault
who created most of the figures in this document.
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3.1 Introduction

A fundamental concept in the study of noncompact spaces is the “number of ends”.
For example, the real line has two ends, the plane has one end, and the uniformly
trivalent tree T3 has infinitely many ends. Counting ends has proven remarkably
useful, but certainly there is more—after all, there is a qualitative difference between
the single end of the ray [0,∞) and that of R

2. This provides an idea: If, in the
topological tradition of counting things, one can (somehow) use the π0- or H0-
functors to measure the number of ends, then maybe the π1- and H1-functors (or, for
that matter πk and Hk), can be used in a similar manner to measure other properties
of those ends. Turning that idea into actual mathematics—the “end invariants” of a
space—then using those invariants to solve real problems, is one focus of the early
portions of these notes.

Another approach to confronting noncompact spaces is to compactify.1 The
1-point compactification of R

1 is a circle and the 1-point compactification of R
2

a 2-sphere. A “better” compactification of R
1 adds one point to each end, to obtain a

closed interval—a space that resembles the line farmore than does the circle. This is a
special case of “end-point compactification”, whereby a single point is added to each
end of a space. Under that procedure, an entire Cantor set is added to T3, resulting
in a compact, but still tree-like object. Unfortunately, the end-point compactification
of R

2 again yields a 2-sphere. From the point of view of preserving fundamental
properties, a far better compactification of R

2 adds an entire circle at infinity. This
is a prototypical “Z -compactification”, with the circle as the “Z -boundary”. (The
end-point compactifications of R

1 and T3 are also Z -compactifications.) The topic
ofZ -compactification andZ -boundaries is a central theme in the latter half of these
notes.

Shape theory is an area of topology developed for studying compact spaces with
bad local properties, so itmay seemodd that “shapes” is one of three topicsmentioned
in the title of an article devoted to noncompact spaces with nice local properties.
This is not a mistake! As it turns out, the tools of shape theory are easily adaptable
to the study of ends—and the connection is not just a similarity in approaches.
Frequently, the shape of an appropriately chosen compactum precisely captures the
illusive “topology at the end of a space”. In addition, shape theory plays a clarifying
role by connecting end invariants hinted at in paragraph one of this introduction
to the Z -boundaries mentioned in paragraph two. To those who know just enough
about shape theory to judge it too messy and set-theoretical for use in manifold
topology or geometric group theory (a belief briefly shared by this author), patience
is encouraged. At the level of generality required for our purposes, shape theory
is actually quite elegant and geometric. In fact, very little set-theoretic topology is
involved—instead spaces with bad properties are quickly replaced by simplicial and
CW complexes, where techniques are clean and intuitive. A working knowledge of
shape theory is one subgoal of these notes.

1Despite our affinity for noncompact spaces, we are not opposed to the practice of compactification,
provided it is done in a (geometrically) sensitive manner.
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3.1.1 Conventions and Notation

Throughout this article, all spaces are separable metric. A compactum is a compact
space. We often restrict attention to absolute neighborhood retracts (or ANRs)—a
particularly nice class of spaces, whose most notable property is local contractibility.
In these notes, ANRs are required to be locally compact. Notable examples of ANRs
are: manifolds, locally finite polyhedra, locally finite CW complexes, proper CAT(0)
spaces,2 and Hilbert cube manifolds. Due to their unavoidable importance, a short
appendix with precise definitions and fundamental results about ANRs has been
included. Readers anxious get started can safely begin, by viewing “ANR” as a
common label for the examples just mentioned. An absolute retract (or AR) is a
contractible ANR, while anENR [resp.,ER] is a finite-dimensional ANR [resp., AR].

The unmodified term manifold means “finite-dimensional manifold”. A manifold
is closed if it is compact and has no boundary and open if it is noncompact with
no boundary; if neither is specified, boundary is permitted. For convenience, all
manifolds are assumed to be piecewise-linear (PL); in other words, they may be
viewed as simplicial complexes in which all links are PL homeomorphic to spheres
of appropriate dimensions. A primary application of PL topology will be the casual
use of general position and regular neighborhoods. A good source for that material is
[83]. Nearly all that we do can be accomplished for smooth or topological manifolds
as well; readers with expertise in those categories will have little trouble making the
necessary adjustments.

Hilbert cube manifolds are entirely different objects. The Hilbert cube is the
countably infinite productQ = ∏∞

i=1 [−1, 1], endowedwith the product topology. A
space X is aHilbert cube manifold if each x ∈ X has a neighborhood homeomorphic
to Q. Like ANRs, Hilbert cube manifolds play an unavoidably key role in portions
of these notes. For that reason, we have included a short and simple appendix on
Hilbert cube manifolds.

Symbols will be used as follows: ≈ denotes homeomorphism, while � indicates
homotopic maps or homotopy equivalent spaces; ∼= indicates isomorphism. When
Mn is a manifold, n indicates its dimension and ∂ Mn its manifold boundary. When
A is a subspace of X , BdX A (or when no confusion can arise, BdX ) denotes the set-
theoretic boundary of A. The symbols A and clX A (or just clA) denote the closure of
A in X , while intX A (or just intA) denotes the interior. The symbol X̃ always denotes
the universal cover of X . Arrows denote (continuous) maps or homomorphisms, with
↪→, �, and � indicating inclusion, injection and surjection, respectively.

2A proper metric space is one in which every closed metric ball is compact.
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3.2 Motivating Examples: Contractible Open Manifolds

Let us assume that space-time is a large boundaryless 4-dimensionalmanifold.Recent
evidence suggests that this manifold is noncompact (an “open universe”). By running
time backward to the Big Bang, we might reasonably conclude that space-time is
“just” a contractible open manifold.3 Compared to the possibilities presented by
a closed universe (S4, S

2 × S
2, RP4, CP2, the E8 manifold, . . .?), the idea of a

contractible open universe seems rather disappointing, especially to a topologist
primed for the ultimate example on which to employ his/her tools. But there is a
mistake in this thinking—an implicit assumption that a contractible open manifold
is topologically uninteresting (no doubt just a blob, homeomorphic to an open ball).
In this section we take a quick look at the surprisingly rich world of contractible
open manifolds.

3.2.1 Classic Examples of Exotic Contractible Open
Manifolds

For n = 1 or 2, it is classical that every contractible open n-manifold is topologically
equivalent to R

n; but when n ≥ 3, things become interesting. J.H.C Whitehead was
among the first to underestimate contractible open manifolds. In an attempt to prove
the Poincaré Conjecture, he briefly claimed that, in dimension 3, each is homeomor-
phic toR

3. In [98] he corrected that error by constructing the now famous Whitehead
contractible 3-manifold—an object surprisingly easy to describe.

Example 3.2.1 (Whitehead’s contractible open 3-manifold) Let W 3 = S
3 − T∞,

where T∞ is the compact set (the Whitehead continuum) obtained by intersecting
a nested sequence T0 ⊇ T1 ⊇ T2 ⊇ · · · of solid tori, where each Ti+1 is embedded

Fig. 3.1 Constructing the
Whitehead manifold

T0

T1

3No expertise in cosmology is being claimedby the author. This description of space-time is intended
only to motivate discussion.
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in Ti in the same way that T1 is embedded in T0. See Fig. 3.1. Standard tools of
algebraic topology show thatW 3 is contractible. For example, first show thatW 3 is
simply connected (this takes some thought), then show that it is acyclic with respect
to Z-homology.

The most interesting question about W 3 is: Why is it not homeomorphic to R
3?

Standard algebraic invariants are of little use, since W 3 has the homotopy type
of a point. But a variation on the fundamental group—the “fundamental group at
infinity”—does the trick. Before developing that notion precisely, we describe a
few more examples of exotic contractible open manifolds, i.e., contractible open
manifolds not homeomorphic to a Euclidean space.

It turns out that exotic examples are rather common;moreover, they play important
roles in both manifold topology and geometric group theory. But for now, let us just
think of them as possible universes.

In dimension≤2 there are no exotic contractible openmanifolds, but in dimension
3, McMillan [65] constructed uncountably many. In some sense, his examples are
all variations on theWhitehead manifold. Rather than examining those examples, let
us move to higher dimensions, where new possibilities emerge.

For n ≥ 4, there exist compact contractible n-manifolds not homeomorphic to
the standard n-ball B

n . We call these exotic compact contractible manifolds. Taking
interiors provides a treasure trove of easy-to-understand exotic contractible open
manifolds. We provide a simple construction for some of those objects.

Recall that a group is perfect if its abelianization is the trivial group. A famous
example, the binary icosahedral group, is given by the presentation

〈
s, t | (st)2 =

s3 = t5
〉
.

Example 3.2.2 (Newman contractible manifolds) Let G be a perfect group admitting
a finite presentationwith an equal number of generators and relators. The correspond-
ingpresentation2-complex, KG has the homologyof a point. Embed KG inS

n (n ≥ 5)
and let N be a regular neighborhood of KG . By general position, loops and disks may
be pushed off KG , so inclusion induces an isomorphism π1 (∂ N ) ∼= π1 (N ) ∼= G. By
standard algebraic topology arguments ∂ N has theZ-homology of an (n − 1)-sphere
and Cn = S

n − intN has the homology of a point. A second general position argu-
ment shows that Cn is simply connected, and thus contractible—but Cn is clearly
not a ball. A compact contractible manifold constructed in this manner is called a
Newman compact contractible manifold and its interior an open Newman manifold.

Exercise 3.2.3 Verify the assertions made in the above example. Be prepared to use
numerous tools from a first course in algebraic topology: duality, universal coeffi-
cients, the Hurewicz theorem and a theorem of Whitehead (to name a few).

The Newman construction can also be applied to acyclic 3-complexes. From
that observation, one can show that every finitely presented superperfect group G
(that is, Hi (G; Z) = 0 for i = 1, 2) can be realized as π1 (∂Cn) for some compact
contractible n-manifold (n ≥ 7). A related result [42, 59] asserts that every (n − 1)-
manifold with the homology of S

n−1 bounds a compact contractible n-manifold. For
an elementary construction of 4-dimensional examples, see [63].
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Exercise 3.2.4 By applying the various Poincaré Conjectures, show that a compact
contractible n-manifold is topologically an n-ball if and only if its boundary is simply
connected. (An additional nontrivial tool, the Generalized Schönflies Theorem, may
also be helpful.)

A place where open manifolds arise naturally, even in the study of closed mani-
folds, is as covering spaces.Aplacewhere contractible openmanifolds arise naturally
is as universal covers of aspherical manifolds.4 Until 1982, the followingwas amajor
open problem:

Does an exotic contractible open manifold ever cover a closed manifold? Equivalently: Can
the universal cover of a closed aspherical manifold fail to be homeomorphic to R

n?

In dimension 3 this problem remained open until Perelman’s solution to the
Geometrization Conjecture. It is now known that the universal cover of a closed
aspherical 3-manifold is always homeomorphic to R

3. In all higher dimensions, a
remarkable construction by Davis [27] produced aspherical n-manifolds with exotic
universal covers.

Example 3.2.5 (Davis’ exotic universal covering spaces) The construction begins
with an exotic (piecewise-linear) compact contractible oriented manifold Cn . Davis’
key insight was that a certain Coxeter group � determined by a triangulation of ∂Cn

provides precise instructions for assembling infinitely many copies of Cn into a con-
tractible open n-manifold Dn with enough symmetry to admit a proper cocompact5

action by�. Figure3.2 provides a schematic, ofDn , where−Cn denotes a copy ofCn

with reversed orientation. Intuitively, Dn is obtained by repeatedly reflecting copies
of Cn across (n − 1)-balls in ∂Cn . The reflections explain the reversed orientations
on half of the copies. By Selberg’s Lemma, there is a finite index torsion-free�′ ≤ �.
By properness, the action of �′ on Dn is free (no γ ∈ �′ has a fixed point), so the
quotient map Dn → �′\Dn is a covering projection with image a closed aspherical
manifold.

Fig. 3.2 A Davis manifold

-C n-C n

-C n

-C n

Cn

Cn

Cn Cn

Cn

4A connected space X is aspherical if πk (X) = 0 for all k ≥ 2.
5An action by � on X is proper if, for each compact K ⊆ X at most finitely many �-translates of
K intersect K . The action is cocompact if there exists a compact C such that �C = X .
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Later in these notes, when we prove that Dn ≈ R
n , an observation by Ancel

and Siebenmann will come in handy. By discarding all of the beautiful symmetry
inherent in the Davis construction, their observation provides a remarkably simple
topological picture of Dn . Toward understanding that picture, let Pn and Qn be
oriented manifolds with connected boundaries, and let B, B ′ be (n − 1)-balls in ∂ Pn

and ∂ Qn , respectively. A boundary connected sum Pn
∂

#Qn is obtained by identifying
B with B ′ via an orientation reversing homeomorphism. (By using an orientation

reversing gluing map, we may give Pn
∂

#Qn an orientation that agrees with both
original orientations.)

Theorem 3.2.6 ([3]) A Davis manifold Dn constructed from copies of an oriented
compact contractible manifold Cn is homeomorphic to the interior of an infinite
boundary connected sum:

Cn
0

∂

#
(−Cn

1

) ∂

#
(
Cn
2

) ∂

#
(−Cn

3

) ∂

# · · ·

where each Cn
2i is a copy of Cn and each −Cn

2i+1 is a copy of −Cn.

Remark 3.2.7 The reader is warned that an infinite boundary connected sum is not
topologically well-defined. For example, one could arrange that the result be 2-ended
instead of 1-ended. See Fig. 3.3. Remarkably, the interior of such a sum is well-
defined. The proof of that fact is relatively straight-forward; it contains the essence
of Theorem 3.2.6.

Exercise 3.2.8 Sketch a proof that the 1-ended and 2-ended versions of Cn
0

∂

#
(−Cn

1

)

∂

#
(
Cn
2

) ∂

#
(−Cn

3

) ∂

# . . ., indicated by Fig. 3.3 have homeomorphic interiors.

Example 3.2.9 (Asymmetric Davis manifolds) To create a larger collection of exotic
contractible open n-manifolds (without concern for whether they are universal cov-
ers), the infinite boundary connect sum construction can be applied to a collection{

Cn
j

}∞
j=0

of non-homeomorphic compact contractible n-manifolds. Here orienta-

tions are less relevant, so mention is omitted. Since there are infinitely many distinct
compact contractible n-manifolds, this strategy produces uncountably many exam-
ples, which we refer to informally as asymmetric Davis manifolds. Distinguishing

Fig. 3.3 1- and 2-ended
boundary connected sums

Cn
0

Cn
0

-C n
1

-C n
1

Cn
2

Cn
2

-C n
3

-C n
3 Cn

4

Cn
4
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one from another will be a good test for our soon-to-be-developed tools. Recent
applications of these objects can be found in [7] and in the dissertation of P. Sparks.

Exercise 3.2.10 Show that the interior of an infinite boundary connected sum of
compact contractible n-manifolds is contractible.

A natural question is motivated by the above discussion:

Among the contractible open manifolds described above, which can or cannot be universal
covers of closed n-manifolds?

We will return to this question in Sect. 3.5.1. For now we settle for a fun observation
by McMillan and Thickstun [66].

Theorem 3.2.11 For each n ≥ 3, there exist exotic contractible open n-manifolds
that are not universal covers of any closed n-manifold.

Proof There are uncountablymany exotic openn-manifolds and, by [22], only count-
ably many closed n-manifolds.

3.2.2 Fundamental Groups at Infinity for the Classic
Examples

With an ample supply of examples to work with, we begin defining an algebraic
invariant useful for distinguishing one contractible open manifold from another.
Technical issues will arise, but to keep focus on the big picture, we delay confronting
those until later. Once completed, the new invariant will be more widely applicable,
but for now we concentrate on contractible open manifolds.

Let W n be a contractible open manifold with n ≥ 2. Express W n as∪∞
i=0Ki where

each Ki is a connected codimension 0 submanifold and Ki ⊆ intKi+1 for each i .With
some additional care, arrange that each Ki has connected complement. (Here one uses
the fact that W n is contractible and n ≥ 2. See Exercise 3.3.3.) The corresponding
neighborhoods of infinity are the sets Ui = W n − Ki .

For each i , let pi ∈ Ui and consider the inverse sequence of groups:

π1 (U0, p0)
λ1←− π1 (U1, p1)

λ2←− π1 (U2, p2)
λ3←− · · · (3.1)

Wewould like to think of the λi as being induced by inclusion, but since∩∞
i=0Ui = ∅,

a single choice of base point is impossible. Instead, for each i choose a path αi in Ui

connecting pi to pi+1; then declare λi to be the composition

π1 (Ui−1, pi−1)
α̂i−1←− π1 (Ui−1, pi ) ← π1 (Ui , pi )
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where the first map is induced by inclusion and α̂i−1 is the “change of base point
isomorphism”. By assembling the αi end-to-end, we can define a map r : [0,∞) →
X , called the base ray. The entire inverse sequence (3.1) is taken as a representation
of the fundamental group at infinity (based at r) of W n . Those who prefer a single
group can take an inverse limit (defined in Sect. 3.4.1) to obtain the Čech fundamental
group at infinity (based at r ). Unfortunately, that inverse limit typically contains far
less information than the inverse sequence itself—more on that later.

Two primary technical issues are already evident:

• well-definedness: most obviously, the groups found in (3.1) depend upon the cho-
sen neighborhoods of infinity, and

• dependence upon base ray: the “bonding homomorphisms” in (3.1) depend upon
the base ray.

We will return to these issues soon; for now we forge ahead and apply the basic idea
to some examples.

Example 3.2.13 (Fundamental group at infinity for R
n) Express R

n as ∪∞
i=0iB

n

where iBn is the closed ball of radius i . Then,U0 = R
n and for i > 0,Ui = Rn − B

n
i

is homeomorphic to S
n−1 × [i,∞). If we let r be a true ray emanating from the

origin and pi = r ∩ (
S

n−1 × {i}) we get a representation of the fundamental group
at infinity as

1 ← 1 ← 1 ← 1 ← · · · (3.2)

when n ≥ 3, and when n = 2, we get (with a slight abuse of notation)

1 ← Z
id←− Z

id←− Z
id←− · · · (3.3)

Modulo the technical issues, we have a modest application of the fundamental group
at infinity—it distinguishes the plane from higher-dimensional Euclidean spaces.

Example 3.2.16 (Fundamental group at infinity for open Newman manifolds) LetCn

be a compact contractible n-manifold and G = π1 (∂Cn). By deleting ∂Cn from a
collar neighborhood of ∂Cn in Cn we obtain an open collar neighborhood of infinity
U0 ≈ ∂Cn × [0,∞) in the open Newman manifold intCn . For each i ≥ 1, let Ui be
the subcollar corresponding to ∂Cn × [i,∞) and let r to be the ray {p} × [0,∞),
with pi = p × {i}. We get a representation of the fundamental group at infinity

G
id←− G

id←− G
id←− · · ·

The (still-to-be-quantified) difference between this and (3.2) verifies that intCn is
not homeomorphic to R

n .

Example 3.2.17 Fundamental group at infinity for Davis manifolds) To aid in obtain-
ing a representation of the fundamental group at infinity of a Davis manifold Dn ,

we use Theorem 3.2.6 to viewDn as the interior of C0

∂

# (−C1)
∂

# (C2)
∂

# (−C3)
∂

# . . .,
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Fig. 3.4 An exhaustion of
Dn by compact contractible
manifolds

L0 L1 L2

where each Ci is a copy of a fixed compact contractible n-manifold C . (Superscripts
omitted to avoid excessive notation.)

Borrow the setup fromExample 3.2.16 to express intC as∪∞
i=0Ki where each Ki ≡

intC − Ui is homeomorphic to Cn . We may exhaust Dn by compact contractible

manifolds Li ≈ C0

∂

#(−C1)
∂

# · · · ∂

#(±Ci ) created by “tubing together” K 0
i ∪ (−K 1

i ) ∪
· · · ∪ (±K i

i ), where the tubes are copies ofB
n−1 × [−1, 1] and K j

i is the copy of Ki in
±C j See Fig. 3.4. It is easy to see that a corresponding neighborhood of infinity Vi =
Dn − Li has fundamental group G0 ∗ G1 ∗ · · · ∗ Gi where each Gi is a copy of G;
moreover, the homomorphism of G0 ∗ G1 ∗ · · · ∗ Gi ∗ Gi+1 to G0 ∗ G1 ∗ · · · ∗ Gi

induced by Vi+1 ↪→ Vi acts as the identity on G0 ∗ G1 ∗ · · · ∗ Gi and sends Gi+1 to
1. With appropriate choices of base points and ray, we arrive at a representation of
the fundamental group at infinity of Dn of the form

G0 � G0 ∗ G1 � G0 ∗ G1 ∗ G2 � G0 ∗ G1 ∗ G2 ∗ G3 � · · · . (3.4)

Example 3.2.19 (Fundamental group at infinity for asymmetric Davis manifolds) By
proceeding as in Example 3.2.17, but not requiring C j ≈ Ck for j = k, we obtain
manifolds with fundamental groups at infinity represented by inverse sequences
like (3.4), except that the various Gi need not be the same. By choosing differ-
ent sequences of compact contractible manifolds, we can arrive at an uncountable
collection of inverse sequences. Some work is still necessary in order to claim an
uncountable collection of topologically distinct manifolds.

Example 3.2.20 (Fundamental group at infinity for the Whitehead manifold) Refer-
ring to Example 3.2.1 and Fig. 3.1, for each i ≥ 0, let Ai = Ti − Ti+1. Then Ai is a
compact 3-manifold, with a pair of torus boundary components ∂Ti and ∂Ti+1. Stan-
dard techniques from 3-manifold topology allow one to show that G = π1 (Ai ) is
nonabelian and that each boundary component is incompressible in Ai , i.e., π1 (∂Ti )

and π1 (∂Ti+1) inject into G. If we let A−1 be the solid torus S3 − T0, then

W 3 = A−1 ∪ A0 ∪ A1 ∪ A2 ∪ · · ·

where Ai ∩ Ai+1 = Ti+1 for each i . Set Ui = Ai ∪ Ai+1 ∪ Ai+2 ∪ · · · , for each i ≥
0, to obtain a nested sequence of homeomorphic neighborhoods of infinity, each
having fundamental group isomorphic to an infinite free product with amalgamation
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π1 (Ui ) = Gi ∗	 Gi+1 ∗	 Gi+2 ∗	 · · ·
where	 ∼= Z ⊕ Z. Assembling these into an inverse sequence (temporarily ignoring
base ray issues) gives a representation of the fundamental group at infinity

G0 ∗	 G1 ∗	 G2 ∗	 G4 ∗	 · · · � G1 ∗	 G2 ∗	 G3 ∗	 · · · � G2 ∗	 G3 ∗	 · · · � · · ·

Combinatorial group theory provides a useful observation: each bonding homomor-
phism is injective and none is surjective.

We will return to the calculations from this section after enough mathematical
rigor has been added to make them fully applicable.

3.3 Basic Notions in the Study of Noncompact Spaces

An important short-term goal is to confront the issue of well-definedness and to
clarify the role of the base ray in our above approach to the fundamental group at
infinity. Until that is done, the calculations in the previous section should be viewed
with some skepticism. Since we will eventually broaden our scope to spaces far more
general than contractible open manifolds, we first take some time to lay out a variety
general facts and definitions of use in the study of noncompact spaces.

3.3.1 Neighborhoods of Infinity and Ends of Spaces

A subset U of a space X is a neighborhood of infinity if X − U is compact; a subset
of X is unbounded if its closure is noncompact. (Note: This differs from the metric
notion of “unboundedness”, which is dependent upon the metric.) We say that X has
k ends, if k is a least upper bound on the number of unbounded components in a
neighborhood of infinity. If no such k exists, we call X infinite-ended.

Example 3.3.1 The real line has 2 ends while, for all n ≥ 2, Rn is 1-ended. A space
is compact if and only if it is 0-ended. A common example of an infinite-ended space
is the universal cover of S

1 ∨ S
1.

Exercise 3.3.2 Show that an ANR X that admits a proper action by an infinite
group G, necessarily has 1, 2, or infinitely many ends. (This is a key ingredient in an
important theorem from geometric group theory. See Sect. 3.6.)

Exercise 3.3.3 Show that a contractible open n-manifold of dimension≥2 is always
1-ended. Hint: Ordinary singular or simplicial homology will suffice.

An exhaustion of X by compacta is a nested sequence K0 ⊆ K1 ⊆ K2 ⊆ of com-
pact subsets whose union is X ; in this case the corresponding collection of neigh-
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borhoods of infinity Ui = X − Ki is cofinal, i.e., ∩∞
i=0Ui = ∅.6 A compactum Ki

is efficient if it is connected and the corresponding Ui has only unbounded compo-
nents. An exhaustion of X by efficient compacta with each Ki ⊆ intKi+1 is called
an efficient exhaustion. The following is an elementary, but nontrivial, exercise in
general topology.

Exercise 3.3.4 Show that every connected ANR X admits an efficient exhaustion
by compacta. Note: For this exercise, one can replace the ANR hypothesis with the
weaker assumption of locally compact and locally path connected.

Let {Ki }∞i=0 be an efficient exhaustion of X by compacta and, for each i , let
Ui = X − Ki . Let E nds (X) be the set of all sequences (V0, V1, V2, . . .) where Vi

is a component of Ui and V0 ⊇ V1 ⊇ . . .. Give X = X ∪ E nds (X) the topology
generated by the basis consisting of all open subsets of X and all sets V i where

V i = Vi ∪ {(W0, W1, . . .) ∈ E nds (X) | Wi = Vi } .

Then X is separable, compact, and metrizable; it is known as the Freudenthal com-
pactification of X .

Exercise 3.3.5 Verify the assertions made in the final sentence of the above para-
graph. Then show that any two efficient exhaustions of X by compacta result in
compactifications that are canonically homeomorphic.

Exercise 3.3.6 Show that the cardinality of E nds (X) agrees with the “number of
ends of X” defined at the beginning of this section.

A closed [open] neighborhood of infinity in X is one that is closed [open] as a
subset of X . If X is an ANR, we often prefer neighborhoods of infinity to themselves
be ANRs. This is automatic for open, but not for closed neighborhoods of infinity.
Call a neighborhood of infinity sharp if it is closed and also an ANR. Call a space X
sharp at infinity if it contains arbitrarily small sharp neighborhoods of infinity, i.e.,
if every neighborhood of infinity in X contains one that is sharp.

Example 3.3.7 Manifolds, locally finite polyhedra, and finite-dimensional locally
finite CW complexes are sharp at infinity—they contain arbitrarily small closed
neighborhoods of infinity that are themselves manifolds with boundary, locally finite
polyhedra, and locally finiteCWcomplexes, respectively. In a similarmanner,Hilbert
cube manifolds are sharp at infinity by an application of Theorem 3.13.2. The exis-
tence of non-sharp ANRs can be deduced from [11, 73].

Example 3.3.8 Every proper CAT(0) space X is sharp at infinity—but this is not
entirely obvious. The most natural closed neighborhood of infinity, Np,r = X −
B(p; r), is an ANR if and only if the metric sphere S(p; r) is an ANR. Surprisingly,
it is not known whether this is always the case. However, we can fatten Np,r to an
ANR by applying Exercise 3.12.8.

6Sometimes closed neighborhood of infinity are preferable; then we let Ui = X − Ki . In many
cases the choice is just a matter of personal preference.
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Problem 3.3.9 In a proper CAT(0) space X , is each S(p; r) an ANR? Does there
exist some p0 ∈ X and a sequence of arbitrarily large ri for which each S(p0; ri ) is
an ANR? Does it help to assume that X is finite-dimensional or that X is a manifold?

An especially nice variety of sharp neighborhood of infinity is available in
n-manifolds and Hilbert cubemanifolds. A closed neighborhood of infinity N ⊆ Mn

in an n-manifoldwith compact boundary is clean if it is a codimension 0 submanifold
disjoint from ∂ Mn and ∂ N = BdMn N has a product neighborhood (≈∂ N × [−1, 1])
in Mn . In a Hilbert cube manifold X , where there is no intrinsic notion of boundary
(recall that Q itself is homogeneous!), we simply require that BdX N be a Hilbert
cubemanifold with a product neighborhood in X . In an n-manifold with noncompact
boundary a natural, but slightly more complicated, definition is possible; but it is not
needed in these notes.

3.3.2 Proper Maps and Proper Homotopy Type

A map f : X → Y is proper7 if f −1 (C) is compact for all compact C ⊆ Y .

Exercise 3.3.10 Show that a map f : X → Y between locally compact metric
spaces is proper if and only if the obvious extension to their 1-point compactifications
is continuous.

Maps f0, f1 : X → Y are properly homotopic is there is a proper map H : X ×
[0, 1] → Y , with H0 = f0 and H1 = f1. We call H a proper homotopy between f0
and f1 and write f0

p� f1. We say that f : X → Y is a proper homotopy equivalence

if there exists g : Y → X such that g f
p� idX and f g

p� Y . In that case we say X

and Y are proper homotopy equivalent and write X
p� Y .

Remark 3.3.11 It is immediate that homeomorphisms are both proper maps and
proper homotopy equivalences, but many pairs of spaces that are homotopy equiv-
alent in the traditional sense are not proper homotopy equivalent. For example,
whereas all contractible open manifolds (indeed, all contractible spaces) are homo-
topy equivalent, they are frequently distinguished by their proper homotopy types.

It would be impossible to overstate the importance of “properness” in the study
of noncompact spaces. Indeed, it is useful to think in terms of the proper categories
where the objects are spaces (or certain subclasses of spaces) and the morphisms are
propermaps or proper homotopy classes ofmaps. In the latter case, the isomorphisms
are precisely the proper homotopy equivalences. Most of the invariants defined in
these notes (such as the fundamental group at infinity) can be viewed as functors on
the proper homotopy category of appropriate spaces.

7Yes, this is our third distinct mathematical use of the word proper!.
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The following offers a sampling of the usefulness of propermaps in understanding
noncompact spaces.

Proposition 3.3.12 Let f : X → Y be a proper map between ANRs. Then

(a) f induces a canonical function f ∗ : Ends (X) → Ends (Y ) that may be used to
extend f to a map f : X → Y between Freudenthal compactifications,

(b) if f0, f1 : X → Y are properly homotopic, then f ∗
0 = f ∗

1 , and
(c) if f : X → Y is a proper homotopy equivalence, then f ∗ is a bijection.

Proof Begin with efficient exhaustions {Ki } and {Li } of X and Y , respectively.
The following simple observations make the uniqueness and well-definedness of f ∗
straight-forward:

• By properness, for each i , there is a ki such that f
(
X − Kki

) ⊆ Y − Li ,
• By connectedness, a given component Ui of X − Kki is sent into a unique com-
ponent Vi of Y − Li ,

• By nestedness, each entry W j of (W0, W1, . . .) ∈ E nds (X) determines all entries
of lower index; hence every subsequence of entries determines that element.

Exercise 3.3.13 Fill in the remaining details in the proof of Proposition 3.3.12.

The following observation is a key sources of proper maps and proper homotopy
equivalences.

Proposition 3.3.14 Let f : X → Y be a proper map between connected ANRs
inducing an isomorphism on fundamental groups. Then the lift f̃ : X̃ → Ỹ to uni-
versal covers is a proper map. If f : X → Y is a proper homotopy equivalence, then
f̃ : X̃ → Ỹ is a proper homotopy equivalence.

Corollary 3.3.15 If f : X → Y is a homotopy equivalence between compact con-
nected ANRs, then f̃ : X̃ → Ỹ is a proper homotopy equivalence.

Weprove a simpler Lemma that leads directly to Corollary 3.3.15 and contains the
ideas needed for Proposition 3.3.14. A different approach and more general results
can be found in [45, Sect. 10.1].

Lemma 3.3.16 If k : A → B is a map between compact connected ANRs inducing
an isomorphism on fundamental groups, then the lift k̃ : Ã → B̃ between universal
covers is proper.

Proof (Lemma 3.3.16) Let G denote π1 (A) ∼= π1 (B). Then G acts by covering
transformations (properly, cocompactly and freely) on Ã and B̃ so that k̃ is G-
equivariant. Let K ⊆ Ã and L ⊆ B̃ be compacta such that G K = Ã and GL = B̃;
without loss of generality, arrange that G · int (L) = B̃ and k̃ (K ) ⊆ L . The assertion
follows easily if k̃−1 (L) is compact. Suppose otherwise. Then there exists a sequence
{gi }∞i=1 of distinct element of G for which gi K ∩ k̃−1 (L) = ∅. But then each gi L
intersects L , contradicting properness.

Exercise 3.3.17 Fill in the remaining details for a proof for Proposition 3.3.14.
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3.3.3 Proper Rays

Henceforth, we refer to any proper map r : [a,∞) → X as a proper ray in X . In
particular, we do not require a proper ray to be “straight” or even an embedding.
A reparametrization r ′ of a proper ray r is obtained precomposing r with a home-
omorphism h : [b,∞) → [a,∞). Note that a reparametrization of a proper ray is
proper.

Exercise 3.3.18 Show that the base ray r : [0,∞) → X described in Sect. 3.2.2 is
proper. Conversely, let s : [0,∞) → X be a proper ray, {Ki }∞i=0 an efficient exhaus-
tion of X by compacta, and for each i , Ui = X − Ki . Show that, by omitting an
initial segment [0, a) and then reparametrizing s|[a,∞), we may obtain a correspond-
ing proper ray r : [0,∞) → X with r ([i, i + 1]) ⊆ Ui for each i . In this way, any
proper ray in X can be used as a base ray for a representation of the fundamental
group at infinity.

Declare proper rays r, s : [0,∞) → X to be strongly equivalent if they are prop-
erly homotopic, and weakly equivalent if there is a proper homotopy K : N ×
[0, 1] → X between r |N and s|N. Equivalently, r and s are weakly equivalent if there
is a propermaph of the infinite ladder L [0,∞) = ([0,∞) × {0, 1}) ∪ (N × [0, 1]) into
X , with h|[0,∞)×0 = r and h|[0,∞)×1 = s. Properness ensures that rungs near the end
of L [0,∞) map toward the end of X . When the squares in the ladder can be filled in
with a proper collection of 2-disks in X , a weak equivalence can be promoted to a
strong equivalence.

For the set of all proper rays in X with domain [0,∞), let E (X) be the set of
weak equivalence classes andSE (X) the set of strong equivalence classes. There is
an obvious surjection Φ : SE (X) → E (X). We say that X is connected at infinity
if |E (X)| = 1 and strongly connected at infinity if |SE (X)| = 1.

Exercise 3.3.19 Show that, forANRs, there is a one-to-one correspondence between
E (X) andE nds (X). (Hence, proper rays provide an alternative, andmore geometric,
method for defining the ends of a space.)

Exercise 3.3.20 Show that, for the infinite ladder L [0,∞), Φ : SE
(
L [0,∞)

) →
E

(
L [0,∞)

)
is not injective. In fact SE

(
L [0,∞)

)
is uncountable. (This is the pro-

totypical example where SE (X) differs from E (X) .)

3.3.4 Finite Domination and Homotopy Type

In addition to properness, there are notions related to homotopies and homotopy types
that are of particular importance in the study of noncompact spaces. We introduce
some of those here.

A space Y has finite homotopy type if it is homotopy equivalent to a finite CW
complex; it is finitely dominated if there is a finite complex K and maps u : Y → K
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and d : K → Y such that d ◦ u � idY . In this case, the map d is called a domination
and we say that K dominates Y.

Proposition 3.3.21 Suppose Y is finitely dominated with maps u : Y → K and d :
K → Y satisfying the definition. Then

(a) Hk (Y ; Z) is finitely generated for all k,
(b) π1(Y, y0) is finitely presentable, and
(c) if Y ′ is homotopy equivalent to Y , then Y ′ is finitely dominated.

Proof Since d induces surjections on all homology and homotopy groups, the finite
generation of Hk (Y ; Z) and π1(Y, y0) are immediate. The finite presentability of the
latter requires some elementary combinatorial group theory; an argument (based on
[96]) can be found in [48, Lemma 2]. The final item is left as an exercise.

Exercise 3.3.22 Show that if Y ′ is homotopy equivalent to Y and Y is finitely dom-
inated, then Y ′ is finitely dominated.

The next proposition adds some intuitive meaning to finite domination.

Proposition 3.3.23 An ANR Y is finitely dominated if and only if there exists a self-
homotopy that “pulls Y into a compact subset”, i.e., H : Y × [0, 1] → Y such that
H0 = idY and H1 (Y ) is compact.

Proof If u : Y → K and d : K → Y satisfy the definition of finite domination, then
the homotopy between idY and d ◦ u pulls Y into d (K ).

For the converse, begin by assuming that Y is a locally finite polyhedron. If
H : Y × [0, 1] → X such that H0 = idX and H1 (Y ) is compact, then any compact
polyhedral neighborhood K of H1 (Y ) dominatesY , with u = H1 and d the inclusion.

For the general case, we use some Hilbert cube manifold magic. By Theorem
3.13.1, Y × Q is a Hilbert cube manifold, so by Theorem 3.13.2, Y × Q ≈ P × Q,
where P is a locally finite polyhedron. The homotopy that pulls Y into a compact
set can be used to pull P × Q into a compact subset of the form K × Q, where K
is a compact polyhedron. It follows easily that K dominates P × Q. An application
of Proposition 3.3.21 completes the proof.

At this point, the natural question becomes: Does there exist a finitely dominated
space Y that does not have finite homotopy type? A version of this question was
initially posed by Milnor in 1959 and answered affirmatively by Wall.

Theorem 3.3.24 (Wall’s finiteness obstruction, [96]) For each finitely dominated
space Y , there is a well-defined obstruction σ (Y ), lying in the reduced projective
class group K̃0 (Z [π1 (Y )]), which vanishes if and only if Y has finite homotopy type.
Moreover, all elements of K̃0 (Z [π1 (Y )]) can be realized as finiteness obstructions
of a finitely dominated CW complex.
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A development of Wall’s obstruction is interesting and entirely understandable,
but outside the scope of these notes. The interested reader is referred toWall’s original
paper or the exposition in [38]. For late use,we note that K̃0 determines a functor from
G roups to A belian groups; in particular, if λ : G → H is a group homomorphism,
then there is an induced homomorphism λ∗ : K̃0 (Z [G]) → K̃0 (Z [H ]) between the
corresponding projective class groups.

Example 3.3.25 Every compact ENR A is easily seen to be finitely dominated.
Indeed, if U ⊆ R

n is a neighborhood of A and r : U → A a retraction, let K ⊆ U
be a polyhedral neighborhood of A, d : K → A the restriction, and u the inclusion.

Although this is a nice example, it is made obsolete by a major result of West (see
Proposition 3.12.4), showing that every compact ANR has finite homotopy type.

3.3.5 Inward Tameness

Modulo a slight change in terminology, we follow [21] by defining an ANR X
to be inward tame if, for each neighborhood of infinity N there exists a smaller

neighborhood of infinity N ′ so that, up to homotopy, the inclusion N ′ j
↪→ N factors

through a finite complex K . In other words, there exist maps f : N ′ → K and g :
K → N such that g f � j .

Exercise 3.3.26 Show that if X
p� Y and X is inward tame, then Y is inward tame.

For the remainder of this section, our goals are as follows:

(a) to obtain a more intrinsic and intuitive characterization of inward tameness, and

(b) to clarify the (apparent) relationship between inward tameness and finite domi-
nations.

The following is our answer to Goal (a).

Lemma 3.3.27 An ANR X is inward tame if and only if, for every closed neighbor-
hood of infinity N in X, there is a homotopy S : N × [0, 1] → N with S0 = idN and
S1 (N ) compact (a homotopy pulling N into a compact subset).

Proof For the forward implication, let N ′ be a closed neighborhood of infin-
ity contained in intN so that N ′ ↪→ intN factors through a compact polyhedron
K . Then there is a homotopy H : N ′ × [0, 1] → intN with H0 the inclusion and
H1 (N ′) ⊆ g (K ). Choose an open neighborhood U of N ′ with U ∩ BdX N = ∅,
then let A = intN − U and J be the identity homotopy on A. Since intN is an ANR,
Borsuk’s Homotopy Extension Property (see Proposition 3.12.4) allows us to extend
H ∪ J to a homotopy S : intN × [0, 1] → intN with S0 = idintN . This in turn may
be extended via the identity over BdX N to obtain a homotopy S that pulls N into a
compact subset of itself.

We will return for the converse after addressing Goal (b).
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Recall that an ANR X is sharp at infinity if it contains arbitrarily small closed
ANR neighborhoods of infinity.

Lemma 3.3.28 A space X that is sharp at infinity is inward tame if and only if each
of its sharp neighborhoods of infinity is finitely dominated.

Proof Assume X is sharp at infinity and inward tame. By Lemma 3.3.27 each closed
neighborhood of infinity can be pulled into a compact subset, so by Proposition
3.3.23, those which are ANRs are finitely dominated. The converse is immediate by
the definitions.

Proof (completion of Lemma 3.3.27) Suppose that, for each closed neighborhood
of infinity N in X , there is a homotopy pulling N into a compact subset. Then the
same is true for X × Q. But X × Q is sharp since it is a Hilbert cube manifold,
so by Proposition 3.3.23, each ANR neighborhood of infinity in X × Q is finitely
dominated. By Lemma 3.3.28 and Exercise 3.3.26, X is inward tame.

We tidy up by combining the above Lemmas into a single Proposition, and adding
some mild extensions. For convenience we restrict attention to spaces that are sharp
at infinity.

Proposition 3.3.29 For a space X that is sharp at infinity, the following are equiv-
alent.

(a) X is inward tame,
(b) for every closed neighborhood of infinity N, there is a homotopy H : N ×

[0, 1] → N with H0 = idN and H1 (N ) compact,
(c) there exist arbitrarily small closed neighborhood of infinity N, for which there

is a homotopy H : N × [0, 1] → N with H0 = idN and H1 (N ) compact,
(d) every sharp neighborhood of infinity is finitely dominated,
(e) there exist arbitrarily small sharp neighborhoods of infinity that are finitely

dominated.

Proof The equivalence of (b) and (c) is by a homotopy extension argument like that
found in Lemma 3.3.27. The equivalence of (d) and (e) is similar, but easier.

Remark 3.3.30 The “inward” in inward tame is motivated by conditions (2) and (3)
where the homotopies are viewed as pulling the end of X inward toward the center
of X . Based on the definition and conditions (4) and (5), one may also think of
inward tameness as “finitely dominated at infinity”. We call X absolutely inward
tame if it contains arbitrarily small closed ANR neighborhoods of infinity with finite
homotopy type.

Example 3.3.31 The infinite ladder L [0,∞) is not inward tame, since its ANR neigh-
borhoods of infinity have infinitely generated fundamental groups. Similarly, the
infinite genus 1-ended orientable surface in Fig. 3.5 is not inward tame.
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Fig. 3.5 1-ended infinite
genus surface

Example 3.3.32 Although the Whitehead manifold W 3 itself has finite homotopy
type, it is not inward tame, since the neighborhoods of infinity Ui discussed in
Example 3.2.20 do not have finitely generated fundamental groups (proof would
require some work). The Davis manifolds, on the other hand, are absolutely inward
tame. More on these observations in Sect. 3.5.3.

Exercise 3.3.33 Justify the above assertion about the Davis manifolds.

Example 3.3.34 Every properCAT(0) space X is absolutely inward tame. For inward
tameness, let Np,r be the complement of an open ball B (p; r) and use geodesics to
strong deformation retract Np,r onto the metric sphere S(p; r). If S(p; r) is an ANR,
then it (and thus Np,r ) have finite homotopy type by Proposition 3.12.4. Since this
is not known to be the case, more work is required. For each sharp neighborhood
of infinity N (recall Example 3.3.8), choose r so that X − N ⊆ B (p; r) and let
A = N − Np,r . Then N strong deformation retracts onto A, which is a compactANR.

Before closing this section, we caution the reader that differing notions of “tame-
ness” are scattered throughout the literature. Siebenmann [86] called a 1-ended open
manifold tame if it satisfies our definition for inward tame and also has “stable”
fundamental group at infinity (a concept to be discussed shortly). In [21], the defin-
ition of tame was reformulated to match our current-day definition of inward tame.
Later still, [56, 82] put forth another version of “tame” in which homotopies push
neighborhoods of infinity toward the end of the space—sometimes referring to that
version as forward tame and the [21] version as reverse tame. In an effort to avoid
confusion, this author introduced the term inward tame,while referring to the Quinn-
Hughes-Ranicki version as outward tame.

Within the realm of 3-manifold topology, a tame end is often defined to be one for
which there exists a product neighborhood of infinity N ≈ ∂ N × [0,∞). Remark-
ably, by [94] combined with the 3-dimensional Poincaré conjecture—in the special
case of 3-manifolds—this property, inward tameness, and outward tameness are all
equivalent.

Despite its mildly confusing history, the concept of inward tameness (and its
variants) is fundamental to the study of noncompact spaces. Throughout the reminder
of these notes, its importancewill becomemore andmore clear. In Sect. 3.7.4, wewill
give meaning to the slogan: “an inward tame space is one that acts like a compactum
at infinity”.
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3.4 Algebraic Invariants of the Ends of a Space:
The Precise Definitions

InSect. 3.2.2we introduced the fundamental group at infinity rather informally. In this
section we provide the details necessary to place that invariant on firm mathematical
ground. In the process we begin to uncover subtleties that make this invariant even
more interesting than one might initially expect.

As we progress, it will become apparent that the fundamental group at infinity
(more precisely “pro-π1”) is just one of many “end invariants”. By the end of the
section, we will have introduced others, including pro-πk and pro-Hk for all k ≥ 0.

3.4.1 An Equivalence Relation on the Set of Inverse
Sequences

The inverse limit of an inverse sequence

G0
μ1←− G1

μ2←− G2
μ3←− G3

μ4←− · · ·

of groups is defined by

lim←−{Gi , μi } = {(g0, g1, g2, . . .) | μi (gi ) = gi−1 for all i ≥ 1} .

Although useful at times, passing to an inverse limit often results in a loss of informa-
tion. Instead, one usually opts to keep the entire sequence—or, more accurately, the
essential elements of that sequence. To get a feeling for what is meant by “essential
elements”, let us look at some things that can go wrong.

In Example 3.2.13, we obtained the following representation of the fundamental
group of infinity for R

3.
1 ← 1 ←− 1 ←− · · · . (3.5)

That was done by exhausting R
3 with a sequence

{
iB3

}
of closed i-balls and letting

Ui = R3 − iB3 ≈ S
2 × [i,∞). If instead, R

3 is exhausted with a sequence {Ti } of
solid tori where each Tj lies in Tj+1 as shown in Fig. 3.6 and Vi = R3 − Ti , the
resulting representation of the fundamental group of infinity is

Z
0← Z

0← Z
0← · · · .

By choosing more complicated exhausting sequences (e.g., exhaustions by higher
genus knotted handlebodies), representationswith evenmore complicated groups can
be obtained. It can also be arranged that the bonding homomorphisms are not always
trivial. Yet each of these sequences purports to describe the same thing. Although it
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Fig. 3.6 Exhausting R
3 with

solid tori

seems clear that (3.5) is the preferred representative for the end of R
3, in the case

of an arbitrary 1-ended space, there may be no obvious “best choice”. The problem
is resolved by placing an equivalence relation on the set of all inverse sequences
of groups. Within an equivalence class, certain representatives may be preferable to
others, but each contains the essential information.

For an inverse sequence {Gi , φi }, there is an obvious meaning for subsequence

Gk0

φk0 ,k1←− Gk1

φk1 ,k2←− Gk2

φk2 ,k3←− · · ·

where the bonding homomorphisms φki ,ki+1 are compositions of the φi . Declare
inverse sequences {Gi , φi } and {Hi , ψi } to be pro-isomorphic if they contain subse-
quences that fit into a commuting “ladder diagram”

Gi0 <
λi0,i1 Gi1 <

λi1,i2 Gi2 <
λi2,i3 Gi3 · · ·

Hj0 <
μ j0, j1<

<

Hj1 <
μ j1, j2<

<

Hj2 <
μ j2, j3<

<

· · ·
More broadly, define pro-isomorphism to be the equivalence relation on the col-

lection of all inverse sequences of groups generated by that rule.8

It is immediate that an inverse sequence is pro-isomorphic to each of its subse-
quences; but sequences can appear very different and still be pro-isomorphic.

Exercise 3.4.2 Convince yourself that the various inverse sequences mentioned
above for describing the fundamental group at infinity of R

3 are pro-isomorphic.

Exercise 3.4.3 Show that a pair of pro-isomorphic inverse sequences of groups
have isomorphic inverse limits. Hint: Begin by observing a canonical isomorphism
between the inverse limit of a sequence and that of any of its subsequences.

The next exercise provides a counterexample to the converse of Exercise 3.4.3. It
justifies our earlier assertion that passing to an inverse limit often results in loss of
information.

8The prefix “pro” is derived from “projective”. Some authors refer to inverse sequences and inverse
limits as projective sequences and projective limits, respectively.



3 Ends, Shapes, and Boundaries in Manifold Topology and Geometric Group Theory 67

Exercise 3.4.4 Show that the inverse sequence Z
×2←− Z

×2←− Z
×2←− · · · is not pro-

isomorphic to the trivial inverse sequence 1 ← 1 ←− 1 ←− · · · , but both inverse
limits are trivial.

Exercise 3.4.5 A more slick (if less intuitive) way to define pro-isomorphism is to
declare it to be the equivalence relation generated by making sequences equivalent
to their subsequences. Show that the two approaches are equivalent.

Remark 3.4.6 With a little more work, we could define morphisms between inverse
sequences of groups and arrive at a category pro-G roups, where the objects are
inverse sequences of groups, in which two objects are pro-isomorphic if and only if
they are isomorphic in that category.9

Similarly, for any category C one can build a category pro-C in which the objects
are inverse sequences of objects and morphisms from C and for which the resulting
relationship of pro-isomorphism is similar to the one defined above. All of this is
interesting and useful, but more than we need here. For a comprehensive treatment
of this topic, see [45].

3.4.2 Topological Definitions and Justification
of the Pro-isomorphism Relation

A quick look at the topological setting that leads to multiple inverse sequences
representing the same fundamental group at infinity provides convincing justification
for the definition of pro-isomorphic.

Let U0 ←↩ U1 ←↩ U2 ←↩ · · · and V0 ←↩ V1 ←↩ V2 ←↩ · · · be two cofinal seque-
nces of connected neighborhoods of infinity for a 1-ended space X . By going out
sufficiently far in the second sequence, one arrives at a Vk0 contained in U0. Sim-
ilarly, going out sufficiently far in the initial sequence produces a U j1 ⊆ Vk0 . (For
convenience, let j0 = 0.) Alternating back and forth produces a ladder diagram of
inclusions

Vj0 < ⊃ Vj1 < ⊃ Vj2 < ⊃ · · ·

Uk0 < ⊃

<

⊃<

⊃

Uk1 < ⊃

<

⊃<

⊃

Uk2

<

⊃

· · ·
. (3.6)

Applying the fundamental group functor to that diagram (ignoring base points for
the moment) results in a diagram

9We are not being entirely forthright here. In the literature, pro-Groups usually refers to a larger
category consisting of “inverse systems” of groups indexed by arbitrary partially ordered sets.
We have described a subcategory, Tow-Groups, made up of those objects indexed by the natural
numbers—also known as “towers”.
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π1(Vj0) < π1(Vj1) < π1(Vj2) < · · ·

π1(Uk0) <
<

<

π1(Uk1) <
<

<

π1(Uk2)

<

· · ·
(3.7)

showing that

π1 (U0)
λ1←− π1 (U1)

λ2←− π1 (U2)
λ3←− · · ·

and
π1 (V0)

μ1←− π1 (V1)
μ2←− π1 (V2)

μ3←− · · ·

are pro-isomorphic.
A close look at base points and base rays is still to come, but recognizing their

necessity, we make the following precise definition. For a pair (X, r) where r is a
proper ray in X , let pro-π1 (ε(X), r) denote the pro-isomorphism class of inverse
sequences of groups which contains representatives of the form (3.1), where {Ui }∞i=0
is a cofinal sequence of neighborhoods of infinity, and r has been modified (in the
manner described in Exercise 3.3.18) so that r ([i,∞)) ⊆ Ui for each i ≥ 0. From
now on, when we refer to the fundamental group at infinity (based at r) of a space
X , we mean pro-π1 (ε(X), r).

With the help of Exercise 3.4.3, we also define the Čech fundamental group of
the end of X (based at r), to be the inverse limit of pro-π1 (ε(X), r). It is denoted
by π̌1 (ε(X), r).

Exercise 3.4.9 Fill in the details related to base points and base rays needed for the
existence of diagram (3.7).

Remark 3.4.10 Now that pro-π1 (ε(X), r) is well-defined and (hopefully) well-
understood for 1-ended X , it is time to point out that everything done thus far works
for multi-ended X . In those situations, the role of r is more pronounced. In the
process of selecting base points for a sequence of neighborhoods of infinity {Ui }, r
determines the component of each Ui that contributes to pro-π1 (ε(X), r). So, if r
and s point to different ends of X , pro-π1 (ε(X), r) and pro-π1 (ε(X), s) reflect infor-
mation about entirely different portions of X . This observation is just the beginning;
a thorough examination of the role of base rays is begun in Sect. 3.4.6.

3.4.3 Other Algebraic Invariants of the End of a Space

By now it has likely occurred to the reader that π1 is not the only functor that can
be applied to an inverse sequence of neighborhoods of infinity. For any k ≥ 1 and
proper ray r , define pro-πk (ε(X), r) in the analogous manner. By taking inverse
limits we get the Čech homotopy groups π̌k (ε(X), r) of the end of X determined
by r . Similarly, we may define pro-π0 (ε(X), r) and π̌0 (ε(X), r); the latter is just a
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set (more precisely a pointed set, i.e., a set with a distinguished base point), and the
former an equivalence class of inverse sequences of (pointed) sets.

By applying the homology functor we obtain pro-Hk (ε(X); R) and Ȟk (ε(X); R)

for each non-negative integer k and arbitrary coefficient ring R, the latter being called
the Čech homology of the end of X . In this context, no base ray is needed!

If instead we apply the cohomology functor, a significant change occurs. The
contravariant nature of H k produces direct sequences

H k (U0; R)
λ1−→ H k (U1; R)

λ2−→ H k (U2; R)
λ3−→ · · ·

of cohomology groups. An algebraic treatment of such sequences, paralleling
Sect. 3.4.1, and a standard definition of direct limit, allow us to define
ind-H∗ (ε(X); R) and Ȟ∗ (ε(X); R).

Exercise 3.4.11 Show that for ANRs there is a one-to-one correspondence between
E nds (X) and π̌0 (ε(X)r).

3.4.4 End Invariants and the Proper Homotopy Category

In Remark 3.3.11, we commented on the importance of proper maps and proper
homotopy equivalences in the study of noncompact spaces. We are now ready to
back up that assertion. The following Proposition could be made even stronger with
a discussion of morphisms in the category of pro-G roups, but for our purposes, it
will suffice.

Proposition 3.4.12 Let f : X → Y be a proper homotopy equivalence and r a
proper ray in X. Then

(a) pro-Hk (ε(X); R) is pro-isomorphic to pro-Hk (ε(Y ); R) for all k and every
coefficient ring R,

(b) pro-π0 (ε(X, r)) is pro-isomorphic to pro-π0 (ε(Y, f ◦ r)) as inverse sequences
of pointed sets, and

(c) pro-πk (ε(X), r) is pro-isomorphic to pro-πk (ε(Y ), f ◦ r) for all k ≥ 1.

Corollary 3.4.13 A proper homotopy equivalence f : X → Y induces isomor-
phisms between Ȟk (ε(X); R) and Ȟk (ε(Y ); R) for all k and every coefficient ring R.
It induces a bijection between π̌0 (ε(X), r) and π̌0 (ε(Y ), f ◦ r) and isomorphisms
between π̌k (ε(X), r) and π̌k (ε(Y ), f ◦ r) for all k ≥ 1.

Proof (Sketch of the proof of Proposition 3.4.12) Let g : Y → X be a proper inverse
for f and let H and K be proper homotopies between g ◦ f and idX and f ◦ g
and idY , respectively. By using the properness of H and K and a back-and-forth
strategy similar to the one employed in obtaining diagram (3.6), we obtain systems
of neighborhoods of infinity {Ui } in X and {Vi } in Y that fit into a ladder diagram
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Vj0 < ⊃ Vj1 < ⊃ Vj2 < ⊃ · · ·

Uk0 < ⊃

<

<

Uk1 < ⊃

<

<

Uk2

<

· · ·
. (3.8)

Unlike the earlier case, the up and down arrows are not inclusions, but rather restric-
tions of f and g. Furthermore, the diagram does not commute on the nose; instead, it
commutes up to homotopy. But that is enough to obtain a commuting ladder diagram
of homology groups, thus verifying (a). The same is true for (b), but on the level of
sets. Assertion (c) is similar, but a little additional care must be taken to account for
the base rays.

3.4.5 Inverse Mapping Telescopes and a Topological
Realization Theorem

It is natural to askwhich inverse sequences (more precisely, pro-isomorphismclasses)
can occur as pro-π1 (ε(X), r) for a space X . Here we show that, even if restricted to
very nice spaces, the answer is “nearly all of them”. Later we will see that, in certain
important contexts the answer becomes much different. But for now we create a
simple machine for producing wide range of examples.

Let

(K0, p0)
f1←− (K1, p1)

f2←− (K2, p2)
f3←− · · · (3.9)

be an inverse sequence of pointed finite CW complexes and cellular maps. For each
i ≥ 1, let Mi be a copy of the mapping cylinder of fi ; more specifically

Mi = (Ki × [i − 1, i]) � (Ki−1 × {i − 1})/ ∼i

where ∼i is the equivalence relation generated by the rule: (k, i − 1) ∼i ( fi (k), i −
1) for each k ∈ Ki . Then Mi contains a canonical copy Ki−1 × {i − 1} of Ki−1 and a
canonical copy Ki × {i} of Ki ; and Mi−1 ∩ Mi = Ki−1 × {i − 1}. The infinite union
Tel ({Ki , fi }) = ⋃ ∞

i=1Mi , with the obvious topology is called themapping telescope
of (3.9). See Fig. 3.7.

Fig. 3.7 The mapping
telescope Tel ({Ki , fi }) K0

M1

K1

M2

K2

M3

K3
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For each x ∈ Ki , the (embedded) copy of the interval {x} × [i − 1, i] in Mi is
called a mapping cylinder line. The following observations are straightforward.

• Tel ({Ki , fi })may be viewed as the union of infinite and dead end “telescope rays”,
each of which begins in K0 × {0} and intersects a given Mi in a mapping cylinder
line or not at all. The dead end rays and empty intersections occur only when a
point k ∈ K j is not in the image of f j+1; whereas, the infinite telescope rays are
proper and in one-to-one correspondence with lim←−{Ki , fi },

• by choosing a canonical set of strong deformation retractions of the above rays to
their initial points, one obtains a strong deformation retraction of Tel ({Ki , fi }) to
K0 × {0}.

• letting Uk = ⋃ ∞
i=k+1Mi provides a cofinal sequence of neighborhoods of infin-

ity. By a small variation on the previous observation each Ki × {i} ↪→ Ui is a
homotopy equivalence. (So Tel ({Ki , fi }) is absolutely inward tame.)

• letting r be the proper ray consisting of the cylinder lines connecting each pi to
pi−1, we obtain a representation of pro-π1 (ε(X), r) which is pro-isomorphic to
the sequence

π1 (K0, p0)
f1#←− π1 (K1, p1)

f2#←− π1 (K2, p2)
f3#←− · · ·

• in the same manner, representations of pro-πk (ε(X), r) and pro-Hk (ε(X), Z) can
be obtained by applying the appropriate functor to sequence (3.9).

Proposition 3.4.16 For every inverse sequence G0
μ1←− G1

μ2←− G2
μ3←− · · · of

finitely presented groups, there exists a 1-ended, absolutely inward tame, locally
finite CW complex X and a proper ray r such that pro-π1 (ε(X), r) is represented by
that sequence. If desired, X can be chosen to be contractible.

Proof For each i , let Ki be a presentation 2-complex for Gi and let fi : Ki → Ki−1

be a cellular map that induces μi . Then let X = Tel ({Ki , fi }).
In order to make X contractible, one simply adds a trivial space K−1 = {p−1} to

the left end of the sequence of complexes.

Example 3.4.17 An easy application of Proposition 3.4.16 produces a pro-

π1 (ε(X), r) equal to the inverse sequence Z
×2←− Z

×2←− Z
×2←− · · · discussed in

Exercise (3.4.4). For each i , let S
1
i be a copy of the unit circle and fi : S

1
i → S

1
i−1

the standard degree 2 map. Then X = Tel
({

S
1
i , fi

})
is 1-ended and has the desired

fundamental group at infinity.

Proposition 3.4.18 For every inverse sequence G0
μ1←− G1

μ2←− G2
μ3←− · · · of

finitely presented groups and n ≥ 6, there exists a 1-ended open n-manifold Mn such
that pro-π1 (Mn, r) is represented by that sequence. If a (noncompact) boundary is
permitted, and n ≥ 7, then Mn can be chosen to be contractible.

Proof Let X = Tel ({Ki , fi }) as constructed in the previous Proposition. With some
extra care, arrange for X to be a simplicial 3-complex, and choose a proper PL
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embedding into R
n+1. Let N n+1 be a regular neighborhood of that embedding. It is

easy to see that pro-π1(N n+1, r) is identical to pro-π1 (ε(X), r), so if boundary is
permitted, we are finished. If not, let Mn = ∂ N n+1. By general position, the base ray
r may be slipped off X and then isotoped to a ray r ′ in Mn . Also by general position,
loops and disks in N n+1 may be slipped off X and then pushed into Mn . In doing so,
one sees that pro-π1

(
Mn, r ′) is pro-isomorphic to pro-π1

(
N n+1, r

)
.

In the study of compact manifolds, results like Poincaré duality place significant
restrictions on the topology of closed manifolds. A similar phenomenon occurs in
the study of noncompact manifolds. In that setting, it is the open manifolds (and
to a similar extent, manifolds with compact boundary) that are the more rigidly
restricted. If an open manifold is required to satisfy additional niceness conditions,
such as contractibility, finite homotopy type, or inward tameness, even more rigidity
comes into play. This is at the heart of the study of noncompact manifolds, where a
goal is to obtain strong conclusions about the structure of a manifold from modest
hypotheses.

Exercise 3.4.19 Show that an inward tame manifold Mn with compact boundary
cannot have infinitely many ends. (Hint: Homology with Z2-coefficients simplifies
the algebra and eliminates issues related to orientability.) Show that this result fails if
we omit the tameness hypothesis or if Mn is permitted to have noncompact boundary.

Exercise 3.4.20 Show that the inverse sequence realized in Example 3.4.17 cannot
occur as pro-π1 (ε(Mn), r) for a contractible open manifold. Hint: A look ahead to
Sect. 3.5.1 may be helpful.

The trick used in the proof of Proposition 3.4.16 for obtaining a contractible map-
ping telescope with the same end behavior as one that is homotopically nontrivial is
often useful. Given an inverse sequence {Ki } of finite CW complexes, the augmented
inverse sequence {Ki , fi }• is obtained by inserting a singleton space at the begin-
ning of {Ki , fi }; the corresponding contractible mapping telescope CTel ({Ki , fi })
is contractible, but identical to Tel ({Ki , fi }) at infinity.

3.4.6 On the Role of the Base Ray

We now begin the detailed discussion of the role of base rays in the fundamental
group at infinity—a topic more subtle and more interesting than one might expect.

As hinted earlier, small changes in base ray, such as reparametrization or deletion
of an initial segment, do not alter pro-π1 (ε(X), r); this follows from a more general
result to be presented shortly. On the other hand, large changes can obviously have
an impact. For example, if X is multi-ended and r and s point to different ends, then
pro-π1 (ε(X), r) and pro-π1 (ε(X), s) provide information about different portions
of X—much as the traditional fundamental group of a non-path-connected space
provides different information when the base point is moved from one component
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to another. When r and s point to the same end of X , it is reasonable to expect
pro-π1 (ε(X), r) and pro-π1 (ε(X), s) to be pro-isomorphic—but this is not the case
either! At the heart of the matter is the difference between the set of ends E (X) and
the set of strong ends SE (X). The following requires some effort, but the proof is
completely elementary.

Proposition 3.4.21 If proper rays r and s in X are strongly equivalent, i.e., properly
homotopic, then pro-π1 (ε(X), r) and pro-π1 (ε(X), s) are pro-isomorphic.

Corollary 3.4.22 If X is strongly connected at infinity, i.e., |SE (X)| = 1, then
pro-π1 (ε (X)) is a well-defined invariant of X.

Exercise 3.4.23 Prove Proposition 3.4.21.

Remark 3.4.24 There are useful analogies between the role played by base points
in the fundamental group and that played by base rays in the fundamental group at
infinity:

• The fundamental group is a functor from the category of pointed spaces, i.e.,
pairs (Y, p), where p ∈ Y , to the category of groups. In a similar manner, the
fundamental group at infinity is a functor from the proper category of pairs (X, r),
where r is a proper ray in X , to the category pro-G roups.

• If there is a path α in Y from p to q in Y , there is a corresponding isomorphism
α̂ : π1 (Y, p) → π1 (Y, q). If there is a proper homotopy in X between proper rays
r and s, then there is a corresponding pro-isomorphism between pro-π1 (ε(X), r)

and pro-π1 (ε(X), s).
• Even for connected Y theremay be no relationship betweenπ1 (Y, p) andπ1 (Y, q)

when there is no path connecting p to q. Similarly, for a 1-ended space X , pro-
π1 (ε(X), r) and pro-π1 (ε(X), s)may be very different if there is no proper homo-
topy from r to s.

We wish to describe a 1-ended Y with proper rays r and s for which pro-
π1 (ε(X), r) and pro-π1 (ε(X), s) are not pro-isomorphic. We begin with an inter-
mediate space.

Example 3.4.25 (Another space with SE (X) = E (X)) Let X = CTel
({

S
1
i , fi

})

where each S
1
i is a copy of the unit circle and fi : S

1
i → S

1
i−1 is the standard degree 2

map (see Example 3.4.17). If pi is the canonical base point for S
1
i and fi (pi ) = pi−1

for all i , we may construct a “straight” proper ray r by concatenating the mapping
cylinder lines αi connecting pi and pi−1. Construct a second proper ray s by splicing
between each αi and αi+1 a loop βi that goes once in the positive direction around
S
1
i ; in other words, s = α0 · β0 · α1 · β1 · α2 · · · · . With some effort, it can be shown

that r and s are not properly homotopic. That observation is also a corollary of the
next example.

Example 3.4.26 For each i , let Ki be a wedge of two circles and let gi : Ki → Ki−1

send one of those circles onto itself by the identity and the other onto itself via the
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standard degree 2 map. Let Y = CTel ({Ki , gi }). This space may be viewed as the
union of X from Example 3.4.25 and an infinite cylinder S

1 × [0,∞), coned off at
the left end, with the union identifying the ray r with a standard ray in the product.
By viewing X as a subset of Y , view r and s as proper rays in Y.

Choose neighborhoods of infinity Ui as described in Sect. 3.4.5. Each has fun-
damental group that is free of rank 2. If we let Fi be the free group of rank 2 with
formal generators a2i and b then, pro-π1 (ε(Y ), r) may be represented by

〈a, b〉 ←↩
〈
a2, b

〉 ←↩
〈
a4, b

〉 ←↩ · · · .

Similarly pro-π1 (ε(Y ), s) may be represented by

〈a, b〉 λ1←− 〈
a2, b

〉 λ2←− 〈
a4, b

〉 λ3←− · · · .

where λi
(
a2i

) = a2i and λi (b) = a2i ba−2i . Taking inverse limits, produces
π̌1 (ε(Y ), r) = 〈b〉 ∼= Z and π̌1 (ε(Y ), s) = 1. Hence pro-π1 (ε(Y ), r) and pro-
π1 (ε(Y ), s) are not pro-isomorphic.

Exercise 3.4.27 Verify the assertions made in each of the two previous examples.

The fact that a 1-ended space can have multiple fundamental groups at infinity
might lead one to doubt the value of that invariant. Over the next several sections we
provide evidence to counter that impression. For example, we will investigate some
properties of pro-π1 that persist under change of base ray. Furthermore, we will see
that in some of the most important situations, there is (verifiably in many cases and
conjecturally in others) just one proper homotopy class of base ray—causing the
ambiguity to vanish. As an example, the following important question is open.

Conjecture 3.4.28 (The Manifold Semistability Conjecture–version 1) The univer-
sal cover of a closed aspherical manifold of dimension greater than 1 is always
strongly connected at infinity.

We stated the above problem as a conjecture because it is a special case of the
following better-known conjecture. For now the reader can guess at the necessary
definitions. The meaning will be fully explained in Sect. 3.6. The naming of these
conjectures will be explained over the next couple of pages.

Conjecture 3.4.29 (The Semistability Conjecture-version 1) Every finitely pre-
sented 1-ended group is strongly connected at infinity.

3.4.7 Flavors of Inverse Sequences of Groups

When dealing with pro-isomorphism classes of inverse sequences of groups, general
properties are often more significant than the sequences themselves. In this section
we discuss several such properties.
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Let G0
μ1←− G1

μ2←− G2
μ3←− G2

μ4←− · · · be an inverse sequence of groups. We
say that {Gi , μi } is
• pro-trivial if it is pro-isomorphic to the trivial inverse sequence 1 ← 1 ← 1 ←
1 ← · · · ,

• stable if it is pro-isomorphic to an inverse sequence {Hi , λi } where each λi is an
isomorphism, or equivalently, a constant inverse sequence {H, idH },

• semistable (or Mittag-Leffler, or pro-epimorphic) if it is pro-isomorphic to an
{Hi , λi }, where each λi is an epimorphism, and

• pro-monomorphic if it is pro-isomorphic to an {Hi , λi }, where each λi is a
monomorphism.

The following easy exercise will help the reader develop intuition for the above
definitions, and for the notion of pro-isomorphism itself.

Exercise 3.4.30 Show that an inverse sequence of non-injective epimorphisms can-
not be pro-monomorphic, and that an inverse sequence of non-surjective monomor-
phisms cannot be semistable.

Exercise 3.4.31 Show that if {Gi , μi } is stable and thus pro-isomorphic to some
{H, idH }, then H is well-defined up to isomorphism. In that case H ∼= lim←−{Gi , μi }.

A troubling aspect of the above definitions is that the concepts appear to be
extrinsic, requiring a second unseen sequence, rather than being intrinsic to the given
sequence. A standard result corrects that misperception.

Proposition 3.4.32 An inverse sequence of groups {Gi , λi } is stable if and only if it
contains a subsequence for which “passing to images” results in an inverse sequence
of isomorphisms, in other words: we may obtain a diagram of the following form,
where all unlabeled homomorphisms are obtained by restriction or inclusion.

Gi0 <
λi0,i1 Gi1 <

λi1,i2 Gi2 <
λi2,i3 Gi3 · · ·

Im
(
λi0,i1

)
<

∼=<

<

⊃

Im
(
λi1,i2

)
<

∼=<

<

⊃

Im
(
λi2,i3

)
<

∼=<

<

⊃

· · ·
(3.10)

Analogous statements are true for the pro-epimorphic and pro-monomorphic sequen-
ces; in those cases we require maps in the bottom row of (3.10) to be epimorphisms,
and monomorphisms, respectively.
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Proof of the above is an elementary exercise, as is the following:

Proposition 3.4.34 An inverse sequence is stable if and only if it is both pro-epi-
morphic and pro-monomorphic.

Exercise 3.4.35 Prove the previous two Propositions.

3.4.8 Some Topological Interpretations of the Previous
Definitions

It is common practice to characterize simply connected spaces topologically (without
mentioning theword ‘group’), as path-connected spaces inwhich every loop contracts
to a point. In that spirit, we provide topological characterizations of spaces whose
fundamental groups at infinity possess some of the algebraic properties discussed in
the previous section.

Proposition 3.4.36 For a 1-ended space X and a proper ray r , pro-π1 (ε(X), r) is

(a) pro-trivial if and only if: for any compact C ⊆ X, there exists a larger compact
set D such that every loop in X − D contracts in X − C,

(b) semistable if and only if: for any compact C ⊆ X, there exists a larger compact
set D such that, for every still larger compact E, each pointed loop α in X − D
based on r can be homotoped into X − E via a homotopy into X − C that slides
the base point along r, and

(c) pro-monomorphic if and only if there exists a compact C ⊆ X such that, for
every compact set D containing C, there exists a compact E such that every
loop in X − E that contracts in X − C contracts in X − D.

Proof This is a straightforward exercise made easier by applying Proposition 3.4.32.

Note that the topological condition in part (a) of Proposition 3.4.36 makes no
mention of a base ray. So (for 1-ended spaces) the property of having pro-trivial
fundamental group at infinity is independent of base ray; such spaces are called
simply connected at infinity. Similarly, the topological condition in (c) is independent
of base ray; 1-ended spaces with that property are called pro-monomorphic at infinity
(or simply pro-monomorphic). And despite the (unavoidable) presence of a base ray
in the topological portionof (b), there does exist an elegant anduseful characterization
of spaces with semistable pro-π1.

Proposition 3.4.37 A 1-ended space X is strongly connected at infinity if and only
if there exists a proper ray r for which pro-π1 (ε(X), r) is semistable.

Proof (Sketch) First we outline a proof of the reverse implication. Let r be as in
the hypothesis and let s be another proper ray. By 1-endedness, there is a proper
map h of the infinite ladder L [0,∞) = ([0,∞) × {0, 1}) ∪ (N × [0, 1]) into X , with
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h|[0,∞)×0 = r and h|[0,∞)×1 = s. For convenience, choose an exhaustion of X by
compacta ∅ = C0 ⊆ C1 ⊆ C2 ⊆ · · · with the property that the subladder L [i,∞) is
sent into Ui = X − Ci for each i ≥ 1. As a simplifying hypothesis, assume that all
bonding homomorphisms in the corresponding inverse sequence

π1 (X, p0)
λ1←− π1 (X − C1, p1)

λ2←− π1 (X − C2, p2)
λ3←− · · · (3.11)

are surjective. (For a complete proof, one should instead apply Proposition 3.4.36
inductively.)

We would like to extend h to a proper map of [0,∞) × [0, 1] into X . To that end,
let �i be the loop in X corresponding to ri+1 ∪ ei+1 ∪ s−1

i+1 ∪ e−1
i in L [0,∞). (Here

ri+1 = r |[i,i+1] and si+1 = s|[i,i+1]; e j = h| j×[0,1], the j th “rung” of the ladder.)
If each �i contracts in X we can use those contractions to extend h to [0,∞) ×

[0, 1]; if each �i contracts in X − Ci the resulting extension is proper (as required).
The idea of the proof is to arrange those conditions. Begin inductively with �0. If
this loop does not contract in X , we make it so by rechoosing e1 as follows: choose
a loop α1 based at p1 so that r1 · α1 · r−1

1 is equal to �0 in π1 (X, p0). Replace e1
with the rung ê1 = α−1

1 · e1. The newly modified �0 contracts in X , as desired. Now
move to the correspondingly modified �1 viewed as an element of π1 (X − C1, p1).
If it is nontrivial, choose a loop α2 in X − C2 based at p2 such that λ2 (α2) = r2 ·
α2 · r−1

2 = �1. Replacing e2 with ê2 = α−1
2 · e2 results in a further modified �1 that

contracts in X − C1. Continue this process inductively to obtain a proper homotopy
H : [0,∞) × [0, 1] → X between r and s.

For the reverse implication, assume that (3.11) is not semistable. One creates a
proper ray s not properly homotopic to r by affixing to each vertex pi of r a loop
in βi in X − Ci that that does not lie in the image of π1 (X − Ci+1, pi+1). More
specifically

s = r1 · α1 · r2 · α2 · r3 · α3 · · · · .

As a result of Proposition 3.4.37, a 1-ended space X may be called semistable at
infinity [respectively, stable at infinity] if pro-π1 (ε(X), r) is semistable [respectively,
stable] for some (and hence any) proper ray r . Alternatively, a 1-ended space is
sometimes defined to be semistable at infinity (or just semistable) if all proper rays
in X are properly homotopic. In those cases we often drop the base ray and refer to
the homotopy end invariants simply as pro-π1 (ε (X)) and π̌1 (ε (X)).

Multi-ended spaces are sometimes called semistable if, whenever two proper
rays determine the same end, they are properly homotopic; or equivalently, when
Φ : SE (X) → E (X) is bijective.

Remark 3.4.38 By using the sketched proof of Proposition 3.4.37 as a guide, it
is not hard to see why a 1-ended space X that is not semistable will necessarily
have uncountable SE (X). A method for placingSE (X) into an algebraic context
involves the derived limit or ‘lim1 functor’. More generally, lim1 {Gi , μi } is an
algebraic construct that helps to recover the information lost when one passes from
an inverse sequence to its inverse limit. See [45, Sect. 11.3].
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3.5 Applications of End Invariants to Manifold Topology

Although a formal study of pro-homotopy and pro-homology of the ends of noncom-
pact space is not a standard part of the education of most manifold topologists, there
are numerous important results and open questions best understood in that context. In
this section we discuss several of those, beginning with classical results and moving
toward recent work and still-open questions.

3.5.1 Another Look at Contractible Open Manifolds

We now return to the study of contractible openmanifolds begun in Sect. 3.2.Wewill
tie up some loose ends from those earlier discussions—most of which focused on
specific examples. We also present some general results whose hypotheses involve
nothing more than the fundamental group at infinity.

Theorem 3.5.1 (Whitehead’s Exotic Open 3-manifold) There exists a contractible
open 3-manifold not homeomorphic to R

3.

Proof We wish to nail down a proof that the Whitehead contractible 3-manifoldW 3

described in Sect. 3.2.1 is not homeomorphic to R
3. We do that by showing W 3

is not simply connected at infinity. Using the representation of pro-π1
(
ε(W 3), r

)

obtained in Sect. 3.2.2 and applying the rigorous development from Sect. 3.4, we can
accomplish that task with an application of Exercise 3.4.30.

Theorem 3.5.2 The open Newman contractible n-manifolds are not homeomorphic
to R

n. More generally, any compact contractible n-manifold with non-simply con-
nected boundary has interior that is not homeomorphic to R

n.

Proof Combine our observations from Example 3.2.16 with Exercise 3.4.31—or
simply observe that the topological characterization of simply connected at infinity
fails.

The next result establishes simple connectivity at infinity as the definitive property
in determiningwhether a contractible openmanifold is exotic. The initial formulation
is due toStallings [88],whoproved it for PLmanifolds of dimension≥5; his argument
is clean, elegant, and highly recommended—but outside the scope of these notes.
That result was extended to all topological manifolds of dimension ≥5 by Luft [61].
Extending the result to dimensions 3 and 4 requires the Fields Medal winning work
of Perelman and Freedman [41], respectively. The foundation for the 3-dimensional
result was laid by C.H. Edwards in [33].

Theorem 3.5.3 (Stallings’ Characterization ofRn) A contractible open n-manifold
(n ≥ 3) is homeomorphic to R

n if and only if it is simply connected at infinity.



3 Ends, Shapes, and Boundaries in Manifold Topology and Geometric Group Theory 79

Exercise 3.5.4 Prove the following corollary to Theorem 3.5.3: If W n is a con-
tractible open manifold, then W n × R ≈ R

n+1.

The next application of the fundamental group at infinity returns us to another
prior discussion.

Theorem 3.5.5 (Davis’ Exotic Universal Covering Spaces) For n ≥ 4, there exist
closed aspherical n-manifolds whose universal covers are not homeomorphic to R

n.

Proof Here we provide only the punch-line to this major theorem. As noted in
Sect. 3.2.1 Davis’ construction produces closed aspherical n-manifolds Mn with uni-
versal covers homeomorphic to the infinite open sums described in Example 3.2.5
and Theorem 3.2.6. As observed in Example 3.2.17, pro-π1

(
ε(M̃n), r

)
may be rep-

resented by

G � G ∗ G � G ∗ G ∗ G � G ∗ G ∗ G ∗ G � · · · , (3.12)

a sequence that is semistable but not pro-monomorphic. An application of Exercise
3.4.30 verifies that M̃n is not simply connected at infinity.

After Davis showed that aspherical manifolds need not be covered by R
n , many

questions remained. With the 3-dimensional version unresolved (at the time), it was
asked whether the Whitehead manifold could cover a closed 3-manifold. In higher
dimensions, people wondered whether a Newman contractible open manifold (or the
interior of another compact contractible manifold) could cover a closed manifold.
Myers [76] resolved the first question in the negative, before Wright [100] proved a
remarkably general result in which the fundamental group at infinity plays the central
role.

Theorem 3.5.7 (Wright’s Covering Space Theorem) Let Mn be a contractible open
n-manifold with pro-monomorphic fundamental group at infinity. If Mn admits a
nontrivial action by covering transformations, then Mn ≈ R

n.

Corollary 3.5.8 Neither the Whitehead manifold nor the interior of any compact
contractible manifold with non-simply connected boundary can cover a manifold
nontrivially.

Wright’s theorem refocuses attention on a question mentioned earlier.

Conjecture 3.5.9 (The Manifold Semistability Conjecture) Must the universal
cover of every closed aspherical manifold have semistable fundamental group at
infinity?

More generally we can ask:

Vague Question: Must all universal covers of aspherical manifolds be similar to the
Davis examples?
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In discussions still to come, we will make this vague question more precise. But,
before moving on, we note that in 1991 Davis and Januszkiewicz [28] invented
a new strategy for creating closed aspherical manifolds with exotic universal covers.
Although that strategy is very different from Davis’ original approach, the result-
ing exotic covers are remarkably similar. For example, their fundamental groups at
infinity are precisely of the form (3.12).

Exercise 3.5.10 Theorem3.5.3 suggests that the essence of a contractible openman-
ifold is contained in its fundamental group at infinity. Show that every contractible
open n-manifold W n has the same homology at infinity asR

n . In particular, show that
for all n ≥ 2, pro-Hi (W n; Z) is stably Z if i = 0 or n − 1 and pro-trivial otherwise.
Note: This exercise may be viewed as a continuation of Exercise 3.3.3.

3.5.2 Siebenmann’s Thesis

Theorem 3.5.3 may be viewed as a classification of those open manifolds that can
be compactified to a closed n-ball by addition of an (n − 1)-sphere boundary. More
generally, one may look to characterize open manifolds that can be compactified to
a manifold with boundary by addition of a boundary (n − 1)-manifold. Since the
boundary of a manifold Pn always has a collar neighborhood N ≈ ∂ Pn × [0, 1],
an open manifold Mn allows such a compactification if and only if it contains a
neighborhood of infinity homeomorphic to an open collar Qn−1 × [0, 1), for some
closed (n − 1)-manifold Qn−1. We refer to open manifolds of this sort as being
collarable.

The following shows that, to characterize collarable open manifolds, it is not
enough to consider the fundamental group at infinity.

Example 3.5.11 Let Mn be the result of a countably infinite collection of copies of
S
2 × S

n−2 connect-summed to R
n along a sequence of n-balls tending to infinity

(see Fig. 3.8). Provided n ≥ 4, Mn is simply connected at infinity. Moreover, since
a compact manifold with boundary has finite homotopy type, and since the addition
of a manifold boundary does not affect homotopy type, this Mn admits no such
compactification.

Fig. 3.8 R
n

connect-summed with
infinitely many S

2 × S
n−2
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For manifolds that are simply connected at infinity, the necessary additional
hypothesis is as simple as one could hope for.

Theorem 3.5.12 (See [15]) Let W n be a 1-ended open n-manifold (n ≥ 6) that is
simply connected at infinity. Then W n is collarable if and only if H∗ (W ; Z) is finitely
generated.

For manifolds not simply connected at infinity, the situation is more complicated,
but the characterization is still remarkably elegant. It is one of the best-known and
most frequently applied theorems in manifold topology.

Theorem 3.5.13 (Siebenmann’s Collaring Theorem) A 1-ended n-manifold W n

(n ≥ 6) with compact (possibly empty) boundary is collarable if and only if

(a) W n is inward tame,
(b) pro-π1 (ε(W n)) is stable, and
(c) σ∞ (W n) ∈ K̃0

(
Z

[
π̌1 (ε (X))

])
is trivial.

Remark 3.5.14 (1) Under the assumption of hypotheses (a) and (b), σ∞ (W n) is
defined to be theWall finiteness obstruction σ (N ) of a single clean neighborhood of
infinity, chosen so that its fundamental group (under inclusion) matches π̌1 (ε (X)).
A more general definition for σ∞ (W n)—one that can be used when pro-π1 (ε(W n))

is not stable—will be introduced in Sect. 3.5.3.

(2) Together, assumptions (a) and (c) are equivalent to assuming that W n is absolutely
inward tame. That would allow for a simpler statement of the Collaring Theorem;
however, the power of the given version is that it allows the finiteness obstruction to be
measured on a single (appropriately chosen) neighborhood of infinity. Furthermore,
in a number of important cases, σ∞ (W n) is trivial for algebraic reasons. That is the
case, for example, when π̌1 (ε (X)) is trivial, free, or free abelian, by a fundamental
result of algebraic K-theory found in [5].

(3) Due to stability, no base ray needs to be mentioned in Condition (b). Use of the
Čech fundamental group in Condition (c) is just a convenient way of specifying the
single relevant group implied by Condition (b) (see Exercise 3.4.31).

(4) Since an inward tamemanifoldwith compact boundary is necessarily finite-ended
(see Exercise 3.4.19), the 1-ended hypothesis is easily eliminated from the above by
requiring each end to satisfy (b) and (c), individually.

(5) By applying [41], Theorem 3.5.13 can be extended to dimension 5, provided
π̌1 (ε (X)) is a “good” group, in the sense of [42]; whether the theorem holds for all
5-manifolds is an open question. Meanwhile, Kwasik and Schultz [60] have shown
that Theorem 3.5.13 fails in dimension 4; partial results in that dimension can be
found in [42, Sect. 11.9]. By combining the solution to the Poincaré Conjecture with
work by Tucker [94], one obtains a strong 3-Dimensional Collaring Theorem—only
condition (1) is necessary. For classical reasons, the same is true for n = 2. And for
n = 1, there are no issues.
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The proof of Theorem 3.5.13 is intricate in detail, but simple in concept. Readers
unfamiliar with h-cobordisms and s-cobordisms, and their role in the topology of
manifolds, should consult [83].

Proof (Siebenmann’s Theorem (outline)) Since a 1-ended collarable manifold is
easily seen to be absolutely inward tame with stable fundamental group at infinity,
conditions (1)–(3) are necessary. To prove sufficiency, begin with a cofinal sequence
{Ni }∞i=0 of clean neighborhoods of infinity with Ni+1 ⊆ intNi for all i . After some
initial combinatorial group theory, a 2-dimensional disk trading argument allows
us to improve the neighborhoods of infinity so that, for each i , Ni and ∂ Ni have
fundamental groups corresponding to the stable fundamental group π̌1 (ε(W n)).

More precisely, each inclusion induces isomorphisms π1 (∂ Ni )
∼=→ π1 (Ni ) and

π1 (Ni+1)
∼=→ π1 (Ni ), with each group being isomorphic to π̌1 (ε(W n)).

Under the assumption that one of these Ni has trivial finiteness obstruction, the
“Sum Theorem” for the Wall obstruction (first proved in [86] for this purpose)
together with the above π1-isomorphisms, implies that all Ni have trivial finite-
ness obstruction. From there, a carefully crafted sequence of modifications to these
neighborhoods of infinity—primarily handle manipulations—results in a further
improved sequence of neighborhoods of infinity with the property that ∂ Ni ↪→ Ni

is a homotopy equivalence for each i . The resulting cobordisms (Ai , ∂ Ni , ∂ Ni+1),
where Ai = Ni − N i+1 are then h-cobordisms (See Exercise 3.5.15).

A clever “infinite swindle” allows one to trivialize the Whitehead torsion of
∂ Ni ↪→ Ai in each h-cobordism by inductively borrowing the inverse h-cobordism
Bi from a collar neighborhood of ∂ Ni+1 in Ai+1 (after which the “new” Ni+1 is
Ni+1 − Bi ), until the s-cobordism theorem yields Ai ≈ ∂ Ni × [i, i + 1], for each i .
Gluing these products together completes the proof.

Exercise 3.5.15 Verify the h-cobordism assertion in the above paragraph. In partic-
ular, let Ni and Ni+1 be clean neighborhoods of infinity with intNi ⊇ Ni+1 satisfying
the properties: (1) ∂ Ni ↪→ Ni and ∂ Ni+1 ↪→ Ni+1 are homotopy equivalences and
(2) Ni+1 ↪→ Ni induces a π1-isomorphism. For Ai = Ni − N i+1, show that both
∂ Ni ↪→ Ai and ∂ Ni+1 ↪→ Ai are homotopy equivalences.

Observe that in the absence of Condition (2), it is still possible to conclude that
(Ai , ∂ Ni , ∂ Ni+1) is a “1-sided h-cobordism”, in particular, ∂ Ni ↪→ Ai is a homotopy
equivalence.

In the spirit of the result in Exercise 3.5.4, the following may be obtained as an
application of Theorem 3.5.13.

Theorem 3.5.16 ([50])For an open manifold Mn (n ≥ 5), the “stabilization” Mn ×
R is collarable if and only if Mn has finite homotopy type.

Proof (Sketch) Since a collarablemanifold has finite homotopy type, and since Mn ×
R is homotopy equivalent to Mn , it is clear that Mn must have finite homotopy in
order for Mn × R to be collarable. To prove sufficiency of that condition, we wish
to verify that the conditions Theorem 3.5.13 are met by Mn × R.
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Conditions (a) and (c) are relatively easy, and are left as an exercise (see below).
The key step is proving stability of pro-π1 (ε(Mn × R), r). We will say just enough
to convey the main idea—describing a technique that has been useful in several
other contexts. Making these argument rigorous is primarily a matter of base points
and base rays—a nontrivial issue, but one that we ignore for now. (See [50] for the
details.)

For simplicity, assume Mn is 1-ended and N0 ⊇ N1 ⊇ N2 ⊇ · · · is a cofinal
sequence of clean connected neighborhoods of infinity in Mn . If Ri = (Mn × (−∞,

−i] ∪ [i,∞)) ∪ (Ni × R), then {Ri } forms a cofinal sequence of clean connected
neighborhoods of infinity in Mn × R. If G = π1 (Mn) and Hi = Im (π1 (Ni ) → π1

(Mn)) for each i , then π1 (Ri ) = G ∗Hi G and pro-π1 (ε(Mn × R), r) may be rep-
resented by

G ∗H0 G � G ∗H1 G � G ∗H2 G � · · ·

where the bonds are induced by the identities on G factors. Notice that each Hi+1

injects into Hi . To prove stability, it suffices to show that, eventually, Hi+1 goes onto
Hi . To that end, we argue that every loop in Ni can be homotoped into Ni+1 by a
homotopy whose tracks may go anywhere in Mn .10 The loops of concern are those
lying in Ni − Ni+1; let α be such a loop, and assume it is an embedded circle.

By the finite homotopy type of Mn (in fact, finite domination is enough), we may
assume the existence of a homotopy S that pulls Mn into Mn − Ni . Consider the map
J = S|∂ Ni ×[0,1]. Adjust J so that it is transverse to the 1-manifold α. Then J−1 (α)

is a finite collection of circles. With some extra effort we can see that at least one of
those circles goes homeomorphically onto α. The strong deformation retraction of
∂ Ni × [0, 1] onto ∂ Ni × {0} composed with J pushes α into Ni+1.

Exercise 3.5.17 Show that for an open manifold Mn with finite homotopy type, the
special neighborhoods of infinity Ri ⊆ Mn × R, used in the above proof, have finite
homotopy type. Therefore, Mn × R is absolutely inward tame.

Exercise 3.5.18 Show that if Mn (as above) is finitely dominated, but does not have
finite homotopy type, then Mn × R satisfies Conditions (1) and (2) of Theorem
3.5.13, but not Condition (3).

3.5.3 Generalizing Siebenmann

Siebenmann’s Collaring Theorem and a “controlled” version of it found in [81]
have proven remarkably useful in manifold topology; particularly in obtaining the
sorts of structure and embedding theorems that symbolize the tremendous activity
in high-dimensional manifold topology in the 1960 and 1970s. But the discovery of
exotic universal covering spaces, along with a shift in research interests (the Borel
and Novikov Conjectures in particular and geometric group theory in general) to

10A complete proof would do this while keeping a base point of the loop on a base ray r .
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topics where an understanding of universal covers is crucial, suggests a need for
results applicable to spaces with non-stable fundamental group at infinity. As an
initial step, one may ask what can be said about open manifolds satisfying some of
Siebenmann’s conditions—but not π1-stability. In Sect. 3.4.5 we described a method
for constructing locally finite polyhedra satisfying Conditions (1) and (3) of Theorem
3.5.3, but having almost arbitrary pro-π1.By the samemethod,wecouldbuild unusual
behavior into pro-Hk . So it is a pleasant surprise that, for manifolds with compact
boundary, inward tameness by itself, has significant implications.

Theorem 3.5.19 ([52, Theorem 1.2]) If a manifold with compact (possibly empty)
boundary is inward tame, then it has finitely many ends, each of which has semistable
fundamental group and stable homology in all dimensions.

Proof (Sketch) Finite-endedness of inward tame manifolds with compact boundary
was obtained in Exercise 3.4.19. The π1-semistability of each end is based on the
transversality strategy described inTheorem3.5.16. Stability of the homology groups
is similar, but algebraic tools like duality are also needed.

Siebenmann’s proof of Theorem 3.5.13 (as outlined earlier), along with the strat-
egy used by Chapman and Siebenmann in [21] (to be discussed Sect. 3.8.2) make
the following approach seem all but inevitable: Define a manifold N n with compact
boundary to be a homotopy collar if ∂ N n ↪→ N n is a homotopy equivalence.Ahomo-
topy collar is called a pseudo-collar if it contains arbitrarily small homotopy collar
neighborhoods of infinity. A manifold that contains a pseudo-collar neighborhood
of infinity is called pseudo-collarable.

Clearly, every collarable manifold is pseudo-collarable, but the Davis manifolds
are counterexamples to the converse (see Example 3.5.24). Before turning our atten-
tion to a pseudo-collarability characterization, modeled after Theorem 3.5.13, we
spend some time getting familiar with pseudo-collars and their properties.

A cobordism (A, ∂− A, ∂+ A) is called a one-sided h-cobordism if ∂− A ↪→ A is
a homotopy equivalence, but not necessarily so for ∂+ A ↪→ A. The key connection
between these concepts is contained in Proposition 3.5.21. First we state a standard
lemma.

Lemma 3.5.20 Let (A, ∂− A, ∂+ A) be a compact one-sided h-cobordism as descri-
bed above. Then the inclusion ∂+ A ↪→ A induces Z-homology isomorphisms (in
fact, Z[π1 (A)]-homology isomorphisms) in all dimensions; in addition, π1 (∂+ A) →
π1 (A) is surjective with perfect kernel.

Lemma 3.5.20 is obtained from various forms of duality. For details, see [52,
Theorem 2.5].

Proposition 3.5.21 (Structure of manifold pseudo-collars) Let N n be a pseudo-
collar. Then

(a) N n can be expressed as a union A0 ∪ A1 ∪ A2 ∪ · · · of one-sided h-cobordisms
with ∂− A0 = ∂ N and ∂+ Ai = ∂− Ai+1 = Ai ∩ Ai+1 for all i ≥ 0,
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(b) N n contains arbitrarily small pseudo-collar neighborhoods of infinity,
(c) N n is absolutely inward tame,
(d) pro-Hi (ε(N n); Z) is stable for all i ,

(e) pro-π1 (ε (N n)) may be represented by a sequence G0
μ1� G1

μ2� G2
μ3� · · · of

surjections, where each Gi is finitely presentable and each ker(μi ) is perfect,
and

(f) there exists a proper map φ : N n → [0,∞) with φ−1 (0) = ∂ N n and φ−1 (r) a
closed (n − 1)-manifold with the same Z-homology as ∂ N n for all r .

Proof Observations (a)–(c) are almost immediate, after which (d) and (e) can
be obtained by straightforward applications of Lemma 3.5.20. Item (f) can be
obtained by applying the (highly nontrivial) main result from [26] to each cobor-
dism (Ai , ∂− Ai , ∂+ Ai ).

Exercise 3.5.22 Fill in the necessary details for observations (1)–(5).

Some examples are now in order.

Example 3.5.23 (The Whitehead manifold is not pseudo-collarable) First notice that
W 3 does contain a homotopy collar neighborhood of infinity. Let D3 be a tame ball
in W 3 and let N = W 3 − intD3. By excision and the Hurewicz and Whitehead
theorems, N is a homotopy collar. (This argument works for all contractible open
manifolds.) But since W 3 is neither inward tame nor semistable, Proposition 3.5.21
assures that W 3 is not pseudo-collarable.

Example 3.5.24 (Davis manifolds are pseudo-collarable) Non-collarable but
pseudo-collarable ends are found in some of our most important examples—the
Davis manifolds. It is easy to see that the neighborhood of infinity N0 shown in
Fig. 3.4 is a homotopy collar, as is Ni for each i > 0.

Motivated by Proposition 3.5.21 and previous definitions, call an inverse sequence
of groups perfectly semistable if it is pro-isomorphic to an inverse sequence of finitely
presentable groups for which the bonding homomorphisms are all surjective with
perfect kernels. A complete characterization of pseudo-collarable n-manifolds is
provided by:

Theorem 3.5.25 ([53]) A 1-ended n-manifold W n (n ≥ 6) with compact (possibly
empty) boundary is pseudo-collarable if and only if

(a) W n is inward tame,
(b) pro-π1 (ε (W n)) is perfectly semistable, and

(c) σ∞ (W n) ∈ lim←−
{

K̃0(Z [π1 (N , pi )]) | N a clean nbd. of infinity
}

is trivial.

Remark 3.5.26 In (c), σ∞ (W n) may be defined as (σ (N0), σ (N1), σ (N2), . . .), the
sequence of Wall finiteness obstructions of an arbitrary nested cofinal sequence of
clean neighborhoods of infinity. By the functoriality of K̃0, this obstruction may be
viewed as an element of the indicated inverse limit group. It is trivial if and only if
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each coordinate is trivial, i.e., each Ni has finite homotopy type. So just as in Theorem
3.5.13, Conditions (a) and (c) together are equivalent to W n being absolutely inward
tame.

By Theorem 3.5.19, every inward tame open manifold W n has semistable pro-
π1 and stable pro-H1. Together those observations guarantee a representation of
pro-π1 (ε(W n)) by an inverse sequence of surjective homomorphisms of finitely
presented groups with “nearly perfect” kernels (in a way made precise in [54]). One
might hope that Condition (b) of Theorem 3.5.25 is extraneous, but an example
constructed in [52] dashes that hope.

Theorem 3.5.27 In all dimensions ≥6 there exist absolutely inward tame open man-
ifolds that are not pseudo-collarable.

In light of Theorem 3.5.25, it is not surprising that Theorem 3.5.27 uses a signif-
icant dose of group theory. In fact, unravelling the group theory at infinity seems to
be the key to understanding ends of inward tame manifolds. That topic is the focus of
ongoing work [54]. As for our favorite open manifolds, the following is wide-open.

Question 3.5.1 Is the universal cover M̃nof a closed aspherical n-manifold always
pseudocollarable? Must it satisfy some of the hypotheses of Theorem 3.5.25? In
particular, is M̃n always inward tame? (If so, an affirmative answer to Conjecture
3.5.9 would follow from Theorem 3.5.19.)

We close this section with a reminder that the above results rely heavily on
manifold-specific tools. For general locally finite complexes, Proposition 3.4.16
serves as warning. Even so, many ideas and questions discussed here have inter-
esting analogs outside manifold topology—in the field of geometric group theory.
We now take a break from manifold topology to explore that area.

3.6 End Invariants Applied to Group Theory

A standard method for applying topology to group theory is via Eilenberg–MacLane
spaces. For a group G, a K (G, 1) complex (or Eilenberg–MacLane complex for
G or a classifying space for G) is an aspherical CW complex with fundamental
group isomorphic to G. When the language of classifying spaces is used, a K (G, 1)
complex is often referred to as a BG complex and its universal cover as an EG
complex. Alternatively, an EG complex is a contractible CW complex on which G
acts properly and freely.

Exercise 3.6.1 Show that a CW complex X is aspherical if and only if X̃ is con-
tractible.

It is a standard fact that, for every groupG: (a) there exists a K (G, 1) complex, and
(b) any two K (G, 1) complexes are homotopy equivalent. Therefore, any homotopy
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invariant of a K (G, 1) complex is an invariant of G. In that way we define the
(co)homology of G with constant coefficients in a ring R, denoted H∗ (G; R) and
H∗ (G; R), to be H∗ (K(G, 1); R) and H∗ (K(G, 1); R), respectively.

At times it is useful to relax the requirement that a BG or an EG be aCWcomplex.
For example, an aspherical manifold or a locally CAT(0) space with fundamental
group G, but with no obvious cell structure might be a used as a BG. Provided the
space in question is an ANR, there is no harm in allowing it, since all of the key
facts from algebraic topology (for example, Exercise 3.6.1) still apply. Moreover,
by Proposition 3.12.4, ANRs are homotopy equivalent to CW complexes, so, if
necessary, an appropriate complex can be obtained.

3.6.1 Groups of Type F

We say that G has type F if K (G, 1) complexes have finite homotopy type or,
equivalently, there exits a finite K (G, 1) complex or a compact ANR K (G, 1) space.
Note that if K is a finite K (G, 1) complex, then K̃ is locally finite and the G-action
is cocompact; then we call K̃ a cocompact EG complex.

Example 3.6.2 All finitely generated free and free abelian groups have type F , as
do the fundamental groups of all closed surfaces, except for RP2. In fact, the funda-
mental group of every closed aspherical manifold has type F . No group that contains
torsion can have type F (see [45, Proposition 7.2.12]), but every torsion-freeCAT (0)
or δ-hyperbolic group has type F .

For groups of type F , there is an immediate connection between group theory
and topology at the ends of noncompact spaces. If G is nontrivial and KG is a finite
K (G, 1) complex, K̃G is contractible, locally finite, and noncompact, and by Corol-
lary 3.3.15, all other finite K (G, 1) complexes (or compact ANR classifying spaces)
have universal covers proper homotopy equivalent to K̃G . So the end invariants of
K̃G , which are well-defined up to proper homotopy equivalence, may be attributed
directly to G. For example, one may discuss: the number of ends of G; the homol-
ogy and cohomology at infinity of G (denoted by pro-H∗(ε (G); R), Ȟ∗ (ε(G); R)

and Ȟ∗ (ε(G); R)); and the homotopy behavior of the end(s) of G—properties such
as simple connectedness, stability, semistability, or pro-monomorphic at infinity. In
cases where K̃G is 1-ended and semistable, pro-π∗ (ε (G)) and π̌∗ (ε (G)) are defined
similarly. The need for semistability is, of course, due to base ray issues. Although
K̃G is well-defined up to proper homotopy type, there is no canonical choice base
ray; in the presence of semistability that issue goes away. We will return to that topic
shortly.
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3.6.2 Groups of Type Fk

In fact, the existence of a finite K (G, 1) is excessive for defining end invariants
like pro-H∗ (ε (G); R)) and Ȟ∗ (ε (G) ; R). If G admits a K (G, 1) complex K with
a finite k-skeleton (in which case we say G has type Fk), then all j-dimensional
homology and homotopy end properties of the (locally finite) k-skeleton K̃ (k)

G of
K̃G can be directly attributed to G, provided j < k. The proof of invariance is rather
intuitive. If L is any other K (G, 1)with finite k-skeleton, choose a cellular homotopy
equivalence f : K → L and a homotopy inverse g : L → K . These lift to homotopy
equivalences f̃ : K̃ → L̃ and g̃ : L̃ → K̃ , which cannot be expected to be proper.
Nevertheless, the restrictions of g̃ ◦ f̃ and f̃ ◦ g̃ to the (k − 1)-skeletons of K̃ and L̃
can be proven properly homotopic to inclusions K̃ (k−1) ↪→ K̃ (k) and L̃(k−1) ↪→ L̃(k).
This is enough for the desired result.

As another example of the above, the number of ends, viewed as (the cardinality

of) π̌0

(
K̃ (1)

G

)
, is a well-defined invariant of a finitely generated group, i.e., group of

type F1.

Exercise 3.6.3 Alternatively, one may define the number of ends of a finitely gen-
erated G to be the number of ends of a corresponding Cayley graph. Explain why
this definition is equivalent to the above.

Remark 3.6.4 There are key connections between pro-H∗ (ε (G); R)) and
Ȟ∗ (ε (G) ; R) and the cohomology of G with RG coefficients (as presented, for
example, in [16]). We have chosen not to delve into that topic in these notes. The
interested reader is encouraged to read Chaps. 8 and 13 of [45].

3.6.3 Ends of Groups

In view of earlier comments, the following iconic result may be viewed as an appli-
cation of π̌0 (ε (G)).

Theorem 3.6.5 (Freudenthal-Hopf-Stallings) Every finitely generated group G has
0, 1, 2, or infinitely many ends. Moreover

(a) G is 0-ended if and only if it is finite,
(b) G is 2-ended if and only if it contains an infinite cyclic group of finite index, and
(c) G is infinite-ended if and only if

• G = A ∗C B (a free product with amalgamation), where C is finite and has
index ≥ 2 in both A and B with at least one index being ≥ 3, or

• G = A∗φ (an HNN extension11), where φ is an isomorphism between finite
subgroups of A each having index ≥ 2.

11Definitions of free product with amalgamation and HNN extension can be found in [45, 85], or
any text on combinatorial group theory.
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Proof (small portions) The opening line of Theorem 3.6.5 is essentially Exercise
3.3.2; item (a) is trivial and item (b) is a challenging exercise. Item (c) is substantial
[89], but pleasantly topological. Complete treatments can be found in [85] or [45].

3.6.4 The Semistability Conjectures

If G is finitely presentable, i.e., G has type F2, and K is a corresponding presentation
2-complex (or any finite 2-complex with fundamental group G), then K may be
realized as the 2-skeleton of a K (G, 1). That is accomplished by attaching 3-cells to
K to kill π2 (K ) and proceeding inductively, attaching (k + 1)-cells to kill the kth
homotopy group, for all k ≥ 3. It follows that pro-H1

(
ε(K̃ ); R

)
and Ȟ1

(
ε(K̃ ); R

)

represent the group invariants pro-H1 (ε(G); R) and Ȟ1 (ε(G); R), as discussed in
Sect. 3.6.2. And by the same approach used there, when G (in other words K̃ ) is 1-
ended, properties such as simple connectivity at infinity, stability, semistability and
pro-monomorphic at infinity can be measured in K̃ and attributed directly to G. In
an effort to go further with homotopy properties of the end of G, we are inexorably
led back to the open problem:

Conjecture 3.6.6 (Semistability Conjecture–with explanation) Every 1-ended
finitely presented group G is semistable. In other words, the universal cover K̃
of every finite complex with fundamental group G is strongly connected at infinity;
equivalently, pro-π1

(
K̃ , r

)
is semistable for some (hence all) proper rays r .

The fundamental nature of the Semistability Conjecture is now clear. We would
like to view pro-π1

(
ε
(
K̃

) ; r
)
and π̌1

(
ε
(
K̃

) ; r
)
as group invariants pro-π1 (ε (G))

and π̌1 (ε (G)).Unfortunately, there is the potential for these to dependonbase rays.A
positive resolution of the Semistability Conjecturewould eliminate that complication
once and for all. The same applies to pro -π j

(
ε
(
K̃

) ; r
)
and π̌ j

(
ε
(
K̃

) ; r
)
when G

is of type Fk and j < k.
The extension of Conjecture 3.6.6 to groups with arbitrarily many ends makes

sense—the conjecture is that K̃ is semistable (defined for multi-ended spaces near
the end of Sect. 3.4.8). But this situation is simpler than one might expect: for 0-
ended groups there is nothing to discuss, and 2-ended groups are known to be simply
connected at each end (see Exercise 3.6.7 below); moreover, Mihalik [68] has shown
that an affirmative answer for 1-ended groups would imply an affirmative answer for
all infinite-ended groups.

Exercise 3.6.7 Let G be a group of type Fk . Show that every finite index subgroup
H is of type Fk and the two groups share the same end invariants through dimension
k − 1. Use Theorem 3.6.5 to conclude that every 2-ended group is simply connected
at each end.

Evidence for the Semistability Conjecture is provided by a wide variety of special
cases; here is a sampling.
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Theorem 3.6.8 A finitely presented group satisfying any one of the following is
semistable.

(a) G is the extension of an infinite group by an infinite group,
(b) G is a one-relator group,
(c) G = A ∗C B where A and B are finitely presented and semistable and C is

infinite,
(d) G = A∗C where A is finitely generated and semistable and C is infinite,
(e) G is δ-hyperbolic,
(f) G is a Coxeter group,
(g) G is an Artin group.

References include: [67, 69–71, 90].
There is a variation on the Semistability Conjecture that is also open.

Conjecture 3.6.9 (H1-semistability Conjecture) For every 1-ended finitely pre-
sented group G, pro-H1 (ε(G); Z) is semistable.

Since pro-H1 (ε(G); Z) can be obtained by abelianization of any representative of
pro-π1

(
ε(K̃ ), r

)
, for any presentation 2-complex K and base ray r , it is clear that the

H1-semistability Conjecture is weaker than the Semistability Conjecture. Moreover,
the H1-version of our favorite special case of the Semistability Conjecture—the case
where G is the fundamental group of an aspherical manifold—is easily solved in the
affirmative, by an application of Exercise 3.5.10. This provides a ray of hope that the
Manifold Semistability Conjecture is more accessible that the general case.

Remark 3.6.10 The Semistability Conjectures presented in this section were ini-
tially formulated by Ross Geoghegan in 1979. At the time, he simply called them
“questions”, expecting the answers to be negative. Their long-lasting resistance to
solutions, combined with an accumulation of affirmative answers to special cases,
has gradually led them to become known as conjectures.

3.7 Shape Theory

Shape theory may be viewed as a method for studying bad spaces using tools created
for the study of good spaces. Although more general approaches exist, we follow the
classical (and themost intuitive) route by developing shape theory only for compacta.
But now we are interested in arbitrary compacta—not just ANRs. A few examples
to be considered are shown in Fig. 3.9.

The abrupt shift from noncompact spaces with nice local properties to compacta
with bad local properties may seem odd, but there are good reasons for this tem-
porary shift in focus. First, the tools we have already developed for analyzing the
ends of manifolds and complexes are nearly identical to those used in shape theory;
understanding and appreciating the basics of shape theory will now be quite easy.
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(a)

(d)

(b)

(e)

(c)

(f)

Fig. 3.9 a Cantor set. b Topologist’s sine curve. c Warsaw circle. d Hawaiian earring. e Cantor
Hawaiian earring. f Sierpinski carpet

More importantly, certain aspects of the study of ends are nearly impossible without
shapes—if the theory did not already exist, we would be forced to invent it.

For more comprehensive treatments of shape theory, the reader can consult [13]
or [31].

3.7.1 Associated Sequences, Basic Definitions, and Examples

In shape theory, the first step in studying a compactum A is to choose an associated

inverse sequence K0
f1←− K1

f2←− K2
f3←− · · · of finite polyhedra and simplicial

maps. There are several ways this can be done. We describe a few of them.

Method 1: If A is finite-dimensional, choose an embedding A ↪→ R
n , and let K0 ⊇

K1 ⊇ K2 ⊇ · · · be a sequence of compact polyhedral neighborhoods intersecting in
A. Since it is impossible to choose triangulations under which all inclusion maps
are simplicial, choose progressively finer triangulations for the Ki and let the fi be
simplicial approximations to the inclusion maps.

Method2: Choose a sequenceU0,U1,U2, · · · of finite covers of A by εi -balls,where
εi → 0 and each Ui+1 refines Ui . Let Ki be the nerve of Ui and fi : Ki → Ki−1 a
simplicial map that takes each vertex U ∈ Ui to a vertex V ∈ Ui−1 with U ⊆ V .
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Method 3: If A can be expressed as the inverse limit of an inverse sequence K0
g1←−

K1
g2←− K2

g3←− · · · of finite polyhedra,12 then that sequence itselfmaybe associated
to A, after each map is approximated by one that is simplicial.

Remark 3.7.1 (a) At times, it will be convenient if each Ki in an associated inverse
sequence has a preferred vertex pi with each fi+1 taking pi+1 to pi . That can easily
be arranged; we refer to the result as a pointed inverse sequence.

(b) Our requirement that the bonding maps in associated inverse sequences be sim-
plicial, will soon be seen as unnecessary. But, for now, there is no harm in including
that additional niceness condition.

(c) When A is infinite-dimensional, a variation on Method 1 is available. In that
case, A is embedded in the Hilbert cube and a sequence {Ni } of closed Hilbert
cube manifold neighborhoods of A is chosen. By Theorem 3.13.2, each Ni has the
homotopy type of a finite polyhedron Ki . From there, an associated inverse sequence
for A is readily obtained.

The choice of an associated inverse sequence for a compactum A should be
compared to the process of choosing a cofinal sequence of neighborhoods of infinity
for a noncompact space X . In both situations, the terms in the sequences canbeviewed
as progressively better approximations to the object of interest, and in both situations,
there is tremendous leeway in assembling those approximating sequences. In both
contexts, that flexibility raises well-definedness issues. In the study of ends, we
introduced an equivalence relation based on ladder diagrams to obtain the appropriate
level of well-definedness. The same is true in shape theory.

Proposition 3.7.2 For a fixed compactum A, let {Ki , fi } and {Li , gi } be a pair
of associated inverse sequences of finite polyhedra. Then there exist subsequences,
simplicial maps, and a corresponding ladder diagram

Ki0 <
fi0,i1 Ki1 <

fi1,i2 Ki2 <
fi2,i3 Ki3 · · ·

L j0 <
g j0, j1<

<

L j1 <
g j1, j2<

<

L j2 <
g j2, j3<

<

· · ·
in which each triangle of maps homotopy commutes. If desired, we may require that
those homotopies preserve base points.

Exercise 3.7.3 Prove some or all of Proposition 3.7.2. Start by comparing any pair
of sequences obtained using the same method, then note that Method 1 is a special
case of Method 3.

Define a pair of inverse sequences of finite polyhedra and simplicial maps to
be pro-homotopy equivalent if they contain subsequences that fit into a homotopy

12By definition, lim←− {Ki , fi } is viewed as a subspace of the infinite product space
∏∞

i=0 Ki and is
topologized accordingly.
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commuting ladder diagram, as described in Proposition 3.7.2. Compacta A and A′
are shape equivalent if some (and thus every) pair of associated inverse sequences
of finite polyhedra are pro-homotopy equivalent. In that case we write S h(A) =
S h

(
A′) or sometimes A′ ∈ S h(A).

Remark 3.7.4 If {Ki , fi } is an associated inverse sequence for a compactum A, it is
not necessarily the case that lim←− {Ki , fi } ≈ A. But it is immediate from the definitions
that the two spaces have the same shape.

Exercise 3.7.5 Show that the Topologist’s Sine Curve has the shape of a point and
the Warsaw Circle has the shape of a circle (see Fig. 3.9). Note that neither space is
homotopy equivalent to its nicer shape version.

Exercise 3.7.6 Show that the Whitehead Continuum (see Example 3.2.1) has the
shape of a point. Spaces with the shape of a point are often called cell-like.

Exercise 3.7.7 Show that the Sierpinski Carpet is shape equivalent to a Hawaiian
Earring.

Exercise 3.7.8 Show that the Cantor Hawaiian Earring is shape equivalent to a
standard Hawaiian Earring. (An observation that once prompted the reaction: “I
demand a recount!”)

When considering the shape of a compactum A, the space A itself becomes largely
irrelevant after an associated inverse sequence has been chosen. In a sense, shape
theory is just the study of pro-homotopy classes of inverse sequences of finite poly-
hedra. Nevertheless, there is a strong correspondence between inverse sequences of
finite polyhedra and compact metric spaces themselves. If A is the inverse limit of an
inverse sequence {Ki , fi } of finite polyhedra, then applying any of the three methods
mentioned earlier to the space A yields an inverse sequence of finite polyhedra pro-
homotopy equivalent to the original {Ki , fi }. In other words, passage to an inverse
limit preserves all relevant information. As we saw in Exercise 3.4.4, that is not
the case with inverse sequences of groups. This phenomenon is even more striking
when studying ends of spaces. If N0 ←↩ N1 ←↩ N2 ←↩ · · · is a cofinal sequence of
neighborhoods of infinity of a space X , the inverse limit of that sequence is clearly
the empty set. In some sense, the study of ends is a study of an imaginary “space at
infinity”. By using shape theory, we can sometimes make that space a reality.

Exercise 3.7.9 Prove that an inverse sequence of nonempty finite polyhedra (or
more generally, an inverse sequence of nonempty compacta) is never the empty set.

Exercise 3.7.10 So far, our discussion of shape has focused on exotic compacta;
but nice spaces, such as finite polyhedra, are also part of the theory. Show that
finite polyhedra K and L are shape equivalent if and only if they are homotopy

equivalent. Hint: Choosing trivial associated inverse sequences K
id←− K

id←− · · ·
and L

id←− L
id←− · · · makes the task easier. A more general observation of this sort

will be made shortly.
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3.7.2 The Algebraic Shape Invariants

In the spirit of the work already done on ends of spaces, we define a variety of alge-
braic invariants for compacta. Given a compactum A and any associated inverse
sequence {Ki , fi }, define pro-H∗ (A; R) to be the pro-isomorphism class of the
inverse sequence

H∗ (K0; R)
f1∗←− H∗ (K1; R)

f2∗←− H∗ (K2; R)
f3∗←− · · ·

and Ȟ∗ (A; R) to be its inverse limit. By reversing arrows and taking a direct limit, we
also define ind-H∗ (A; R) and Ȟ∗ (A; R). The groups Ȟ∗ (A; R) and Ȟ∗ (A; R) are
know as the Čech homology and cohomology groups of A, respectively. If we begin
with a pointed inverse sequence {(Ki , pi ), fi }weobtain pro-π∗ (A, p) and π̌∗ (A, p),
where p corresponds to (p0, p1, p2, · · · ). Call π̌∗ (A, p) the Čech homotopy groups
of A, or sometimes, the shape groups of A.

Čech cohomology is known to be better-behaved than Čech homology, in that
there is a full-blown Čech cohomology theory satisfying the Eilenberg–Steenrod
axioms. Although the Čech homology groups of A do not fit into such a nice theory,
they are are still perfectly good topological invariants of A. For reasons we have
seen before, pro-H∗ (A; R) and pro-π∗ (A, p) tend to carry more information than
the corresponding inverse limits.

Exercise 3.7.11 Observe that, for the Warsaw circle W , the first Čech homology
and the first Čech homotopy group are not the same as the first singular homology
and traditional fundamental group of W .

Remark 3.7.12 Another way to think about the phenomena that occur in Exercise

3.7.11 is that, for an inverse sequence of spaces K0
g1←− K1

g2←− K2
g3←− · · · , the

homology [homotopy] of the inverse limit is not necessarily the same as the inverse
limit of the homologies (homotopies). It is the point of view of shape theory that the
latter inverse limits often do a better job of capturing the true nature of the space.

3.7.3 Relaxing the Definitions

Now that the framework for shape theory is in place, we make a few adjustments to
the definitions. These changes will not nullify anything done so far, but at times they
will make the application of shape theory significantly easier.

Previously we required bonding maps in associated inverse sequences to be sim-
plicial. That has some advantages; for example, pro-H∗ (A; R) and Ȟ∗ (A; R) can
be defined using only simplicial homology. But in light of the definition of pro-
homotopy equivalence, it is clear that only the homotopy classes of the bonding
maps really matters. So, adjusting a naturally occurring bonding map to make it sim-
plicial is unnecessary. From now on, we only require bonding maps to be continuous.
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In a similar vein, a finite polyhedron Ki in an inverse sequence corresponding to A
can easily be replaced by a finite CW complex. More generally, any compact ANR is
acceptable as an entry in that inverse sequence (Proposition 3.12.4 is relevant here).
Of course, once these changes are made, wemust use cellular or singular (as opposed
to simplicial) homology for defining the algebraic shape invariants of the previous
section.

With the above relaxation of definitions in place, the following fundamental facts
becomes elementary.

Proposition 3.7.13 Let A and B be compact ANRs. Then S h(A) = S h(B) if and
only if A � B.

Proof An argument like that used in Exercise 3.7.10 can now be applied here.

Proposition 3.7.14 If A is a compact ANR, then pro-H∗ (A; R) and pro-π∗ (A, p)

are stable for all ∗ with Ȟ∗ (A; R) and π̌∗ (A, p) being isomorphic to the singular
homology groups H∗ (A; R) and the traditional homotopy groups π∗ (A, p), respec-
tively.

Proof Choose the trivial associated inverse sequence A
id←− A

id←− · · · .
Corollary 3.7.15 If B is a compactum that is shape equivalent to a compact ANR
A, then pro-H∗ (B; R) and pro-π∗ (B, p) are stable for all ∗ with Ȟ∗ (B; R) ∼=
H∗ (B; R) and π̌∗ (B, p) ∼= π∗ (A, p). In particular, Ȟ∗ (B; R) is finitely generated,
for all ∗ and π̌1 (B, p) is finitely presentable.

Example 3.7.16 Compacta (a), (d), (e), and (f) from Fig. 3.9 do not have the shapes
of compact ANRs.

Taken together, Propositions 3.7.13 and 3.7.14 form the foundation of the true
slogan: When restricted to compact ANRs, shape theory reduces to (traditional)
homotopy theory. Making that slogan a bona fide theorem would require a devel-
opment of the notion of “shape morphism” and a comparison of those morphisms
to homotopy classes of maps. We have opted against providing that level of detail
in these notes. We will, however, close this section with a few comments aimed at
giving the reader a feel for how that can be done.

Let pro-H omotopy denote the set of all pro-homotopy classes of inverse sequen-
ces of compact ANRs and continuous maps. If S hapes denotes the set of all
shape classes of compact metric spaces, then there is a natural bijection Θ : pro-
H omotopy → S hapes defined by taking inverse limits; Methods 1–3 in Sect. 3.7.1
determine Θ−1. With some additional work, one can define morphisms in pro-
H omotopy as certain equivalence classes of sequences of maps, thereby promoting
pro-H omotopy to a full-fledged category. From there, one can use Θ to (indirectly)
definemorphisms inS hapes, therebyobtaining the shape category. In that case, it can
be shown that each continuous function f : A → B between compacta determines
a unique shape morphism (a fact that uses some ANR theory); but unfortunately, not
every shape morphism from A to B can be realized by a continuous map. This is not
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as surprising as it first appears: as an example, the reader should attempt to construct
a map from S

1 to the Warsaw circle that deserves to be called a shape equivalence.

Remark 3.7.17 In order to present a thorough development of the pro-Homotopy
andS hapes categories, more care would be required in dealing with base points. In
fact, we would end up building a pair of slightly different categories for each—one
incorporating base points and the other without base points. The differences between
those categories does not show up at the level of objects (for example, compacta are
shape equivalent if and only if they are “pointed shape equivalent”), but the categories
differ in their morphisms. In the context of these notes, we need not be concerned
with that distinction.

3.7.4 The Shape of the End of an Inward Tame Space

The relationship between shape theory and the topology of the ends of noncompact
spaces goes beyond a similarity between the tools used in their studies. In this section
we develop a precise relationship between shapes of compacta and ends of inward
tame ANRs. In so doing, the fundamental nature of inward tameness is brought into
focus.

Let Y be a inward tame ANR. By repeated application of the definition of inward
tameness, there exist sequences of neighborhoods of infinity {Ni }∞i=0, finite com-
plexes {Ki }∞i=1, andmaps fi : Ni → Ki and gi : Ki → Ni−1 with gi fi � incl (Ni ↪→
Ni−1) for all i . By letting hi = fi−1gi , these can be assembled into a homotopy com-
muting ladder diagram

N0 < ⊃ N1 < ⊃ N2 < ⊃ N3 · · ·

K1 <
h2

f1

<

g1
<

K2 <
h3

f2

<

g2
<

K3 <
h4

f3

<

g3
<

· · ·

The pro-homotopy equivalence class of K1
h2←− K2

h3←− K3
h4←− · · · is fully

determined by Y . That is easily verified by a diagram of the form (3.6), along with
the transitivity of the pro-homotopy equivalence relation. Define the shape of the
end of Y , denoted S h (ε (Y )), to be the shape class of lim←−{Ki , hi }. A compactum
A ∈ S h (ε (Y )) can be viewed as a physical representative of the illusive “end of
Y ”.

The following is immediate.

Theorem 3.7.18 Let Y be an inward tame ANR and A ∈ S h(ε (Y )). Then

(a) pro-Hi (ε(Y ); R) = pro-Hi (A; R) and Ȟi (ε(Y ); R) ∼= Ȟi (A; R) for all i and
any coefficient ring R, and



3 Ends, Shapes, and Boundaries in Manifold Topology and Geometric Group Theory 97

(b) if Y is 1-ended and semistable then pro-πi (ε (Y )) = pro-πi (A) and π̌i (ε (Y ))
∼= π̌i (A) for all i .

The existence of diagrams like (3.8) shows thatS h (ε (Y )) is also an invariant of
the proper homotopy class of Y . There is also a partial converse to that statement—an
assertion about the proper homotopy type of Y based only on the shape of its end.
Since the topology at the end of a space does not determine the global homotopy
type of that space, a new definition is required.

Spaces X and Y are homeomorphic at infinity if there exists a homeomorphism
h : N → M , where N ⊆ X and M ⊆ Y are neighborhoods of infinity. They are
proper homotopy equivalent at infinity if there exist pairs of neighborhoods of infinity
N ′ ⊆ N in X and M ′ ⊆ M in Y and proper maps f : N → Y and g : M → X , with

g ◦ f |N ′
p� incl

(
N ′ ↪→ X

)
and f ◦ g|M ′

p� incl
(
M ′ ↪→ Y

)
.

Theorem 3.7.19 Let X and Y be inward tame ANRs. Then S h (ε (X)) = S h
(ε (Y )) if and only if X and Y are proper homotopy equivalent at infinity.

Proof The reverse implication follows from the previous paragraphs, while the for-
ward direction is nontrivial. A proof can be obtained by combining results from
[21, 32].

In certain circumstances, the “at infinity” phrase can be removed from the above.
For example, we have.

Corollary 3.7.20 Let X and Y be contractible inward tame ANRs. Then S h(ε (X))

= S h(ε (Y )) if and only if X and Y are proper homotopy equivalent.

Exercise 3.7.21 Use the Homotopy Extension Property to obtain Corollary 3.7.20
from Theorem 3.7.19.

Example 3.7.22 If K0
f1←− K1

f2←− K2
f3←− · · · is a sequence of finite complexes

and A = lim←−{Ki , fi }, it is easy to see that A represents S h(ε (Tel ({Ki , fi }))). By
Theorem 3.7.19, any inward tame ANR X withS h(ε (X)) = A is proper homotopy
equivalent at infinity to Tel ({Ki , fi }). When issues of global homotopy type are
resolved, even stronger conclusions are possible; for example, if X is contractible,

X
p� CTel ({Ki , fi }). In some sense, the inverse mapping telescope is an uncompli-

cated model for the end behavior of an inward tame ANR.

Remark 3.7.23 In this section, we have intentionally not required spaces to be
1-ended. So, for example, S h(ε (R)) is representable by a 2-point space and the
shape of the end of a ternary tree is representable by a Cantor set. For more com-
plex multi-ended X , individual components of A ∈ S h(ε (X)) may have nontrivial
shapes, and to each end of X there will be a component of A whose shape reflects
properties of that end.
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3.8 Z -Sets and Z -Compactifications

While reading Sect. 3.7.4, the following question may have occurred to the reader:
For inward tame X with S h(ε (X)) = A, is there a way to glue A to the end of X
to obtain a nice compactification? As stated, that question is a bit too simple, but it
provides reasonable motivation for the material in this section.

3.8.1 Definitions and Examples

A closed subset A of an ANR X is a Z -set if any of the following equivalent
conditions is satisfied:

• For every ε > 0 there is a map f : X → X − A that is ε-close to the identity.
• There exists a homotopy H : X × [0, 1] → X such that H0 = idX and Ht (X) ⊆

X − A for all t > 0. (We say that H instantly homotopes X off of A.)
• For every open set U in X , U − A ↪→ U is a homotopy equivalence.

The third condition explains some alternative terminology: Z -sets are sometimes
called homotopy negligible sets.

Example 3.8.1 The Z -sets in a manifold Mn are precisely the closed subsets of
∂ Mn. In particular, ∂ Mn is a Z -set in Mn .

Example 3.8.2 It is a standard fact that every compactum A can be embedded in the
Hilbert cube Q. It may be embedded as a Z -set as follows: embed A in the “face”
{1} × ∏∞

i=2 [−1, 1] ⊆ ∏∞
i=1 [−1, 1] = Q.

Example 3.8.2 is the starting point for a remarkable characterization of shape,
sometimes used as an alternative definition. We will not attempt to describe a proof.

Theorem 3.8.3 (Chapman’s Complement Theorem, [20]) Let A and B be compacta
embedded as Z -sets in Q. Then Sh(A) = Sh(B) if and only if Q−A ≈ Q − B.

A Z -compactification of a space Y is a compactification Y = Y � Z with the
property that Z is a Z -set in Y . In this case, Z is called a Z -boundary for Y .
Implicit in this definition is the requirement that Y be an ANR; and since an open
subset of an ANR is an ANR, Y must be an ANR to be a candidate forZ -compact-
ification. By a result from the ANR theory, any compactification Y of an ANR Y ,
for which Y − Y satisfies any of the above bullet points, is necessarily an ANR—
hence, it is a Z -compactification. The point here is that, when attempting to form
a Z -compactification, one must begin with an ANR Y . Then it is enough to find a
compactification satisfying one of the above equivalent conditions.

A nice property of a Z -compactification is that the homotopy type of a space
is left unchanged by the compactification; for example, a Z -compactification of a
contractible space is contractible. The prototypical example is the compactification
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of R
n to an n-ball by addition of the (n − 1)-sphere at infinity; the prototypical non-

example is the 1-point compactification ofR
n . Finer relationships between Y , Y , and

Z can be understood via shape theory and the study of ends. Before moving in that
direction, we add to our collection of examples.

Example 3.8.4 In manifold topology, the most fundamental Z -compactification is
the addition of a manifold boundary to an open manifold, as discussed in Sect. 3.5.2.

Not all Z -compactifications of open manifolds are as simple as the above.

Example 3.8.5 Let Cn be a Newman contractible n-manifold embedded in S
n (as it

is by construction). A non-standardZ -compactification of intBn+1 can be obtained
by crushing Cn to a point. In this case, the quotient S

n/Cn is a Z -set in B
n+1/Cn .

Note that S
n/Cn is not a manifold!

For those who prefer lower-dimensional examples, a similarZ -compactification
of intB4 can be obtained by crushing out a wild arc or a Whitehead continuum in S

3.
In terms of dimension, that is as low as it gets. As a result of Corollary 3.10.8 (still
to come), for n ≤ 2, a Z -boundary of B

n+1 is necessarily homeomorphic to S
n .

Example 3.8.6 Let �Cn be the suspension of a Newman compact contractible n-
manifold. The suspension of ∂Cn is a Z -set in �Cn , and its complement, intCn ×
(−1, 1), is homeomorphic to R

n+1 by Exercise 3.5.4. So this is another nonstandard
Z -compactification of R

n+1.

Exercise 3.8.7 Verify the assertions made in Examples 3.8.5 and 3.8.6.

Often a manifold that cannot be compactified by addition of a manifold boundary
is, nevertheless, Z -compactifiable—a fact that is key to the usefulness of Z -com-
pactifications. Davis manifolds are the ideal examples.

Example 3.8.8 The 1-point compactification of the infinite boundary connected sum

Cn
0

∂

#
(−Cn

1

) ∂

#
(
Cn
2

) ∂

#
(−Cn

3

) ∂

# · · · shown at the top of Fig. 3.3 is aZ -compactificat-
ion.More significantly the point at infinity togetherwith the originalmanifold bound-
ary form a Z -boundary for the corresponding Davis manifold Dn . It is interesting
to note that Dn cannot admit a Z -compactification with Z -boundary a manifold
(or even an ANR) since pro-π1 (ε (Dn)) is not stable. This will be explained soon.

Example 3.8.9 In geometric group theory, the prototypical Z -compactification is
the addition of the visual boundary ∂∞ X to a proper CAT(0) space X . Indeed, if ∂∞ X
is viewed as the set of end points of all infinite geodesic rays emanating from a fixed
p0 ∈ X , a homotopy pushing inward along those rays verifies the Z -set property.

Example 3.8.10 In [1], an equivariant CAT(0) metric is placed on many of the orig-
inal Davis manifolds. In [28] an entirely different construction produces locally
CAT(0) closed aspherical manifolds, whose CAT(0) universal covers are simi-
lar to Davis’ earlier examples. These objects with their Z -compactifications and
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Z -boundaries provide interesting common ground for manifold topology and geo-
metric group theory.

At the expense of losing the isometric group actions, [39] places CAT(−1)metrics
on theDavismanifolds in such away that the visual sphere at infinity is homogeneous
and nowhere locally contractible. Their method can also be used to place CAT(−1)
metrics on the asymmetric Davis manifolds from Example 3.2.9.

Example 3.8.11 If K0
f1←− K1

f2←− K2
f3←− · · · is an inverse sequence of finite

polyhedra (or finite CW complexes or compact ANRs), then the inverse mapping
telescope Tel ({Ki , fi }) can be Z -compactified by adding a copy of lim←−{Ki , fi },
a space that contains one point for each of the infinite telescope rays described in
Sect. 3.4.5. (Note the similarity of this to Example 3.8.9.)

In Sects. 3.9 and 3.10, we will look at applications of Z -compactification to
geometric group theory and manifold topology. Before that, we address a pair of
purely topological questions:

• When is a space Z -compactifiable?
• To what extent is the Z -boundary of a given space unique? (Examples 3.8.5 and
3.8.6 show that a space can admit nonhomeomorphic Z -boundaries.)

3.8.2 Existence and Uniqueness for Z -Compactifications
and Z -Boundaries

If Y admits a Z -compactification Y = Y � Z , then as noted above, Y must be an
ANR; and since Y ↪→ Y is a homotopy equivalence and Y is a compact ANR,
Proposition 3.12.4 implies that Y has finite homotopy type. Prying a bit deeper, a
homotopy H : Y × [0, 1] → Y that instantly homotopes Y off Z can be “truncated”
(with the help of the Homotopy Extension Property) to homotope arbitrarily small
closed neighborhoods of infinity (in Y ) into compact subsets. Hence, Y is necessarily
inward tame.

By combining the results noted in Examples 3.7.22 and 3.8.11, every inward tame
ANR is proper homotopy equivalent to one that isZ -compactifiable. Unfortunately,
Z -compactifiability is not an invariant of proper homotopy type. The following
result begins to make that clear.

Proposition 3.8.12 EveryZ -compactifiable space that is sharp at infinity is absolu-
tely inward tame.

Proof If Y = Y � Z is aZ -compactification and N is a closed ANR neighborhood
of infinity in Y . Then N ≡ N � Z is a Z -compactification of N , hence a compact
ANR, and therefore homotopy equivalent to a finite complex K . Since N ↪→ N is a
homotopy equivalence, N � K .
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Remark 3.8.13 By employing the standard trick of considering Y × Q (to ensure
sharpness at infinity), Proposition 3.8.12 provides an alternative proof that a Z -
compactifiable ANR must be inward tame. This also uses the straightforward obser-
vation that, if Y = Y � Z is a Z -compactification of Y , then Y × Q = (Y × Q) �
(Z × Q) is aZ -compactification ofY × Q. That observationwill be used numerous
times, as we proceed.

Theorem 3.8.14 Suppose Y admits a Z -compactification Y = Y � Z. Then Z ∈
S h(ε (Y )).

Proof Arguing as in Remark 3.8.13, we may assume without loss of generality that
Y is sharp at infinity. Choose a cofinal sequence {Ni } of closed ANR neighborhoods
of infinity in Y , and for each i let N i be the compact ANR Ni � Z . The homotopy
commutative diagram

N0 < ⊃ N1 < ⊃ N2 < ⊃ · · ·

N 0 < ⊃

<

⊃<

N 1 < ⊃

<

⊃<

N 2

<

· · ·

where each up arrow is a homotopy inverse of the corresponding Ni ↪→ N i , shows
that the lower sequence defines S h(ε (Y )). But, since the inverse limit of that
sequence is Z (since ∩N i = Z ), the sequence also defines the shape of Z .

Corollary 3.8.15 (Uniqueness ofZ -boundaries up to shape) All Z -boundaries of
a given space Y are shape equivalent. Even more, if Y and Y ′ are Z -compactifiable
and proper homotopy equivalent at infinity, then each Z -boundary of Y is shape
equivalent to each Z -boundary of Y ′.

Proof Combine the above theorem with Theorem 3.7.19.

Example 3.8.16 We can now verify the comment at the end of Example 3.8.8. For
any Z -boundary Z of a Davis manifold Dn , pro-π1 (Z) must match the nonstable
pro-π1 (ε (Dn)) established in Sect. 3.2.2. So, by Proposition 3.7.14, Z cannot be an
ANR.

Next we examine the existence question for Z -compactifications. By the above
results we know that, for reasonably nice X , absolute inward tameness is neces-
sary; moreover, prospectiveZ -boundaries must come fromS h(ε (X)). It turns out
that this is not enough. The outstanding result on this topic, is due to Chapman
and Siebenmann [21]. It provides a complete characterization of Z -compactifiable
Hilbert cube manifolds and a model for more general characterization theorems.

Chapman and Siebenmann modeled their theorem on Siebenmann’s Collaring
Theorem for finite-dimensional manifolds—but there are significant differences.
First, there is no requirement of a stable fundamental group at infinity; therefore,
a more flexible formulation of σ∞ (X), like that developed in Theorem 3.5.25, is
required. Second, unlike finite-dimensional manifolds, inward tame Hilbert cube
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manifolds can be infinite-ended. In fact, Z -compactifiable Hilbert cube manifolds
can be infinite-ended (T3 × Q is a simple example); therefore, we do not want to be
restricted to the 1-ended case. This generality requires an evenmore flexible approach
to the definition of σ∞ (X). For the sake of simplicity, we delay that explanation until
the final stage of the coming proof. We recommend that during the first reading, a
tacit assumption of 1-endedness be included.

The third difference is the appearance of a newobstruction lying in the first derived
limit of an inverse sequence of Whitehead groups. The topological meaning of this
obstruction is explained within the sketched proof. For completeness, we include
the algebraic formulation: For an inverse sequence {Gi , λi } of abelian groups, the
derived limit13 is the quotient group:

lim←−
1 {Gi , λi } =

( ∞∏

i=0

Gi

)

/ { (g0 − λ1g1, g1 − λ2g2, g2 − λ3g3, · · · )| gi ∈ Gi } .

Theorem 3.8.17 (The Chapman-Siebenmann Z -compactification Theorem) A
Hilbert cube manifold X admits a Z -compactification if and only if each of the
following is satisfied.

(a) X is inward tame,
(b) σ∞ (X) ∈ lim←−

{
K̃0(Z [π1 (N )]) | N a clean nbd. of infinity

}
is trivial, and

(c) τ∞ (X) ∈ lim←−1 {W h(π1 (N )) | N a clean nbd. of infinity} is trivial.

Remark 3.8.18 (a) By Theorem 3.13.1, every ANR Y becomes a Hilbert cube man-
ifold upon crossing with Q. So, reasoning as in Remark 3.8.13, conditions (a)–(c)
are also necessary for Z -compactifiability of an ANR (although Condition (b) and
particularly (c) are best measured in Y × Q). For some time, it was hoped that
(a)–(c) would also be sufficient for ANRs; but in [49], a 2-dimensional polyhedral
counterexample was constructed.

(b) For those who prefer finite-dimensional spaces, Ferry [37] has shown that, if P
is a k-dimensional locally finite polyhedron and P × Q is Z -compactifiable, then
P × [0, 1]2k+5 isZ -compactifiable. May [64] showed that, for the counterexample
P0 from [49], P0 × [0, 1] is Z -compactifiable. In still-to-be-published work, the
author has shown that, for an open manifold Mn satisfying (a)–(c), Mn× [0, 1] is
Z -compactifiable.

The following are significant and still open.

Problem 3.8.19 Find conditions that must be added to those of Theorem 3.8.17 to
obtain a characterization of Z -compactifiability for ANRs.

13The definition of derived limit can be generalized to include nonableian groups (see [45,
Sect. 11.3]), but that is not needed here.
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Problem 3.8.20 Determine whether the conditions of Theorem 3.8.17 are sufficient
in the case of finite-dimensional manifolds.

Before describing the proof of Theorem 3.8.17, we make some obvious adapta-
tions of terminology from Sects. 3.5.2 and 3.5.3. A clean neighborhood of infinity N
in aHilbert cubemanifold X is an open collar if N ≈ BdX N × [0, 1) and a homotopy
collar if BdX N ↪→ N is a homotopy equivalence. X is collarable if it contains an
open collar neighborhood of infinity and pseudo-collarable if it contains arbitrarily
small homotopy collar neighborhoods of infinity.

Proof (Sketch of the proof of Theorem 3.8.17) The necessity of Conditions (a) and
(b) follows from Proposition 3.8.12; for the necessity of (c), the reader is referred to
[21]. Here we will focus on the sufficiency of these conditions.

Assume that X satisfies Conditions (a)–(c). We show that X isZ -compactifiable
by showing that it is homeomorphic at infinity to Tel ({Ki , fi }) × Q, where {Ki , fi }
is a carefully chosen inverse sequence of finite polyhedra. Since inverse mapping
telescopes are Z -compactifiable (Example 3.8.11), the result follows.

It is easiest to read the following argument under the added assumption that X is
1-ended. In the final step, we explain how that assumption can be eliminated.

Step 1 (Existence of a pseudo-collar structure) Choose a nested cofinal sequence{
N ′

i

}
of clean neighborhoods of infinity. By Condition (a) each is finitely dominated,

so we may represent σ∞ (X) by (σ0, σ1, σ2, . . .), where σi is the Wall finiteness
obstruction of N ′

i . By (b) each σi = 0, so each N ′
i has finite homotopy type. (Said

differently, Conditions (a) and (b) are equivalent to absolute inward tameness.) For
each i , choose a finite polyhedron Ki and an embedding Ki ↪→ N ′

i that is a homotopy
equivalences.By takingneighborhoodsCi of the Ki ,we arrive at a sequenceofHilbert
cube manifold pairs

(
N ′

i , Ci
)
, where each inclusion is a homotopy equivalence. By

some Hilbert cube manifold magic it can be arranged that Ci is a Z -set in N ′
i and

BdN ′
i ⊆ Ci . From there one finds Ni ⊆ N ′

i for which BdNi is a copy of Ci and
BdNi ↪→ Ni a homotopy equivalence (see [21] for details). Thus {Ni } is a pseudo-
collar structure.

Step 2 (Pushing the torsion off the end of X ) By letting Ai = Ni − N i+1 for each i ,
view the end of X as a countable union A0 ∪ A1 ∪ A2 ∪ · · · of compact 1-sided h-
cobordisms (Ai ,BdNi ,BdNi+1)ofHilbert cubemanifolds. (SeeExercise 3.5.15.)By
the triangulability of Hilbert cube manifolds (and pairs), each inclusion BdNi ↪→ Ai

has a well-defined torsion τi ∈ Wh (π1 (Ni )). Together these torsions determine a
representative (τ0, τ1, τ2, . . .) of τ∞ (X). (Note: Determining τ∞ (X) requires that
Step 1 first be accomplished; there is no τ∞ (X)without Conditions (a) and (b) being
satisfied.)

Wewould like to alter the choices of the Ni by using an infinite borrowing strategy
like that employed in the proof of Theorem 3.5.13. In particular, we would like to
borrow a compact Hilbert cubemanifold h-cobordism B0 from a collar neighborhood
of BdN1 in A1 so that BdN0 ↪→ A0 ∪ B0 has trivial torsion. Then, replacing N1 with
N1 − B0, we would like to borrow B1 from A2 so that so that BdN1 ↪→ A1 ∪ B1 has
trivial torsion. Continuing inductively,wewould like to arrive at an adjusted sequence
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N0 ⊇ N1 ⊇ N2 ⊇ · · · of neighborhoods of infinity for which each BdNi ↪→ Ai has
trivial torsion (where the Ai are redefined using the new Ni ).

The derived limit, lim←−1, is defined precisely to measure whether this infinite bor-
rowing strategy can be successfully completed. In the situation of Theorem 3.5.13,
where the fundamental group stayed constant from one side of each Ai to the other,
there was no obstruction to the borrowing scheme. More generally, as long as the
inclusion induced homomorphisms Wh (π1 (Ni+1)) → Wh (π1 (Ni )) are surjective
for all i , the strategy works. But, in general, wemust rely on a hypothesis that τ∞ (X)

is the trivial element of lim←−1 {W h(π1 (Ni ))}. (Warning: Evenwhenπ1 (Ni+1) surjects
onto π1 (Ni ), Wh (π1 (Ni+1)) → Wh (π1 (Ni )) can fail to be surjective.)

Step 3 (Completion of the proof) Homotopy equivalences Ki ↪→ BdNi and the
deformation retractions of Ai onto BdNi determine maps fi+1 : Ki+1 → Ki and
homotopy equivalences of triples (Ai ,BdNi ,BdNi+1) � (Map ( fi+1), Ki , Ki+1).
Using the fact that both BdNi ↪→ Ai and Ki ↪→ Map ( fi+1) have trivial torsion
(and through more Hilbert cube manifold magic), we obtain a homeomorphism
of triples (Ai ,BdNi ,BdNi+1) � (Map ( fi+1) × Q, Ki × Q, Ki+1 × Q). Piecing
these together gives a homeomorphism N0 ≈ Tel ({Ki , fi }) × Q, and completes the
proof.

As a mild alternative, we could have used the ingredients described above to con-
struct a proper homotopy equivalence h : N0 → Tel (Ki , fi ) and used the triviality
of the torsions to argue that h is an “infinite simple homotopy equivalence”, in the
sense of [87]. Then, by a variation on Theorem 3.13.7, ĥ : N0 → Tel (Ki , fi ) × Q
is homotopic to a homeomorphism.

Final Step. (Multi-ended spaces) When X is multi-ended (possibly infinite-ended),
a neighborhood of infinity Ni used in defining σ∞ and τ∞ will have multiple (but
finitely many) components. In that case, define K̃0(Z [π1 (Ni )]) and W h(π1 (Ni ))

to be the direct sums
⊕

K̃0(Z
[
π1

(
C j

)]
) and

⊕
W h(π1

(
C j

)
), where

{
C j

}
is the

collection of components of Ni . With these definitions, a little extra work, and the
fact that reduced projective class groups and Whitehead groups of free products are
the corresponding direct sums, the above steps can be carried out as in the 1-ended
case.

Remark 3.8.21 If desired, one can arrange, in the final lines of Step 3, a homeo-
morphism k : X → Tel∗ (Ki , fi ) × Q, defined on all of X . The space on the right
is the previous mapping telescope with the addition of a single mapping cylinder

Map(K0
f0−→ K−1). The finite complex K−1 and the map f0 are carefully chosen so

that X and Tel∗ (Ki , fi ) are infinite simple homotopy equivalent.

Step 1 of the above proof provides a result that is interesting in its own right.

Theorem 3.8.22 A Hilbert cube manifold is pseudo-collarable if and only if it sat-
isfies Conditions (a) and (b) of Theorem 3.8.17 or, equivalently, if and only if it is
absolutely inward tame.

It is interesting to compare Theorem 3.8.22 to Theorems 3.5.25 and 3.5.27.
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3.9 Z -Boundaries in Geometric Group Theory

In this section we look at the role of Z -compactifications and Z -boundaries in
geometric group theory.

3.9.1 Boundaries of δ-Hyperbolic Groups

Following Gromov [47], for a metric space (X, d) with base point p0, define the
overlap function on X × X by

(x · y) = 1

2
(d (x, p0) + d (y, p0) − d (x, y)).

Call (X, d) δ-hyperbolic if there exists a δ > 0 such that (x · y) ≥ min {(x · z),
(y · z)} − δ, for all x, y, z ∈ X .

A sequence {xi } in a δ-hyperbolic space (X, d) is convergent at infinity if(
xi , x j

) → ∞ as i, j → ∞, and sequences {xi }, and {yi } are declared to be equiv-
alent if (xi , yi ) → ∞ as i → ∞. The set ∂ X of all equivalence classes of these
sequences makes up the Gromov boundary of X . An easy to define topology on
X � ∂ X results in a corresponding compactification X̂ = X ∪ ∂ X . This boundary
and compactification are well-defined in the following strong sense: if f : X → Y
is a quasi-isometry between δ-hyperbolic spaces, then there is a unique extension
f̂ : X̂ → Ŷ that restricts to a homeomorphism between boundaries. This is of par-
ticular interest when G is a finitely generated group endowed with a corresponding

word metric. It is a standard fact that, for any two such metrics, G
id→ G is a quasi-

isometry; so for a δ-hyperbolic group G, the Gromov boundary ∂G is well-defined.
Early in the study of δ-hyperbolic groups, it became clear that exotic topological

spaces arise naturally as group boundaries. In addition to spheres of all dimensions,
the collection of known boundaries includes: Cantor sets, Sierpinski carpets, Menger
curves, Pontryagin surfaces, and 2-dimensional Menger spaces, to name a few. See
[9, 29, 58]. So it is not surprising that shape theory has a role to play in this area.
But, a priori, Gromov’s compactifications and boundaries have little in commonwith
Z -compactifications andZ -boundaries. After all, for a word hyperbolic group, the
Gromov compactification adds boundary to a discrete topological space.

Exercise 3.9.1 Show that a countably infinite discrete metric space does not admit
a Z -compactification.

Nevertheless, in 1991, Bestvina and Mess introduced the use of Z -boundaries and
Z -compactifications to the study of δ-hyperbolic groups. For a discrete metric space
(X, d) and a constant ρ, the Rips complex Pρ (G) is the simplicial complex obtained
by declaring the vertex set to be X and filling in an n-simplex for each collection{

x0, x1, . . . , xn
}
with d

(
xi , x j

) ≤ ρ, for all 0 ≤ i, j ≤ n. Clearly, a Rips complex
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Pρ (G) for a finitely generated group G admits a proper, cocompact G-action and
G ↪→ Pρ (G) is a quasi-isometry. So when G is δ-hyperbolic there is a canonical
compactification Pρ (G) = Pρ (G) ∪ ∂G. Furthermore, it was shown by Rips that,
for δ-hyperbolic G and large ρ, Pρ (G) is contractible. Using this and some finer
homotopy properties of Pρ (G), Bestvina and Mess proved the following.

Theorem 3.9.2 ([8, Theorem 1.2]) Let G be a δ-hyperbolic group and ρ ≥ 4δ + 2,
then Pρ (G) = Pρ (G) ∪ ∂G is a Z -compactification.

Implications of Theorem 3.9.2 are cleanest when Pρ (G) is a cocompact EG
complex. Since contractibility and a proper cocompact action have already been
established, only freeness is needed, and that is satisfied if and only if G is torsion-
free.

Corollary 3.9.3 Let G be a torsion-free δ-hyperbolic group. Then

(a) every cocompact EG complex is inward tame and proper homotopy equivalent
to Pρ (G),

(b) for every cocompact EG complex X, S h(ε (X)) = S h(∂G),
(c) pro-H∗ (ε(G); R), Ȟ∗ (ε(G); R) and Ȟ∗ (ε(G); R) are isomorphic to the cor-

responding invariants of ∂G,
(d) for 1-ended G, pro-π∗ (ε(G)) and π̌∗ (ε(G)) are well defined and isomorphic to

the corresponding invariants of S h(∂G),
(e) H∗ (G; RG) ∼= Ȟ∗−1 (∂G; R) for any coefficient ring R.

Proof (Corollary) The discussion in Sect. 3.6.1 explains why all cocompact EG
complexes are proper homotopy equivalent. Since one such space, Pρ (G), is Z -
compactifiable and therefore inward tame, they are all inward tame. By Theorem
3.8.14, S h

(
ε
(
Pρ (G)

)) = S h(∂G), so Theorem 3.7.19 completes (b). Assertion
(3) is a consequence of Theorem 3.7.18, while 4) is similar, except that Theorem
3.6.8 (a significant ingredient) is used to assure well-definedness. Assertion (e), a
statement about group cohomology with coefficients in RG, requires some algebraic
topology that is explained in [8]; it is a consequence of (c) and builds upon earlier
work by Geoghegan and Mihalik [45, 46].

For the most part, Corollary 3.9.3 is all about the shape of ∂G and the relationship
between aZ -boundary and its complement. There are other applications of bound-
aries of δ-hyperbolic groups that use more specific properties of ∂G. Here is a small
sampling:

• Bestvina [8] provides formulas relating the cohomological dimension of a torsion-
free G to the topological dimension of ∂G. (Clearly, the latter is not a shape
invariant.)

• The semistability of G was deduced by proving that ∂G has no cut points [90],
and therefore is locally connected, by results from [8].

• By work from [18, 40, 43, 95], ∂G ≈ S
1 if and only if G is virtually the funda-

mental group of a closed hyperbolic surface.
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• Bowditch [14] has obtained a JSJ-decomposition theorem for δ-hyperbolic groups
by analyzing cut pairs in ∂G.

• See [58] for many more examples.

3.9.2 Boundaries of CAT(0) Groups

Another widely studied class of groups are the CAT(0) groups, i.e., groups G that act
geometrically (properly and cocompactly by isometries) on a proper CAT(0) space.
If X is such a CAT(0) space, the visual boundary ∂∞ X is called a group boundary
for G. Since a given G may act geometrically on multiple proper CAT(0) spaces,
it is not immediate that its boundary is topologically well-defined; and, in fact, it
is not. The first example of this phenomenon was displayed by Croke and Kleiner
[23]. Their work was expanded upon by Wilson [99], who showed that their group
admits a continuum of topologically distinct boundaries. Mooney [74] discovered
additional examples from the category of knot groups, and in [75] produced another
collection of examples with boundaries of arbitrary dimension k ≥ 1. This situation
suggests that CAT(0) boundaries (being ill-defined) might not be useful—but that is
not the case. One reason is the following “approximate well-definedness” result.

Theorem 3.9.4 (Uniqueness of CAT(0) boundaries up to shape) All CAT(0) bound-
aries of a given CAT(0) group G are shape equivalent.

Proof If G is torsion-free, then a geometric G-action on a proper CAT(0) space X
is necessarily free, so X is an EG space. It follows that all CAT(0) spaces on which
G acts geometrically are proper homotopy equivalent. So, by Corollary 3.8.15, all
CAT(0) boundaries of G have the same shape.

If G has torsion there is more work to be done, but the idea is the same. In [78],
Ontaneda showed that any two proper CAT(0) spaces on which G acts geometrically
are proper homotopy equivalent, so again their boundaries have the same shape.

As an application of Theorem 3.9.4, Corollary 3.9.3 can be repeated for torsion-
free CAT(0) groups, with two exceptions: (a) we must omit reference to the Rips
complex since it is not known to be an EG for CAT(0) groups, and (b) in general,
pro-π∗ (ε(G)) and π̌∗ (ε(G)) are not known to be well-defined since the following
is open.

Conjecture 3.9.5 (CAT(0) Semistability Conjecture) Every 1-ended CAT(0) group
G is semistable.

It is worth noting that ∂G, itself, provides an approach to this conjecture. By a
result from shape theory [31, Theorem 7.2.3], G is semistable if and only if ∂G has
the shape of a locally connected compactum. (This is true inmuch greater generality.)

Before moving away from CAT(0) group boundaries, we mention a few more
applications.
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• TheBestvina-Mess formulas,mentioned earlier, relating the cohomological dimen-
sion of a torsion-free G to the topological dimension of ∂G are also valid for
CAT(0) G.

• Swenson [91] has shown that a CAT(0) group G with a cut point in ∂G has an
infinite torsion subgroup.

• Ruane [84] has shown that for CAT(0) G, if ∂G is a circle, then G is virtually
Z × Z or the fundamental group of a closed hyperbolic surface; and if ∂G is a
suspended Cantor set, then G is virtually F2 × Z.

• Swenson and Papasoglu [80] have, in a manner similar to Bowditch’s work on
δ-hyperbolic groups, used cut pairs in ∂G to obtain a JSJ-decomposition result for
CAT(0) groups.

3.9.3 A General Theory of Group Boundaries

Motivated by their usefulness in the study of δ-hyperbolic and CAT(0) groups, Bestv-
ina [9] developed an axiomatic approach to group boundaries which unified the exist-
ing theories and provided a framework for defining group boundaries more generally.
We begin with the original definition, then introduce some variations.

AZ -structure on a group G is a topological pair
(
X , Z

)
satisfying the following

four conditions:

(a) X is a compact ER,
(b) Z is a Z -set in X ,
(c) X = X − Z admits a proper, free, cocompact G-action, and
(d) the G-action on X satisfies the following nullity condition: for every compactum

A ⊆ X and every open cover U of X , all but finitely many G-translates of A
are U -small, i.e., are contained in some element of U .

A pair
(
X , Z

)
that satisfies (a)–(c), but not necessarily (d) is called a weak Z -

structure on G, while a Z -structure on G that satisfies the additional condition:

(e) the G-action on X extends to a G-action on X ,

is called an EZ -structure (an equivariant Z -structure) onG. Aweak EZ -structure
is a weak Z -structure that satisfies Condition (e).14

Under the above circumstances, Z is called aZ -boundary, a weak Z -boundary, an
EZ -boundary, or a weak EZ -boundary, as appropriate.

14Bestvina informally introduced the definition of weak Z -structure in [9], where he also com-
mented on his decision to omit Condition (e) from the definition ofZ -structure. Farrell and Lafont
introduced the term EZ -structure in [35].
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Example 3.9.6 (A sampling of Z -structures)

(a) The Z -compactification Pρ (G) = Pρ (G) ∪ ∂G of Theorem 3.9.2 is an EZ -
structure whenever G is a torsion-free δ-hyperbolic group.

(b) If a torsion-free groupG admits a geometric action on afinite-dimensional proper
CAT(0) space X , then X = X ∪ ∂∞ X is an EZ -structure for G.

(c) The Baumslag-Solitar group BS(1, 2) = 〈
a, b | bab−1 = a2

〉
is put forth by

Bestvina as an example that is neither δ-hyperbolic nor CAT(0), but still admits
a Z -structure. The Z -structure described in [9] is also an EZ -structure. The
traditional cocompact EG 2-complex for BS(1, 2) is homeomorphic toT3 × R,
where T3 is the uniformly trivalent tree. Given the Euclidean product metric,
T3 × R is CAT(0), so adding the visual boundary gives a weak Z -structure,
with a suspended Cantor set as boundary. (Since the action of BS (1, 2) on
T3 × R is not by isometries, one cannot conclude that BS (1, 2) is CAT(0)).
This weak Z -structure does not satisfy the nullity condition—instead it pro-
vides a nice illustration of the failure of that condition. Nevertheless, by using
this structure as a starting point, a genuine Z -structure (in fact more than one)
can be obtained.

(d) Januszkiewicz and Świa̧tkowski [57] have developed a theory of “systolic”
spaces and groups that parallels, but is distinct from, CAT(0) spaces and groups.
Among systolic groups are many that are neither δ-hyperbolic nor CAT(0). A
delicate construction by Osajda and Przytycki in [79] places EZ -structures on
all torsion-free systolic groups.

(e) Dahmani [24] showed that, if a group G is hyperbolic relative to a collection of
subgroups, each of which admits a Z -structure, then G admits a Z -structure.

(f) Tirel [92] showed that if G and H each admit Z -structures (resp., EZ -
structures), then so do G × H and G ∗ H .

(g) In [51], this author initiated a study of weakZ -structures on groups. Examples
of groups shown to admit weak Z -structures include all type F groups that are
simply connected at infinity and all groups that are extensions of a type F group
by a type F group.

Exercise 3.9.7 Verify the assertion made in Item (b) of Example 3.9.6.

Exercise 3.9.8 For G × H in Item (f), give an easy proof of the existence of weak
Z -structures (resp., weak EZ -structures). As with Item (c), the difficult part is the
nullity condition.

Given the wealth of examples, it becomes natural to ask whether all reasonably
nice groups admits Z -structures. The following helps define “reasonably nice”.

Proposition 3.9.9 A group G that admits a weak Z -structure must have type F.

Proof If
(
X , Z

)
is a weak Z -structure on G, then X = X − Z is an EG space and

X → G\X is a covering projection. Since being an ENR is a local property, G\X is
an ENR; it is also compact and aspherical. By Proposition 3.12.4, G\X is homotopy
equivalent to a finite complex K , which is a K (G, 1).
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Question 3.9.1 (all are open) Does every group of type F admit aZ -structure? an
EZ -structure? a weak Z -structure? a weak EZ -structure?

The first of the above questions was asked explicitly by Bestvina in [9], where he
also mentions the version for weak Z -structures. The latter of those two was also
mentioned in [8], where the weak EZ -version is explicitly asked. The EZ -version,
was suggested by Farrell and Lafont in [35].

In [9], Bestvina prefaced his posing of theZ -structureQuestionwith thewarning:
“There seems to be no systematic method of constructing boundaries of groups in
general, so the following is probably hopeless.” In the years since that question was
posed, a general strategy has still not emerged. However, there have been successes
(such as those noted inExample 3.9.6)when attention is focusedon a specific groupor
class of groups. In private conversations and in presentations, Bestvina has suggested
some additional groups for consideration; notable among these are Out (Fn) and the
various Baumslag-Solitar groups BS (m, n). Farrell and Lafont have specifically
asked about EZ -structures for torsion-free finite index subgroups of SLn (Z). A
less explicit, but highly important class of groups, are the fundamental groups of
closed aspherical manifolds (or more generally, Poincaré duality groups)—the hope
being that well-developed tools frommanifold topologymight provide an advantage.

Bestvina [9, Lemma 1.4] has shown that if G admits a Z -structure
(
X , Z

)
, then

every cocompact EG complex Y can be incorporated into a Z -structure
(
Y , Z

)
. In

particular, every cocompact EG complex satisfies the hypotheses of Theorem 3.8.17.
So it seems natural to begin with:

Question 3.9.2 Must the universal cover of a finite aspherical complex be inward
tame? absolutely inward tame?

Remarkably, nothing seems to be known here. An early version of the question
goes back to [44], with more explicit formulations found in [37, 48].

Since, for fixed G, all cocompact EG spaces are proper homotopy equivalent,
we can view inward tameness as a property possessed by some (possibly all) type
F groups. Moreover, if G is inward tame, we can use Sect. 3.7.4 to define the shape
of the end of G. Specifically, for X a cocompact EG, S h(ε (G)) = S h(ε (X)). If
A ∈ S h(ε (G)), we might even view A as a “pre-Z -boundary” and (X, A) as a
“pre-Z -structure” for G.

As for applications of the various sorts of Z -boundaries, we list a few.

• As noted in the previous paragraph, even pre-Z -boundaries are well-defined up to
shape. So a result like Corollary 3.9.3 can be stated here, with the same exceptions
as noted above for CAT(0) groups.

• In [9], it is shown that the Bestvina-Mess formulas relating the cohomological
dimension of a torsion-free G to the topological dimension of ∂G are again valid
forZ -boundaries. For this, the full strength ofBestvina’s definition ofZ -structure
is used.

• Carlsson and Pedersen [17] and Farrell and Lafont [35] have shown that groups
admitting an EZ -structure satisfy the Novikov Conjecture.
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3.9.4 Further Generalizations

A pair of generalizations to the various (E)Z -structure and boundary definitions can
be found in the literature. See, for example, [30].

(i) Replace the requirement that X be an ER with the weaker requirement that it be
an AR.

(ii) Drop the freeness requirement for the G-action on X .

Change (i) simply allows X to be infinite-dimensional; by itself that may be of
little consequence. After all, X is still a cocompact EG, so there exists a finite
K (G, 1) complex K . If Z is finite-dimensional, Bestvina’s boundary swapping trick
([9, Lemma 1.4]) produces a new Z -structure

(
Y , Z

)
in which Y is an E R. This

motivates the question:

Question 3.9.3 If
(
X , Z

)
is a Z -structure on a group G in the sense of [9], except

that X is only required to be anANR,must Z still be finite-dimensional? (Compare to
[91, Theorem 12], which shows that a CAT(0) group boundary is finite-dimensional,
regardless of the CAT(0) space it bounds.)15

Change (ii) is more substantial; it allows for groups with torsion. Z -structures
of this sort are plentiful in the categories of δ-hyperbolic and CAT(0) groups, with
Coxeter groups the prototypical examples; so this generalization is very natural.
There are, however, complications. When G has torsion, the notion of a cocompact
EG complex must be replaced by that of a cocompact (or G-finite) EG complex,
where G may act with fixed points, subject to the requirement that stabilizers of all
finite subgroups are contractible subcomplexes. This notion is fruitful and cocompact
EG complexes, when they exist, are well-defined up to G-equivariant homotopy
equivalence, and more importantly (from the point of view of these notes) up to
proper homotopy equivalence.

In order to obtain the sorts of conclusions we are concerned with here, positive
answers to the following, questions would be of interest.

Question 3.9.4 Suppose G admits a Z -structure
(
X , Z

)
, but with the G-action

on X not required to be free. If
(
X ′, Z ′) is another such Z -structure, is X

p� X ′?
More specifically, does there exist a cocompact EG complex and must X be proper
homotopy equivalent to that complex?

3.10 Z -Boundaries in Manifold Topology

In this section we look specifically at Z -compactifications and Z -boundaries of
manifolds, with an emphasis on open manifolds and manifolds with compact bound-
ary. In Sect. 3.9 we noted the occurrence of many exotic group boundaries: Cantor

15Added in proof. An affirmative answer to this questionwas recently obtained byMollyMoran.
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sets, suspended Cantor sets, Hawaiian earrings, Sierpinski carpets, and Pontryagin
surfaces, to name a few. By contrast, we will see that aZ -boundary of an n-manifold
with compact boundary is always a homology (n − 1)-manifold. That does not mean
theZ -boundary is always nice—recall Example 3.8.8—but it does mean that man-
ifold topology forces some significant regularity on potential Z -boundaries. Here
we take a look at that result and some related applications. First, a quick introduction
to homology manifolds.

3.10.1 Homology Manifolds

If N n is an n-manifold with boundary, then each x ∈ intN n has local homology

H̃∗
(
N n, N n − x

) ∼= H̃∗
(
R

n, R
n − 0

) ∼=
{

Z if ∗ = n
0 otherwise

and each x ∈ ∂ N n has local homology

H̃∗
(
N n, N n − x

) ∼= H̃∗
(
R

n
+, R

n
+ − 0

) ≡ 0.

This motivates the notion of a “homology manifold”.
Roughly speaking, X is a homology n-manifold if

H̃∗ (X, X − x) ∼= H̃∗
(
R

n, R
n − 0

)

for all x ∈ X , and a homology n-manifold with boundary if

H̃∗ (X, X − x) ∼= H̃∗
(
R

n, R
n − 0

)
or H̃∗ (X, X − x) ∼= H̃∗

(
R

n
+, R

n
+ − 0

) ≡ 0

for all x ∈ X . In the latter case we define

∂ X ≡ {
x ∈ X | H̃∗ (X, X − x) = 0

}

and call this set the boundary of X.16

The reason for the phrase “roughly speaking” in the above paragraph is because
ordinary singular homology theory does not always detect the behavior we are look-
ing for. This issue is analogous to what happened in shape theory; there, when
singular theory told us that the homology of the Warsaw circle W was the same as
that of a point, we developed Čech homology theory to better capture the circle-like
nature of W . In the current setting, we again need to adjust our homology theory to
match our goals. Without going into detail, we simply state that, for current purposes

16All homology here is with Z-coefficients. With the same strategy and an arbitrary coefficient ring,
we can also define R-homology manifold and R-homology manifold with boundary.



3 Ends, Shapes, and Boundaries in Manifold Topology and Geometric Group Theory 113

Borel–Moore homology, or equivalently Steenrod homology (see [10, 36], or [72]),
should be used. Moreover, since Borel–Moore homology of a pair requires that A be
closed in X , we interpret H̃∗ (X, X − x) to mean lim−→H̃∗ (X, X − U ) where U varies
over all open neighborhoods of x .

With the above adjustment in place, we are nearly ready to discuss the essentials
of homology manifolds. Before doing so we note that there is an entirely analogous
theory of cohomology manifolds, in which Alexander-Čech theory is the preferred
cohomology theory. We also note that both Borel–Moore homology and Alexander-
Čech cohomology theories agree with the singular theories when X is an ANR. An
ANR homology manifold is often called a generalized manifold—a class of objects
that plays an essential role in geometric topology.

Example 3.10.1 Let �n be a non-simply connected n-manifold with the same Z-
homology as S

n , e.g., the boundary of a Newman contractible (n + 1)-manifold.
Then X = cone (�n) = �n × [0, 1] / {�n × 1} is a homology (n + 1)-manifold
with boundary, where ∂ X = �n × 0. The double of Xn+1, the suspension of�n+1, is
a homology manifold that is homotopy equivalent to S

n+1. Both of these are ANRs,
hence generalized manifolds, but neither is an actual manifold.

Example 3.10.2 Let A be a compact proper subset of the interior of an n-manifold
Mn and letY = Mn/A be the quotient space obtained by identifying A to a point. If A
is cell-like (i.e., has trivial shape), then X is a generalized n-manifold. In many cases
Y ≈ Mn , for example, when A is a tame arc or ball. In other cases—for example,
A a wild arc with non-simply connected complement or A a Newman contractible
n-manifold embedded in Mn , Y is not a manifold.

Exercise 3.10.3 Verify the unproven assertions in the above two exercises.

Remark 3.10.4 The subject of Decomposition Theory is motivated by Example
3.10.2. There, the following question is paramount: Given a pairwise disjoint collec-
tion G of cell-like compacta in a manifold Mn satisfying a certain niceness condition
(an upper semicontinuous decomposition), when is the quotient space M/G a man-
ifold? Although the premise sounds simple and very specific, results from this area
have hadbroad-ranging impacts ongeometric topology, including: existence of exotic
involutions on spheres, existence of exotic manifold factors (non-manifolds X for
which X × R is a manifold), existence of non-PL triangulations of manifolds, and
a solution to the 4-dimensional Poincaré Conjecture. The Edwards-Quinn Manifold
Recognition Theorem, whichwill be used shortly, belongs to this subject. References
to the “Moore-Bing school of topology” usually indicate work by R.L. Moore, R.H.
Bing, and their mathematical descendents in this area. See [25] for a comprehensive
discussion of this topic.

Exercise 3.10.5 Here we describe a simple non-ANR homology manifold. Let H n

be non-simply connected n-manifold with the homology of a point and a boundary
homeomorphic to S

n−1, and let
{

Bn
i

}∞
i=1 be a sequence of pairwise disjoint round

n-balls in S
n converging to a point p. Create X by removing the interiors of the Bn

i
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and replacing each with H n
i ≈ H n . Topologize X so that each neighborhood of p in

X contains all but finitely many of the H n
i . The result is a homology manifold (some

knowledge of Borel–Moore homology is needed to verify this fact).
Explain why X is not an ANR. Then show that X does not satisfy the definition

of homology manifold if singular homology is used.

Exercise 3.10.6 Show that theZ -boundary attached to theDavismanifold described
in Example 3.8.8 is homeomorphic to the non-ANR homology manifold described
in Exercise 3.10.5 (some attention must be paid to orientations).

For now, the reader may wish to treat the following theorem as a set of axioms;
[2] shows how the classical literature can be woven together to obtain proofs.

Theorem 3.10.7 (Fundamental facts about (co)homology manifolds)

(a) A space X is a homology n-manifold if and only if it is a cohomology n-manifold.
(b) The boundary of a (co)homology n-manifold is a (co)homology (n − 1)-manifold

without boundary.
(c) The union of two (co)homology n-manifolds with boundary along a common

boundary is a (co)homology n-manifold.
(d) (Co)Homology manifolds are locally path connected.

Corollary 3.10.8 Let Mn be an open n-manifold (or even just an open generalized
manifold) and Mn = Mn ∪ Z be a Z -compactification. Then

(a) Mn is a homology n-manifold with boundary,
(b) ∂ Mn = Z, and
(c) Z is a homology (n − 1)-manifold.

Proof (Corollary) For (a) and (b) we need only check that H∗
(
Mn, Mn − z

)

≡ 0 at each z ∈ Z . Since Mn is an ANR, we are free to use singular homology
in place of Borel–Moore theory. A closed subset of a Z -set is a Z -set, so {z} is a
Z -set in Mn , and hence, Mn − z ↪→ Mn is a homotopy equivalence. The desired
result now follows from the long exact sequence for pairs.

Item (c) is now immediate from Theorem 3.10.7.

Exercise 3.10.9 Show that if Mn is a CAT(0) n-manifold, then every metric sphere
in Mn is a homology (n − 1)-manifold.

Remark 3.10.10 In addition to Theorem 3.10.7, it is possible to define orientation
for homology manifolds and prove a version of Poincaré duality for the orientable
ones. With those tools, one can also prove, for example, that any Z -boundary of a
contractible open n-manifold has the (Borel–Moore) homology of an (n − 1)-sphere.

Before moving to applications, we state without proof one of the most significant
results in this area. A nice exposition can be found in [25].
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Theorem 3.10.11 (Edwards-QuinnManifoldRecognitionTheorem)Let Xn (n ≥ 5)
be a generalized homology n-manifold without boundary and suppose Xn contains
a nonempty open set U ≈ R

n. Then Xn is an n-manifold if and only if it satisfies the
disjoint disks property (DDP).

Aspace X satisfies theDDP if, for any pair ofmaps f, g : D2 → X and any ε > 0,
there exist ε-approximations f ′ and g′ of f and g, so that f ′ (D2

) ∩ g′ (D2
) = ∅.

3.10.2 Some Applications of Z -Boundaries to Manifold
Topology

Most results in this section come from [2]. Here we provide only the main ideas;
for details, the reader should consult the original paper. For the sake of brevity, we
focus on high-dimensional results. In many cases, low-dimensional analogs are true
for different reasons.

Let Mn = Mn ∪ Z be a Z -compactification of an open n-manifold. Since Mn

need not be a manifold with boundary, the following is a pleasant surprise.

Theorem 3.10.12 Suppose Mn = Mn ∪ Z and N n = N n ∪ Z ′ are Z -compactifi-
cation of open n-manifolds (n > 4) and h : Z → Z ′ is a homeomorphism. Then
Pn = Mn ∪h N n is a closed n-manifold.

Proof (Sketch) Theorem 3.10.7 asserts that Pn is a homology n-manifold. From
there one uses delicate properties of homology manifolds to prove that Pn is locally
contractible at each point on the “seam”, Z = Z ′; hence, Pn is an ANR. Another
delicate, but more straightforward, argument (this part using the fact that Z and Z ′
are Z -sets) verifies the DDP for Pn . Open subsets of Pn homeomorphic to R

n are
plentiful in the manifolds Mn and N n , so Edwards-Quinn can be applied to complete
the proof.

Corollary 3.10.13 The double of Mn along Z is an n-manifold. If Mn is contractible,
that double is homeomorphic to S

n, and there is an involution of S
n with Z as its

fixed set.

Proof (Sketch) Double(Mn) ≈ S
n will follow from the Generalized Poincaré con-

jecture if we can show that it is a simply connected manifold with the homology of
an n-sphere. The involution interchanges the two copies of Mn .

That Double(Mn) has the homology of S
n is a consequence ofMayer-Vietoris and

Remark 3.10.10. Since Mn is simply connected, simple connectivity of Double(Mn)

would follow directly from van Kampen’s Theorem if the intersection between the
two copies was nice. Instead a controlled variation on the traditional proof of van
Kampen’s Theorem is employed. Use the fact that homology manifolds are locally
path connected to divide an arbitrary loop into loops lying in one or the other copy
of Mn , where they can be contracted. Careful control is needed, and the fact that Mn

is locally contractible is important.
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Theorem 3.10.14 If contractible open manifolds Mn and N n (n > 4) admit
Z -compactifications with homeomorphic Z -boundaries, then Mn ≈ N n.

Proof (Sketch) Let Z denote the common Z -boundary. The argument used in
Corollary 3.10.13 shows that the union of these compactifications along Z is S

n .
Let W n+1 = B

n+1 − Z and note that ∂W n+1 = Mn � N n , providing a noncompact
cobordism

(
W n+1, Mn, N n

)
. The proof is completed by applying the Proper s-

cobordism Theorem [87] to conclude that W n+1 ≈ Mn × [0, 1]. That requires some
work. First show that Mn ↪→ W n+1 is a proper homotopy equivalence. (The fact
that Z is a Z -set in B

n+1 is key.) Then, to establish that Mn ↪→ W n+1 is an infinite
simple homotopy equivalence, some algebraic obstructions must be checked. For-
tunately, there are “naturality results” from [21] that relate those obstructions to the
Z -compactifiability obstructions for Mn and W n+1 (as found in Theorem 3.8.17).
In particular, since the latter vanish, so do the former.

The following can be obtained in a variety of more elementary ways; nevertheless,
it provides a nice illustration of Theorem 3.10.14.

Corollary 3.10.15 If a contractible open n-manifold Mn can be Z -compactified
by the addition of an (n − 1)-sphere, then Mn ≈ R

n.

The Borel Conjecture posits that closed aspherical manifolds with isomorphic
fundamental groups are necessarily homeomorphic. Our interest in contractible open
manifolds led to the following.

Conjecture 3.10.16 (WeakBorelConjecture)Closed aspherical manifolds with iso-
morphic fundamental groups have homeomorphic universal covers.

Theorem 3.10.14 provides the means for a partial solution.

Theorem 3.10.17 The Weak Borel Conjecture is true for those n-manifolds (n > 4)
whose fundamental groups admits Z -structures.

Proof Let Pn and Qn be aspherical manifolds, and
(
X , Z

)
a Z -structure on

π1 (Pn) ∼= π1 (Qn). ByBestvina’s boundary swapping trick [9, Lemma 1.4], both P̃n

and Q̃n can beZ -compactified by the addition of a copy of Z . Now apply Theorem
3.10.14.

Remark 3.10.18 Aspherical manifolds to which Theorem 3.10.17 applies include
those with hyperbolic and CAT(0) fundamental groups. We are not aware of appli-
cations outside of those categories.

Recently, Bartels and Lück [4] proved the full-blown Borel Conjecture for
δ-hyperbolic groups and CAT(0) groups that act geometrically on finite-dimensional
CAT(0) spaces. Not surprisingly, their proof is more complicated than that of Theo-
rem 3.10.17.
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3.10.3 EZ -Structures in Manifold Topology

As discussed in Sect. 3.9, the notion of an EZ -structure was formalized by Farrell
and Lafont in [35]. Among their applications was a new proof of the Novikov Con-
jecture for δ-hyperbolic and CAT(0) groups. That result had been obtained earlier by
Carlsson and Pedersen [17] using similar ideas. We will not attempt to discuss the
Novikov Conjecture here, except to say that it is related to, but much broader (and
more difficult to explain) than the Borel Conjecture.

For a personwith interests inmanifold topology, one of themore intriguing aspects
of Farrell and Lafont’s work is a technique they develop which takes an arbitrary
Z -structure

(
X , Z

)
on a group G and replaces it with one of the form (Bn, Z),

where n is necessarily large, Z is a topological copy of the original Z -boundary
lying in S

n−1, and the new EG is the n-manifold with boundary B
n − Z . The beauty

here is that, once the structure is established, all of the tools of high-dimensional
manifold topology are available. In their introduction, they challenge the reader to
find other applications of these manifold Z -structures, likening them to the action
of a Kleinian group on a compactified hyperbolic n-space.

3.11 Further Reading

Clearly, we have just scratched the surface on a number of topics addressed in these
notes. For a broad study of geometric group theory with a point of view similar to
that found in these notes, Geoghegan’s book, Topological methods in group theory
[45], is the obvious next step.

For those interested in the topology of noncompact manifolds, Siebenmann’s
thesis [86] is still a fascinating read. The main result from that manuscript can also
be obtained from the series of papers [48, 52, 53], which have the advantage of
more modern terminology and greater generality. Steve Ferry’s Notes on geometric
topology (available on his website) contain a remarkable collection of fundamental
results in manifold topology. Most significantly, from our perspective, those notes do
not shy away from topics involving noncompact manifolds. There one can find clear
and concise discussions of the Whitehead manifold, the Wall finiteness obstruction,
Stallings’ characterization of euclidean space, Siebenmann’s thesis, and much more.

The complementary articles [21, 87] fit neither into the category of manifold
topology nor that of geometric group theory; but they contain fundamental results
and ideas of use in each area. Researchers whose work involves noncompact spaces
of almost any variety are certain to benefit from a familiarity with those papers.
Another substantial work on the topology of noncompact spaces, with implications
for both manifold topology and geometric group theory, is the book by Hughes and
Ranicki, Ends of complexes [56].

For the geometric group theorist specifically interested in the interplay between
shapes, group boundaries, Z -sets, and Z -compactifications, the papers by
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Bestvina-Mess [8], Bestvina [9], and the follow-up by Dranishnikov give a quick
entry into that subject; while Geoghegan’s earlier article, The shape of a group [44],
provides a first-hand account of the origins of many of those ideas. For general appli-
cations of Z -compactifications to manifold topology, the reader may be interested
in [2]; and for more specific applications to the Novikov Conjecture, [35] is a good
starting point.

3.12 Appendix A: Basics of ANR Theory

Before beginning this appendix, we remind the reader that all spaces discussed in
these notes are assumed to be separable metric spaces.

A locally compact space X is an ANR (absolute neighborhood retract) if it can
be embedded into R

n or, if necessary, R
∞ (a countable product of real lines) as

a closed set in such a way that there exists a retraction r : U → X , where U is a
neighborhood of X . If the entire space R

n or R
∞ retracts onto X , we call X an AR

(absolute retract). If X is finite-dimensional, all mention of R
∞ can be omitted. A

finite-dimensional ANR is often called an ENR (Euclidean neighborhood retract)
and a finite-dimensional AR an ER.

Use of the word “absolute” in ANR (or AR) stems from the following standard
fact: If one embedding of X as a closed subset of R

n or R
∞ satisfies the defining

condition, then so do all such embeddings. An alternative definition for ANR (and
AR) is commonly found in the literature. To help avoid confusion, we offer that
approach as Exercise 3.12.6. Texts [12, 55] are devoted entirely to the theory of
ANRs; readers can go to either for details.

With a little effort (Exercise 3.12.7) it can be shown that anAR is just a contractible
ANR, so there is no loss of generality if focusing on ANRs.

A space Y is locally contractible if every neighborhood U of a point y ∈ Y
contains a neighborhood V of y that contracts within U . It is easy to show that every
ANR is locally contractible. A partial converse gives a powerful characterization of
finite-dimensional ANRs.

Theorem 3.12.1 A locally compact finite-dimensional space X is an ANR if and
only if it is locally contractible.

Example 3.12.2 By Theorem 3.12.1, manifolds, finite-dimensional locally finite
polyhedra and CW complexes, and finite-dimensional proper CAT(0) spaces are
all ANRs.

Example 3.12.3 It is also true that Hilbert cube manifolds, infinite-dimensional
locally finite polyhedra and CW complexes, and infinite-dimensional proper CAT(0)
spaces are all ANRs. Proofs would require some additional effort, but we will not
hesitate to make use of these facts.
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Rather than listing key results individually, we provide a mix of facts about ANRs
in a single Proposition. The first several are elementary, and the final item is a deep
result. Each is an established part of ANR theory.

Proposition 3.12.4 (Standard facts about ANRs)

(a) Being an ANR is a local property: every open subset of an ANR is an ANR, and
if every element of X has an ANR neighborhood, then X is an ANR.

(b) If X = A ∪ B, where A, B, and A ∩ B are compact ANRs, then X is a compact
ANR.

(c) Every retract of an ANR is an ANR; every retract of an AR is an AR.
(d) (Borsuk’s Homotopy Extension Property) Every h : (Y × {0}) ∪ (A × [0, 1]) →

X, where A is a closed subset of a space Y and X is ANR, admits an extension
H : Y × [0, 1] → X.

(e) (West, [97]) Every ANR is proper homotopy equivalent to a locally finite CW
complex; every compact ANR is homotopy equivalent to a finite complex.

Remark 3.12.5 Items (c) and (d) allow us to extend the tools of algebraic topology
and homotopy theory normally reserved for CW complexes to ANRs. For example,
Whitehead’s Theorem, that a map between CW complexes which induces isomor-
phisms on all homotopy groups is a homotopy equivalence, is also true for ANRs.
In a very real sense, this sort of result is the motivation behind ANR theory.

Exercise 3.12.6 A locally compact space X is an ANE (absolute neighborhood
extensor) if, for any space Y and any map f : A → X , where A is a closed subset of
Y , there is an extension F : U → X whereU is a neighborhood of A. If an extension
to all of Y is always possible, then X is an AE (absolute extensor). Show that being
an ANE (or AE) is equivalent to being an ANR (or AR). Hint: The Tietze Extension
Theorem will be helpful.

Exercise 3.12.7 With the help of Exercise 3.12.6 and theHomotopyExtensionProp-
erty, prove that an ANR is an AR if and only if it is contractible.

Exercise 3.12.8 A useful property of Euclidean space is that every compactum
A ⊆ R

n has arbitrarily small compact polyhedral neighborhoods. Using the tools
of Proposition 3.12.4, prove the following CAT(0) analog: every compactum A in
a proper CAT(0) space X has arbitrarily small compact ANR neighborhoods. Hint:
Cover A with compact metric balls. (For examples of ANRs that do not have this
property, see [11, 73].)

3.13 Appendix B: Hilbert Cube Manifolds

This appendix is a very brief introduction to Hilbert cube manifolds. A primary goal
is to persuade the uninitiated reader that there is nothing to fear. Although the main
results from this area are remarkably strong (we sometimes refer to them as “Hilbert
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cube magic”), they are understandable and intuitive. Applying them is often quite
easy.

The Hilbert cube is the infinite product Q =∏∞
i=1 [−1, 1] with metric d ((xi ),

(yi )) = ∑ |xi −yi |
2i . A Hilbert cube manifold is a separable metric space X with the

property that each x ∈ X has a neighborhood homeomorphic to Q. Hilbert cube
manifolds are interesting in their own right, but our primary interest stems from their
usefulness in working with spaces that are not necessarily infinite-dimensional—
often locally finite CW complexes or more general ANRs. Two classic examples
where that approach proved useful are:

• Chapman [19] used Hilbert cube manifolds to prove the topological invariance of
Whitehead torsion for finite CW complexes, i.e., homeomorphic finite complexes
are simple homotopy equivalent.

• West [97] used Hilbert cube manifolds to solve a problem of Borsuk, showing
that every compact ANR is homotopy equivalent to a finite CW complex. (See
Proposition 3.12.4.)

The ability to attack a problem about ANRs using Hilbert cube manifolds can be
largely explained using the following pair of results.

Theorem 3.13.1 (Edwards, [34]) If A is an ANR, then A × Q is a Hilbert cube
manifold.

Theorem 3.13.2 (Triangulability of Hilbert Cube Manifolds, Chapman, [20]) If X
is a Hilbert cube manifold, then there is a locally finite polyhedron K such that
X ≈ K × Q.

A typical (albeit, simplified) strategy for solving a problem involving an ANR A
might look like this:

(A) Take the product of A withQ to get a Hilbert cube manifold X = A × Q.

(B) Triangulate X , obtaining a polyhedron K with X ≈ K × Q.

(C) The polyhedral structure of K together with a variety of tools available in a
Hilbert cube manifolds (see below) make solving the problem easier.

(D) Return to A by collapsing out the Q-factor in X = A × Q.

In these notes, most of our appeals to Hilbert cube manifold topology are of this
general sort. That is not to say the strategy always works—the main result of [49]
(see Remark 3.8.18(a)) is one relevant example.

Tools available in a Hilbert cube manifold are not unlike those used in finite-
dimensional manifold topology. We list a few such properties, without striving for
best-possible results.

Proposition 3.13.3 (Basic properties of Hilbert cube manifolds) Let X be a con-
nected Hilbert cube manifold.
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(a) (Homogeneity) For any pair x1, x2 ∈ X, there exists a homeomorphism h : X →
X with h(x1) = x2.

(b) (General Position) Every map f : P → X, where P is a finite polyhedron can
be approximated arbitrarily closely by an embedding.

(c) (Regular Neighborhoods) Each compactum C ⊆ X has arbitrarily small com-
pact Hilbert cube manifold neighborhoods N ⊆ X. If C is a nicely embedded
polyhedron, N can be chosen to strong deformation retract onto P.

Exercise 3.13.4 As a special case, assertion (a) of Proposition 3.13.3 implies that
Q itself is homogeneous. This remarkable fact is not hard to prove. A good start
is to construct a homeomorphism h : Q → Q with h (1, 1, 1, . . .) = (0, 0, 0, . . .).
To begin, think of a homeomorphism k : [−1, 1] × [−1, 1] taking (1, 1) to (0, 1),
and use it to obtain h1 :Q → Q with h1 (1, 1, 1, . . .) = (0, 1, 1, . . .). Complete this
argument by constructing a sequence of similarly chosen homeomorphisms.

Example 3.13.5 Here is another special case worth noting. Let K be an arbitrary
locally finite polyhedron—for example, a graph. Then K × Q is homogeneous.

The material presented here is just a quick snapshot of the elegant and surprising
world of Hilbert cube manifolds. A brief and readable introduction can be found
in [20]. Just for fun, we close by stating two more remarkable theorems that are
emblematic of the subject.

Theorem 3.13.6 (Toruńczyk [93]) An ANR X is a Hilbert cube manifold if and only
if it satisfies the General Position property (Assertion (2)) of Proposition 3.13.3.

Theorem 3.13.7 (Chapman [20]) A map f : K → L between locally finite polyhe-
dra is an (infinite) simple homotopy equivalence if and only if f × idQ : K × Q →
L × Q is (proper) homotopic to a homeomorphism.
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Chapter 4
A Proof of Sageev’s Theorem on Hyperplanes
in CAT(0) Cubical Complexes

Daniel Farley

Abstract We prove that any hyperplane H in a CAT(0) cubical complex X has
no self-intersections and separates X into two convex complementary components.
These facts were originally proved by Sageev. Our argument shows that his theorem
is a corollary of Gromov’s link condition. We also give new arguments establishing
some combinatorial properties of hyperplanes. We show that these properties are
sufficient to prove that the 0-skeleton of any CAT(0) cubical complex is a discrete
median algebra, a fact that was previously proved by Chepoi, Gerasimov, and Roller.

Keywords CAT(0) · Cubical complex · Hyperplanes

4.1 Introduction

Two theorems are central in the theory of CAT(0) cubical complexes. The first is
Gromov’s well-known link condition. A complete statement and proof appear in
[1]. The second theorem was proved by Sageev in [15]. He showed that a group G
semisplits over a subgroup H if and only if G acts on a CAT(0) cubical complex X
and there is a hyperplane J ⊆ X such that: (i) the action of G is essential relative to
J , and (ii) the stabilizer of J (as a set) is H . We refer the reader to [15] for details
and definitions. Sageev’s result extends the Bass–Serre theory of groups acting on
trees, which says that a group G splits over H if and only if G acts without inversion
on a tree T , in which the stabilizer subgroup of some edge e is H . Moreover, just as
Bass–Serre theory gives a construction of the tree T from the splitting of G over H ,
Sageev gives a construction of the CAT(0) cubical complex X from the semisplitting
ofG over H . Both theories are also alike in that they explicitly describe the algebraic
splittings or semisplittings using their geometric hypotheses.

Both the forward and the reverse directions of Sageev’s theorem have signif-
icant applications. The forward direction (from algebra to geometry) is used in
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[11, 16], among others. The proof of the reverse direction uses several properties of
hyperplanes in CAT(0) cubical complexes (also established in [15]). Many of these
properties are useful in their own right. For instance, Sageev showed that a hyper-
plane in a CAT(0) cubical complex X has no self-intersections and separates X into
two convex complementary components [15]. This fact is essential in the proof that
groups acting properly, isometrically, and cellularly on CAT(0) cubical complexes
have the Haagerup property [12]. Sageev establishes the geometric properties of hy-
perplanes in CAT(0) cubical complexes using his own system of Reidemeister-style
moves.

The main purpose of this note is to offer a new (and, we believe, simpler) proof
of the following theorem, which we hereafter call “Sageev’s Theorem” for the sake
of brevity:

Theorem 4.1.1 ([15]) A hyperplane H in a CAT(0) cubical complex X has no self-
intersections and separates X into two open convex complementary components.

Our proof avoids using Sageev’s Reidemeister moves. The main tool is a block com-
plexB(X), which is endowed with a natural projection πB : B(X) → X . We apply
a criterion, due to Crisp and Wiest [5], for showing that a map between cubical
complexes is an isometric embedding. The criterion is a generalized form of Gro-
mov’s link condition. We are thus able to conclude that the restriction of πB to each
connected component of B(X) is an isometric embedding. The full statement of
Theorem 4.1.1 then follows from the definition of B(X) after a little more work.

We also give new proofs of some of Sageev’s secondary results—see Sect. 4.5.2,
especially Propositions 4.5.5 and 4.5.8. Sageev’s original proofs used his Reidemeis-
ter moves. Our proofs use techniques from the theory of CAT(0) spaces, including
(especially) projection maps onto closed convex subspaces.

The paper concludes with some applications. We sketch a proof of the theorem
that every group G acting properly, isometrically, and cellularly on a CAT(0) cubical
complex has the Haagerup property. (The first proof appeared in [12].) We also show
that the 0-skeleton of a CAT(0) cubical complex is a discrete median algebra un-
der the “geodesic interval” operation. Earlier proofs of the discrete median algebra
property appear in [4, 7], and Martin Roller produced a proof in his unpublished
Habilitation Thesis [14]. Our argument is intended to highlight the utility of the
combinatorial lemmas collected in Sect. 4.5.1, and, in particular, to suggest that the
latter lemmas are a sufficient basis for establishing all of the combinatorial proper-
ties of CAT(0) cubical complexes. (Indeed, “discrete median algebra” and “CAT(0)
cubical complex” are equivalent ideas, by [7, 13, 14].) We refer the reader to [3]
for elegant characterizations of the Haagerup property and property T in terms of
median algebras.

We note one limitation of the general methods of this paper: our methods apply
only to locally finite-dimensional cubical complexes satisfying Gromov’s link con-
dition. We need our complexes to be locally finite-dimensional so that their metrics
will be complete (see [1], Exercise 7.62, p. 123). In fact, the CAT(0) property has
been established only for locally finite-dimensional cubical complexes satisfying the
link condition—see the passage after Lemma 2.7 in [8] for a useful discussion of this
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point. Although our argument is therefore slightly less general than the original one
of Sageev, it still covers the cases that are most commonly encountered in practice.

Section4.2 contains a description of the block complex. Section4.3 describes the
analogue of Gromov’s theorem we need from [5]. Section4.4 contains a proof of
Sageev’s theorem, Theorem 4.1.1. Section4.5 collects some essential combinatorial
lemmas. Finally, Sect. 4.6 contains applications of the main ideas, including proofs
that every CAT(0) cubical complex is a set with walls and that the 0-skeleton of every
CAT(0) cubical complex is a discrete median algebra.

I would like to thank Dan Guralnick for a helpful discussion related to this work,
and for telling me about Roller’s dissertation.

4.2 The Block Complex

Definition 4.2.1 A cubical complex X is locally finite-dimensional if the link of
each vertex is a finite-dimensional simplicial complex.

Throughout the paper, “CAT(0) cubical complex” means locally finite-dimens-
ional CAT(0) cubical complex.

Definition 4.2.2 Let C ⊆ X be a cube of dimension at least one. A marking of C is
an equivalence class of directed edges e ⊆ C . Two such directed edges e′, e′′ are said
to be equivalent, i.e., to define the same marking, if there is a sequence of directed
edges e′ = e0, . . . , ek = e′′ such that, for i ∈ {0, . . . , k − 1}, ei and ei+1 are opposite
sides of a 2-cell Ci ⊆ C and both point in the same direction. A marked cube is a
cube (of dimension at least one) with a marking.

Example 4.2.3 Let X = [0, 1]3, with the usual cubical structure. We let C = X .
There are six markings of C . They are represented by the directed edges [(0, 0, 0),
(1, 0, 0)], [(0, 0, 0), (0, 1, 0)], [(0, 0, 0), (0, 0, 1)], and by the three corresponding
edges with the opposite directions.

It is fairly clear from the example that a cube of dimension n has exactly 2n
markings. Note that not every face of a marked cube is itself marked. In Fig. 4.1, the
top and bottom faces are unmarked.

Definition 4.2.4 Let X be a CAT(0) cubical complex. We let M (X) denote the
space of marked cubes of X , which is defined to be the disjoint union of all marked
cubes of X . More formally, M (X) is the space of triples (x,C, [e]), where C is a
cube in X , [e] is a marking of C , and x ∈ C . For fixed C and [e], the set

C[e] = {(x,C, [e]) | x ∈ C}

is an isometric copy of C , andM (X) is the disjoint union of all such sets C[e]. There
is a natural map πM : M (X) → X , defined by sending (x,C, [e]) to x .
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Fig. 4.1 The directed edge
[(0, 0, 0), (0, 0, 1)]
determines the marking of
the cube. The x-axis is
horizontal, and the
coordinate system is a
right-handed one

Example 4.2.5 If X = [0, 1]3, then M (X) is a disjoint union of 24 marked edges,
24 marked squares, and 6 marked three-dimensional cubes.

Definition 4.2.6 Let (x1,C1, [e1]), (x2,C2, [e2]) ∈ M (X). We write (x1,C1, [e1])
∼ (x2,C2, [e2]) if:
(a) x1 = x2, and
(b) there is a directed edge e ∈ [e1] ∩ [e2].
Lemma 4.2.7 The relation ∼ is an equivalence relation on M (X).

Proof It is already clear that ∼ is reflexive and symmetric.
We prove that∼ is transitive. Thus, we suppose that (x1,C1, [e1]) ∼ (x2,C2, [e2])

and (x2,C2, [e2]) ∼ (x3,C3, [e3]). Clearly, x1 = x2 = x3.Wecan expressC2 asC ′
2 ×

[0, 1], where C ′
2 is a cube of dimension one less than the dimension of C2, and

the second factor [0, 1] is the marked one. Since C1 ∩ C2 is a marked face of C2

(because of the condition [e1] ∩ [e2] �= ∅), we must have C1 ∩ C2 = Ĉ × [0, 1], for
somenon-empty face Ĉ ⊆ C ′

2. Similarly,C2 ∩ C3 = C̃ × [0, 1], for somenon-empty
face C̃ ⊆ C ′

2. NowC1 ∩ C2 ∩ C3 �= ∅, since x1 ∈ C1 ∩ C2 ∩ C3. It follows thatC1 ∩
C2 ∩ C3 = (Ĉ × C̃) × [0, 1], where Ĉ × C̃ is a non-empty face of C ′

2.
Let us suppose that the marking [e2] of C2 is determined by the directed edge

e2 = [(v, 0), (v, 1)], where v is a vertex of C ′
2. It follows easily from the conditions

[e1] ∩ [e2] �= ∅ and [e2] ∩ [e3] �= ∅ that the directed edge [(v′, 0), (v′, 1)] ⊆ C2 is in
[e1] (respectively, [e3]) if and only if v′ ∈ Ĉ (respectively, C̃). Thus, if v is a vertex
of Ĉ ∩ C̃ , then [(v, 0), (v, 1)] ∈ [e1] ∩ [e3]. Such a vertex exists since Ĉ ∩ C̃ �= ∅,
and this completes the proof.

Definition 4.2.8 The block complex of X , denotedB(X), is the quotientM (X)/ ∼.

Definition 4.2.9 ([5]) A map f : X → Y between cubical complexes is called cu-
bical if each cube in X is mapped isometrically onto some cube in Y .

We record the following lemma, the proof of which is straightforward.

Lemma 4.2.10 The space B(X) is a cubical complex with a natural cubical map
πB : B(X) → X, defined by π(x,C, [e]) = x. �
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Example 4.2.11 We describe the cubical complexB(X) in a special case. Suppose
that X = R

2 with the standard cubulation. The complex B(X) consists of an infi-
nite disjoint union of strips having either the form [m,m + 1] × R orR × [n, n + 1]
(m, n ∈ Z). The map πB : B(X) → X is “inclusion”. Note that there are two identi-
cal copies of each strip [m,m + 1] × R inB(X), since there are two different orien-
tations for the edge [m,m + 1] × {0}. (There are also two copies of R × [n, n + 1]
inB(X) for a similar reason.)

4.3 A Geometric Lemma

The main lemma of this section (Lemma 4.3.2) relies heavily on a theorem due to
Crisp and Wiest.

Theorem 4.3.1 ([5], Theorem 1(2)) Let X and Y be locally finite-dimensional cubi-
cal complexes andΦ : X → Y a cubical map. Suppose that Y is locally CAT(0). The
map Φ is a local isometry if and only if, for every vertex x ∈ X, the simplicial map
Lk(x, X) → Lk(Φ(x),Y ) induced by Φ is injective with image a full subcomplex
of Lk(Φ(x),Y ).

Proof This is exactly Theorem 1(2) from [5], except that we allow locally finite-
dimensional cubical complexes, rather than only finite-dimensional ones. Since the
hypotheses and conclusions are all local in nature, the proof is unchanged.

Lemma 4.3.2 Let X and Y be locally finite-dimensional cubical complexes, let Y
be CAT(0), and assume that Φ : X → Y is a cubical map with the property that, for
every vertex x ∈ X, the simplicial map Lk(x, X) → Lk(Φ(x),Y ) induced by Φ is
injective with image a full subcomplex of Lk(Φ(x),Y ).

For every component C ⊆ X, we have:

(a) C is a CAT(0) cubical complex, and
(b) Φ|C is an isometric embedding.

Proof The previous theorem shows that Φ is a local isometry. We note that both X
and Y are complete metric spaces, since both are locally finite-dimensional cubical
complexes (see Exercise 7.62 on p. 123 of [1]). Since Y is non-positively curved
and X is locally a length space, Proposition 4.14 from p. 201 of [1] applies. It
follows that X is non-positively curved, the homomorphismΦ∗ : π1(C) → π1(Y ) is
injective, and every continuous lifting Φ̃ : C̃ → Ỹ is an isometric embedding. Since
Φ∗ is injective, C is simply connected, and therefore C = C̃ , Y = Ỹ , and Φ̃ = Φ.
The lemma follows.
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4.4 The Main Theorem

4.4.1 A Preliminary Version of Sageev’s Theorem

Theorem 4.4.1 If X is a locally finite-dimensional cubical complex, then the map
πB : B(X) → X embeds each connected component of B(X) isometrically.

Proof By Lemma 4.3.2, we need only show that the simplicial map on links
Lk(v,B(X)) → Lk(πB(v), X) is injective, and that the image is a full subcom-
plex of Lk(πB(v), X).

We choose a vertex v ∈ B(x). Such a vertex can be represented by a vertex
(x,C, [e]) in M (X), where x ∈ X0. There is a unique directed edge e′ ∈ [e] con-
taining x . We let C ′ denote the (undirected) 1-cell determined by e′. It follows from
the definition of ∼ that we can represent v by (x,C ′, [e′]).

We let XC ′ be the subcomplex of X consisting of all closed cubes C such that
C ′ ⊆ C . A marked cube C[e] ⊆ B(X) touches v if and only if C ′ ⊆ C and e′ ∈ [e],
by the definition of ∼. Now, for a given cube C ⊆ X such that C ′ ⊆ C , there is a
unique marking [e] of C such that e′ ∈ [e]. It follows that the closed cubes touching
v in B(X) are in one-to-one correspondence with the closed cubes of XC ′ touching
πB(v). Moreover, given two marked cubes D[e1] and E[e2] such that e′ ∈ [e1] ∩ [e2],
the intersection D[e1] ∩ E[e2] is mapped isometrically to D ∩ E by πB, since D[e1] ∩
E[e2] = (D ∩ E)[e3], where [e3] is the unique marking of D ∩ E determined by the
property [e3] ⊆ [e1] ∩ [e2]. It follows that the union of all closed cubes in B(X)

touching v is combinatorially identical to XC ′ , and the map πB : B(X) → X is
locally just the inclusion XC ′ → X . Therefore, the map on links is injective.

Wenowconsider the image in Lk(πB(x), X). There is a vertex v′ ∈ Lk(πB(v), X)

which is contributed by the 1-cell C ′. The above description of πB implies that the
image of the link Lk(v,B(X)) is the union of all simplices touching v′ (i.e., the sim-
plicial neighborhood of v′). Since Lk(πB(v), X) is flag, this simplicial neighborhood
is necessarily a full subcomplex.

4.4.2 Sageev’s Theorem

Definition 4.4.2 Fix a component B of the block complexB(X). For each marked
cube C of B, choose an isometric characteristic map c : [0, 1]n → C such that the
directed edge [c(0, 0, . . . , 0), c(0, 0, . . . , 0, 1)] represents a marking of C . If x ∈ C
satisfies x = c(t1, . . . , tn), then the height of x , denoted h(x), is tn . This height
function on marked cubes is easily seen to be compatible overlaps, and induces a
height function h : B → [0, 1]. We let Bt = h−1(t) for t ∈ [0, 1].
Lemma 4.4.3 (a) For any component B of B(X) and for any t ∈ [0, 1], Bt is a

closed convex subset of B(X). The space πB(Bt ) is a closed convex subset
of X.
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(b) Each component B ofB(X) factors isometrically as B0 × [0, 1].
(c) Each Bt (t ∈ [0, 1]) is a CAT(0) cubical complex.
Proof (a) It is clear that Bt is closed.

Suppose that x, y ∈ Bt . Let p : [0, dB(x, y)] → B be a path connecting x to y.
We can factor each marked cubeC ⊆ B of dimension n asC ′ × [0, 1], whereC ′
is a cube of dimension n − 1 and the factor [0, 1] determines the marking. There
is a natural projection πt : C → C ′ × {t}, and this projection doesn’t increase
distances. Moreover, all such projections are compatible, so in particular there
is a projection πt : B → Bt which fixes Bt and doesn’t increase distances. It
follows that πt ◦ p is a path in Bt which is no longer than p. By the uniqueness
of geodesics in CAT(0) spaces, it follows that any geodesic connecting x to y
lies in Bt . Therefore, Bt is a closed convex subset of B(X). Since πB|B is an
isometric embedding, πB(Bt ) is a closed convex subset of X .

(b) There is a natural map f : B → B0 × [0, 1], where f (x) = (π0(x), h(x)) and
π0 : B → B0 is the usual projection onto the closed convex subspace B0 (see
Proposition 2.4 on p. 176 of [1]).
Assume that x, y ∈ B. We need to show that

dB(x, y) =
√

[dB0(π0(x), π0(y))]2 + |h(x) − h(y)|2.

This is clear if π0(x) = π0(y). If π0(x) �= π0(y), then we consider the quadri-
lateral formed by the geodesic segments [π0(x), π0(y)], [π0(x), π1(x)], [π1(x),
π1(y)], and [π1(y), π0(y)].
By Proposition 2.4(3) of [1], each of the four resulting Alexandrov angles mea-
sures at least π/2. It therefore follows from the Flat Quadrilateral Theorem (2.11
from p. 181 of [1]) that all of the angles in the above quadrilateral measure ex-
actly π/2, and that the convex hull of π0(x), π0(y), π1(x) and π1(y) in B is
isometric to a rectangle in Euclidean space. The desired equality now follows
from the definition of the metric in Euclidean space.

(c) It is sufficient to prove this for B0. Since B = B0 × [0, 1] is CAT(0), it must be
that each factor is CAT(0) (Exercise 1.16, p. 168 of [1]). The space B0 is a cubical
complex because the identifications in the definition of B are height-preserving.

Theorem 4.4.4 Each hyperplane πB(Bt ) (0 < t < 1) separates X into two open
convex complementaryhalf-spaces. ThehyperplaneπB(Bt )hasno self-intersections.

Proof We recall that πB(B) is a closed convex subspace of X . We let π : X →
πB(B) be the projection. By a slight abuse of notation, we let h : πB(B) → [0, 1]
denote the height function from Definition 4.4.2.

Consider the function h ◦ π : X → [0, 1]. We claim

(a) if [x, y] is any geodesic in X , then (h ◦ π)|[x,y] must assume its maximum and
minimum values at the endpoints, and

(b) if h(π(x)) ∈ (0, 1), then x = π(x).
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We prove (2) first. Note that, if h(π(x)) ∈ (0, 1), then π(x) is an interior point of
πB(B). This is only possible if π(x) = x .

Wenowprove (1).Weassume the contrary.Assume that h ◦ π attains itsmaximum
value on the geodesic [x, y] at neither of the endpoints. (The case in which h ◦ π

attains its minimum value at neither of the endpoints is handled in an analogous way.)
We assume that h ◦ π attains its maximum value at z ∈ [x, y], z /∈ {x, y}. It follows
that there is some t ∈ (0, 1) such that

max{(h ◦ π)(x), (h ◦ π)(y)} < t < (h ◦ π)(z).

This implies, by the Intermediate Value Theorem, that there are points x ′, y′ such that
(h ◦ π)(x ′) = t = (h ◦ π)(y′), where x ′ lies between x and z on [x, y], and y′ lies
between y and z. It now follows, from (2), that x ′, y′ ∈ Bt . Since z ∈ [x ′, y′] ⊆ Bt ,
(h ◦ π)(z) = t , a contradiction. This proves (1).

We now prove the first statement. Consider the sets (h ◦ π)−1([0, t)) = B−
t and

(h ◦ π)−1((t, 1]) = B+
t . For any x, y ∈ B−

t , the geodesic [x, y] is clearly contained
in B−

t by (1). It follows that B−
t is convex and (therefore) connected. By similar

reasoning B+
t is convex and connected. Both B−

t and B+
t are obviously open, and

they are disjoint. We note finally that B−
t ∪ B+

t = X − πB(Bt ) (since πB(Bt ) =
(h ◦ π)−1(t), by (2)), completing the proof of the first statement.

The second statement follows from Theorem 4.4.1: the map πB : B(X) → X is
an isometric embedding when restricted to an individual block B.

Definition 4.4.5 A hyperplane H in a CAT(0) cubical complex X is the image
πB(B1/2), where B is a connected component of B(X). We sometimes denote the
complementary halfspaces H+ and H−.

Note 4.4.6 In what follows, we typically identify πB(B) with B, and πB(Bt ) with
Bt , for the sake of convenience in notation.

4.5 Combinatorics of Hyperplanes

Definition 4.5.1 Let X be a complete CAT(0) space. If C is a closed convex subset
of X , then π(X,C) denotes the projection from X to C . If x1, x2, and x3 are points
in X , then ∠X

x2(x1, x3) denotes the Alexandrov (or upper) angle in X between the
geodesics [x2, x1] and [x2, x3]. We refer the reader to [1] for the definitions, which
appear on pp. 176 and 9, respectively.
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4.5.1 Three Lemmas

Lemma 4.5.2 Let H1, H2 be hyperplanes in X, and assume that H1 ∩ H2 �= ∅. The
projections π(X,Hi ) : X → Hi and π(X,Hi∩Hj ) : X → Hi ∩ Hj agree on Hj , where
{i, j} = {1, 2}.
Proof For the sake of simplicity, we let j = 1 and i = 2. Choose a point x ∈ H1. We
consider the block B containing H1, and the projection π(B,B∩H2) : B → B ∩ H2.
We denote the latter projection by π . Let C be a marked cube of B containing
π(x). We note that C must be at least two-dimensional, since C meets at least
two hyperplanes. We write C = C ′ × [0, 1] × [0, 1], where C ′ × {1/2} × [0, 1] =
H2 ∩ C and C ′ × [0, 1] × {1/2} = H1 ∩ C .

We claim that π(x) ∈ H1 (i.e., π(x) ∈ H1 ∩ H2, since π(x) ∈ H2 by definition).
Express π(x) as (y, 1/2, t) ∈ C ′ × [0, 1] × [0, 1] = C . Now since x ∈ B1/2 = H1,
we have, by the product decomposition of B (Lemma 4.4.3(2)),

d(x, π(x)) =
√
D2 + |t − 1/2|2,

where D is the distance from x to (y, 1/2, 1/2). Since (y, 1/2, 1/2) ∈ H2 ∩ B and
π(x) is the point of B ∩ H2 closest to B, we must have t = 1/2. That is, π(x) =
(y, 1/2, 1/2), so π(x) ∈ H1, as claimed.

Next, we claim that π(x) = π(X,H2)(x). The proof of this fact uses the following
characterization of the projection: if X is a complete CAT(0) space, C is a closed
convex subset of X , and x ∈ X − C , then π(X,C)(x) is the unique element of C
with the property that ∠X

π(X,C)(x)
(x, z) ≥ π/2 for all z ∈ C − π(X,C)(x). We choose

z ∈ H2 − {π(x)}. Since π(x) is in the interior of B, there is some z′ ∈ [π(x), z], z′ �=
π(x), such that z′ ∈ B ∩ H2. By the definition ofπ(x) = π(B,B∩H2)(x),∠B

π(x)(x, z) ≥
π/2. Since B is a convex subset of X ,∠B

π(x)(x, z) = ∠X
π(x)(x, z

′). It now follows that

∠X
π(x)(x, z) = ∠X

π(x)(x, z
′) ≥ π/2,

so π(x) = π(X,H2)(x).
Now we argue that π(x) = π(X,H1∩H2)(x). If not, then there is y ∈ H1 ∩ H2 such

that dX (x, y) < dX (x, π(x)). This is impossible, however, since π(x) is the closest
point in H2 to x .

Lemma 4.5.3 Assume that H1 and H2 are hyperplanes, H1 �= H2, and H1 ∩ H2 �=
∅. If e is a marked edge perpendicular to H1, then dH2|e is constant.

Proof Suppose that e is perpendicular to H1. Let B denote the block containing the
hyperplane H1. Consider the midpoint of e; call it x . We let π denote the projection
from X onto H2. Let C be a closed marked cube of B which contains π(x). As
in the proof of Lemma 4.5.2, we write C = C ′ × [0, 1] × [0, 1], where H1 ∩ C =
C ′ × [0, 1] × {1/2} and H2 ∩ C = C ′ × {1/2} × [0, 1].
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Since π(x) ∈ H1 ∩ H2 by Lemma 4.5.2, one has that [x, π(x)] ⊆ B1/2 = B0 ×
{1/2}. We can express [x, π(x)] as [π0(x), π0(π(x))] × {1/2}, where π0 denotes the
projection from B to B0. If y is some other point on e, then [π0(x), π0(π(x))] ×
{h(y)} is a geodesic connecting y to a point in H2. It follows that dH2(y) ≤ dH2(x),
for all y ∈ e.

One argues that equality always holds by the convexity of the function dH2 (see
Corollary 2.5 on p. 178 of [1]). Indeed, suppose that y1, y2 ∈ e, where h(y1) <

h(x) < h(y2), and dH2(yi ) < dH2(x) for at least one index i ∈ {1, 2}. The function
dH2 is concave up (i.e., convex) and non-constant on the geodesic [y1, y2], and attains
a maximum value of dH2(x) at the interior point x . This is a contradiction.

Lemma 4.5.4 ([6], Lemma 2.6(4)) If H1 and H2 are hyperplanes, H
+
1 ∩ H+

2 , H−
1 ∩

H+
2 , H+

1 ∩ H−
2 , and H−

1 ∩ H−
2 are all non-empty, then H1 ∩ H2 �= ∅.

Proof Assume that the four intersections in the hypothesis are all non-empty and
H1 ∩ H2 = ∅. It follows that {H+

1 ∪ H+
2 , H−

1 ∪ H−
2 } is an open cover of X . Each

of the half-spaces H+
1 , H−

1 , H+
2 , and H−

2 is a convex subspace of the CAT(0) space
X , and therefore contractible. Each of the four intersections in the hypothesis is
contractible for the same reason.

It follows that the sets X+ = H+
1 ∪ H+

2 and X− = H−
1 ∪ H−

2 are simply con-
nected, since each is the union of two open contractible sets which intersect in an
open contractible set. The intersection X+ ∩ X− is the disjoint union of two open
contractible sets: H+

1 ∩ H−
2 and H+

2 ∩ H−
1 . Let c be an arc contained in X+, con-

necting H+
1 ∩ H−

2 to H+
2 ∩ H−

1 , and meeting each in an open segment.
We apply van Kampen’s theorem to the pieces X− ∪ c and X+. The first

piece X− ∪ c satisfies π1(X− ∪ c) ∼= Z, while the second is simply connected.
The intersection of these two pieces is the simply connected set (H+

1 ∩ H−
2 )

∪ (H+
2 ∩ H−

1 ) ∪ c. It follows that π1(X− ∪ X+) = π1(X) is isomorphic to Z. Since
X is CAT(0), it must be contractible. This is a contradiction.

4.5.2 Sageev’s Combinatorial Results

We cover only some basic combinatorial results in this subsection. A more advanced
treatment of the combinatorial properties of hyperplanes appears in an appendix
to [10].

Proposition 4.5.5 ([15]) An edge-path p in X1 is geodesic if and only if p crosses
any given hyperplane H at most once.

Proof We first prove the forward direction. Suppose, on the contrary, that a certain
geodesic edge-path crosses some hyperplane more than once. We consider a short-
est geodesic edge-path p which crosses some hyperplane multiple times. We write
p = (e1, . . . , en), and let H1, . . . , Hn denote the hyperplanes crossed by the edges
e1, . . . , en (respectively). Since p is the shortest edge-path with the given property,
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we must have H1 = Hn , but there are no other repetitions in the list H1, . . . , Hn (i.e.,
a total of n − 1 distinct hyperplanes are crossed by p). We let H−

1 denote the compo-
nent of X − H1 containing ι(e1) and τ(en). Clearly the other component of X − H1,
denoted H+

1 , contains the edge-path (e2, . . . , en−1). We adopt the convention that
ι(e j ) ∈ H−

j and τ(e j ) ∈ H+
j , for j ∈ {2, . . . , n − 1}.

Consider an edge e j , j ∈ {2, . . . , n − 1}. Note that ι(e1) ∈ H−
1 ∩ H−

j , ι(e j ) ∈
H+

1 ∩ H−
j , τ(e j ) ∈ H+

1 ∩ H+
j , and τ(en) ∈ H−

1 ∩ H+
j . It follows that the hyper-

planes H1 and Hj intersect, for j ∈ {2, . . . , n − 1}, by Lemma 4.5.4.
We now apply Lemma 4.5.3. Since d(ι(e2), H1) = 1/2 and dH1 is constant on

e2, we must have dH1(x) = 1/2 for all x in e2. We can inductively conclude that
dH1(x) = 1/2 for all x in (e2, . . . , en−1).

It follows that the entire edge-path p = (e1, . . . , en) is contained in the block
B containing H1. The edges e2, . . . , en−1 are all unmarked edges in the block
B = B0 × [0, 1]. We identify ι(e2) with a vertex (v′, 1) ∈ B and τ(en−1) with a
vertex (v′′, 1) ∈ B. It follows that ι(e1) = (v′, 0) and τ(en) = (v′′, 0). The edge-
path (e2, . . . , en−1) connects (v′, 1) to (v′′, 1). There is a corresponding edge-path
(e′

2, . . . , e
′
n−1) connecting (v′, 0) to (v′′, 0). This contradicts the fact that p is geo-

desic.
Now suppose that p crosses any given hyperplane H at most once. It follows that

the endpoints ι(p), τ (p) of p are separated by all of the hyperplanes crossed by p. If
we assume that there are n such hyperplanes in all (and so p has length n), then any
edge-path q from ι(p) to τ(p) must cross all n of these hyperplanes, so the length
of q is at least n. It follows that p is geodesic.

Definition 4.5.6 Suppose that (e1, e2) is an edge-path in a CAT(0) cubical complex
X such that e1 and e2 are perpendicular sides of a square C in X . We let e′

i denote the
side of C opposite ei , for i = 1, 2. The operation of replacing (e1, e2) by the edge-
path (e′

2, e
′
1) is called a corner move. Note that the edge-paths (e1, e2) and (e′

2, e
′
1)

have the same endpoints.

Proposition 4.5.7 If (e1, e2) is an edge-path in X, ei crosses the hyperplane Hi

(i = 1, 2), H1 �= H2, and H1 ∩ H2 �= ∅, then the edges e1 and e2 are perpendicular
sides of a square C in X.

Proof Let B denote the block containing the hyperplane H1. We write B = B0 ×
[0, 1], and assume that ι(e1) = (v, 0), for some vertex v ∈ B0. It follows that
τ(e1) = (v, 1). Since H2 ∩ H1 �= ∅ and H1 �= H2, we have that dH1 is constant on
e2, by Lemma 4.5.3. In particular, dH1(x) = 1/2, for any x on the edge e2, since
d(ι(e2), H1) = 1/2. It follows that e2 has the form [(v, 1), (v′, 1)], where [v, v′] is an
edge in B0. Therefore the edge-path (e1, e2) forms one half of the boundary of the
square (v, v′) × [0, 1] ⊆ B, as desired.

Proposition 4.5.8 ([15]) If H1, . . . , Hn satisfy Hi ∩ Hj �= ∅ for any i, j ∈ {1, . . . , n},
then H1 ∩ · · · ∩ Hn �= ∅.
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Proof The proof is by induction on n. The conclusion is obvious if n = 2.We suppose
that n > 2. By induction, H1 ∩ · · · ∩ Hn−1 �= ∅, so we take x ∈ H1 ∩ · · · ∩ Hn−1.
By Lemma 4.5.2, π(X,Hn)(x) = π(X,Hj∩Hn)(x) for j ∈ {1, . . . , n − 1}. It follows that
π(X,Hn)(x) ∈ H1 ∩ · · · ∩ Hn .

4.6 Applications

4.6.1 The Set-with-Walls Property

Definition 4.6.1 (first defined in [9]) Let S be a set. A wall W in S is a partition
{W−,W+} of S. Two points x, y ∈ S are separated by the wall W if x ∈ W− and
y ∈ W+ (or vice versa). We say that (S,W ) is a set with walls ifW is a collection of
walls in S such that, for any x, y ∈ S, at most finitely many walls W ∈ W separate
x from y.

If G is a group and S is a G-set, then (S,W ) is a G-set with walls if the natural
action of G permutes the set W .

Definition 4.6.2 If (S,W ) is a set with walls, then the wall pseudometric d(S,W ) :
S × S → R

+ is defined by

d(S,W )(x, y) = |{W ∈ W | W separates x f rom y}|.

If (S,W ) is a G-set with walls, then we say that G acts properly on (S,W ) if, for
any r > 0 and x ∈ S, the set

{g ∈ G | d(S,W )(x, gx) < r}

is finite.

Remark 4.6.3 It is straightforward to check that d(S,W ) is symmetric and satisfies
the triangle inequality, and that G acts isometrically on (S,W ) if the latter is a G-set
with walls.

Theorem 4.6.4 If X is a CAT(0) cubical complex, then (X0,W ) is a set with walls,
whereW = {{H+ ∩ X0, H− ∩ X0} |H is a hyperplane in X}. If G acts cellularly
and by isometries on X, then (X0,W ) is a G-set with walls. If G acts properly on
X, then G acts properly on (X0,W ).

Proof (Sketch) The fact that {H+ ∩ X0, H− ∩ X0} is a wall follows from Theorem
4.4.4; the fact that two vertices x , y are separated by at most finitely many walls
WH = {H+ ∩ X0, H− ∩ X0} ∈ W follows from the fact that a wall WH separates
x from y if and only if a geodesic edge-path from x to y crosses H . The remaining
statements are similarly straightforward to check.
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We note that [2] contains a proof of the converse: there is a construction of a
CAT(0) cubical complex associated to any space with walls.

Definition 4.6.5 A discrete group G has the Haagerup property if there is a proper
affine isometric action of G on a Hilbert spaceH . Here “proper” means metrically
proper: if v ∈ H and r > 0 are given, then |{g ∈ G | d(v, g · v) < r}| < ∞.

Theorem 4.6.6 ([12]) If G acts properly, cellularly, and by isometries on a CAT(0)
cubical complex X, then G has the Haagerup property.

Proof (Sketch) One chooses a basepoint v ∈ X0 and orientations for all hyperplanes
H ⊆ X . LetW or denote the set of oriented hyperplanes. The groupG acts as (infinite)
signed permutation matrices on the Hilbert space �2(W or ). For g ∈ G, we let

δ(g) =
∑

±H,

where the sum is over all hyperplanes separating v from gv. Here H is counted with
the plus sign if one crosses H in the direction of its given orientation when moving
from v to gv, and it is counted with the minus sign otherwise.

The action α : G × �2(W or ) → �2(W or ) given by α(g, v) = g · v + δ(g) has the
desired properties.

4.6.2 The Median Algebra Property

Let P(S) denote the power set of S.

Definition 4.6.7 A median algebra is a set S together with an interval operation
[, ] : S × S → P(S) such that

(a) [x, x] = {x} for x ∈ S;
(b) [x, y] = [y, x] for x, y ∈ S;
(c) If z ∈ [x, y], then [x, z] ⊆ [x, y];
(d) For any x, y, z ∈ S, [x, y] ∩ [y, z] ∩ [x, z] is a singleton set. The unique element

of this singleton set, denoted m(x, y, z), is called the median of x , y, z.

A median algebra is discrete if each set [x, y] is finite.
Definition 4.6.8 Assume that X is a CAT(0) cubical complex. If x, y ∈ X0, then
the geodesic interval [x, y] is the set of all vertices z ∈ X0 that lie on some geodesic
edge-path connecting x to y.

Remark 4.6.9 Note, for instance, that the geodesic interval between two integral
points (a, b) and (c, d) (a ≤ c and b ≤ d) in R

2 is {(x, y) | a ≤ x ≤ c; b ≤ y ≤
d; x, y ∈ Z}.
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Theorem 4.6.10 Let X be a CAT(0) cubical complex. The set of vertices X0 is a
discrete median algebra, where the interval operation [, ] : X0 × X0 → P(X0) is
the geodesic interval.

Proof Properties (1) and (2) are clear.
We now prove (3). Let z ∈ [x, y]. This means that there is a geodesic edge-path

p connecting x to y and passing through z. We can express p as p1 ∪ p2, where p1
is a geodesic edge-path connecting x to z and p2 is a geodesic edge-path connecting
z to y. If w ∈ [x, z], then there is a geodesic edge-path p′

1 connecting x to z and
passing through w. Since p′

1 and p1 have the same length, p′
1 ∪ p2 is also a geodesic

edge-path connecting x to z, and it passes throughw. Thereforew ∈ [x, y]. It follows
that [x, z] ⊆ [x, y], proving (3).

We now prove that [x, y] is always finite. If H1, . . . , Hn are the hyperplanes
separating x from y, then, by Proposition 4.5.5, an edge-path p is a geodesic edge-
path connecting x to y if and only if p begins at x and crosses exactly the hyperplanes
H1, . . . , Hn . However, such an edge-path is uniquely determined by the order in
which the hyperplanes H1, . . . , Hn are crossed. It follows that there are at most n!
geodesic edge-paths, each of which passes through only finitely many points, so
|[x, y]| < ∞.

We now prove (4). Fix x, y, z ∈ X0. We first show that [x, y] ∩ [y, z] ∩ [x, z]
contains at most one element. Suppose v,w ∈ [x, y] ∩ [y, z] ∩ [x, z] and v �= w.
There is a hyperplane H separating v from w. It must be that two (or more) elements
of {x, y, z} lie in one of the complementary components of X − H . It followswithout
loss of generality (i.e., up to relabelling) that v is separated from both x and y by
H . Since v ∈ [x, y] by our assumption, there is a geodesic edge-path p from x to
y passing through v. The geodesic edge-path p would necessarily cross H twice,
however. This is a contradiction.

We now need to show that [x, y] ∩ [y, z] ∩ [x, z] is non-empty. We do this by
induction on d(x, y) + d(y, z) + d(x, z), where d denotes the edge-path (or combi-
natorial) distance. The base case is trivial. For the inductive step, we need a definition.
If a hyperplane H separates both x and y from z, then we say that H is an {x, y}-
hyperplane. We can similarly define {x, z}- and {y, z}-hyperplanes. Note that any
hyperplane crossed by an edge-path geodesic between any two points of {x, y, z}
must be a {a, b}-hyperplane, where {a, b} ⊆ {x, y, z}. If z ∈ [x, y], x ∈ [y, z], or
y ∈ [x, z], then the desired conclusion is clear, so we assume that none of x , y, and
z is contained in the interval of the other two. We choose geodesic edge-paths px ,
py connecting z to x and y, respectively.

We claim that there is some {x, y}-hyperplane H that is crossed by both px and
py . Indeed, px crosses only {x, y}- and {y, z}-hyperplanes by definition, and py
crosses only {x, y}- and {x, z}-hyperplanes. Thus, if no {x, y}-hyperplane is crossed
by both px and py , then p−1

x py crosses no hyperplanemore than once, and is therefore
geodesic. Since p−1

x py passes through z, we have z ∈ [x, y], a contradiction.
Next, we claim that there are geodesic edge-paths p′

x and p′
y from z to x and y with

the property that p′
x and p′

y cross all {x, y}-hyperplanes before crossing any {x, z}-
or {y, z}-hyperplanes.We prove only that there is such a p′

x , since the proof that there
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is such a p′
y is similar. To establish the existence of the desired p′

x , it is sufficient to
show that, whenever px crosses a {y, z}-hyperplane H ′ before an {x, y}-hyperplane
H ′′, H ′ ∩ H ′′ �= ∅, for then we can use corner moves to change px into the desired
p′
x . We assume the convention that z ∈ (H ′)− ∩ (H ′′)−. If e′ is the (unique) edge

of px crossing H ′, then τ(e′) ∈ (H ′)+ ∩ (H ′′)−. If e′′ is the edge of px crossing
H ′′, then τ(e′′) ∈ (H ′)+ ∩ (H ′′)+. Now note that y ∈ (H ′)− ∩ (H ′′)+. We now have
H ′ ∩ H ′′ �= ∅, by Lemma 4.5.4. This proves the claim.

We therefore have p′
x and p′

y (as above). Let H1 be the first hyperplane crossed
by p′

x . It is, of course, an {x, y}-hyperplane. We claim that we can alter p′
y to obtain

a new geodesic edge-path p′′
y connecting z to y, such that p′′

y crosses H1 first. (We
note that p′

y must cross H1, since H1 separates z from y by definition.) It is enough
to show that if the hyperplane {x, y}-hyperplane H2 is crossed by p′

y before H1,
then H1 ∩ H2 �= ∅, for then we can alter p′

y by corner moves in order to arrive at
the desired p′′

y . We assume the convention that z ∈ (H1)
− ∩ (H2)

−. If e2 is the edge
of p′

y crossing H2, then τ(e2) ∈ (H1)
− ∩ (H2)

+. If e1 is the edge of p′
y crossing

H1, then τ(e1) ∈ (H1)
+ ∩ (H2)

+. If ex is the edge of p′
x crossing H1 then τ(ex ) ∈

(H1)
+ ∩ (H2)

−. It follows from Lemma 4.5.4 that H1 ∩ H2 �= ∅. This proves the
claim.

We’ve now shown that there are geodesic edge-paths p′
x , p

′′
y connecting z to x

and y (respectively), and having the same initial edge ê. We assume z = ι(ê). By the
induction hypothesis [τ(ê), y] ∩ [x, τ (ê)] ∩ [x, y] is non-empty. Since

[τ(ê), y] ∩ [x, τ (ê)] ∩ [x, y] ⊆ [z, y] ∩ [x, z] ∩ [x, y]

by (3), the induction is complete.
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Chapter 5
Simplicity of Twin Tree Lattices with
Non-trivial Commutation Relations

Pierre-Emmanuel Caprace and Bertrand Rémy

Abstract Weprove a simplicity criterion for certain twin tree lattices. It applies to all
rank-2 Kac–Moody groups over finite fields with non-trivial commutation relations,
thereby yielding examples of simple non-uniform lattices in the product of two trees.

Keywords Tree · Twinning ·Moufang property · Kac-Moody group · Simplicity ·
Lattice

5.1 Overview

This paper dealswith the construction of finitely generated (but not finitely presented)
simple groups acting as non-uniform lattices on products of two twinned trees. These
seem tobe thefirst examples ofnon-uniform simple lattices in the product of two trees.
They contrast with the simple groups obtained by M. Burger and Sh. Mozes [3] in
a similar geometric context: the latter groups are (torsion-free) uniform lattices, in
the product of two trees; in particular they are finitely presented. That a non-uniform
lattice in a 2-dimensional CAT(0) cell complex cannot be finitely presented is a
general fact recently proved by G. Gandini [7, Corollary3.6].
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The lattices concerned by our criterion belong to the class of twin building
lattices. By definition, a twin building lattice is a special instance of a group endowed
with aRoot Group Datum (also sometimes called twin group datum), i.e. a groupΛ

equippedwith a family of subgroups (Uα)α∈Φ , called root subgroups, indexed by the
(real) roots of some root systemΦ withWeyl groupW , and satisfying a fewconditions
called the RGD-axioms, see [6, 14]. Such a group Λ acts by automorphisms on a
product of two buildings X+ × X−, preserving a twinning between X+ and X−.
The main examples arise from Kac–Moody theory, see [13, 14]. When the root
groups are finite, the group Λ is finitely generated, the buildings X+ and X− are
locally finite and the Λ-action on X+ × X− is properly discontinuous. In particular
(modulo the finite kernel) Λ can be viewed as a discrete subgroup of the locally
compact groupAut(X+) × Aut(X−). The quotientΛ\Aut(X+) × Aut(X−) is never
compact. However, if in addition the order of each root group is at least as large as
the rank of the root system Φ, then Λ has finite covolume; in particular Λ is a non-
uniform lattice in Aut(X+) × Aut(X−), see [6, 10]. When Λ has finite covolume in
Aut(X+) × Aut(X−), it is called a twin building lattice.

It was proved in [6] that a twin building lattice is infinite and virtually simple
provided the associated Weyl group W is irreducible and not virtually abelian. A
(small) precise bound on the order of the maximal finite quotient was moreover
given; in most cases the twin building lattice Λ itself happens to be simple. The
condition that W is not virtually abelian was essential in loc. cit., which relied on
someweak hyperbolicity property of non-affineCoxeter groups. Rank-2 root systems
were thus excluded since theirWeyl group is infinite dihedral, hence virtually abelian
(even though many rank-2 root systems are termed hyperbolic within Kac–Moody
theory).

The goal of this note is to provide a simplicity criterion applying to that rank-2
case. Notice that when Φ has rank 2, the twin building associated with Λ is a
twin tree T+ × T−. Moreover Λ is a lattice (then called a twin tree lattice) in
Aut(T+) × Aut(T−) if and only if the root groups are finite; in other words, the
condition on the order of the root groups ensuring that the covolume of Λ is finite is
automatically satisfied in this case.

Theorem 5.1.1 Let Λ be a group with a root group datum (Uα)α∈Φ with finite
root groups, indexed by a root system of rank 2. Suppose that Λ is center-free and
generated by the root groups. Assume moreover that the following conditions hold:

(i) There exist root groups Uφ,Uψ associated with a prenilpotent pair of roots
{φ,ψ} (possibly φ = ψ) such that the commutator [Uφ,Uψ ] is non-trivial.
(Equivalently the maximal horospherical subgroups of Λ are non-abelian.)

(ii) There is a constant C > 0 such that for any prenilpotent pair of roots whose
corresponding walls are at distance � C, the associated root groups commute.

Then the finitely generated group Λ contains a simple subgroup Λ0 of finite index.

We shall moreover see in Lemma 5.2.1 below that, with a little more information
on the commutator [Uφ,Uψ ] in Condition (i), the maximal finite quotient Λ/Λ0 can
be shown to be abelian of very small order.
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As mentioned above, the main examples of twin building lattices arise from
Kac–Moody theory. SpecializingTheorem5.1.1 to that case, we obtain the following.

Theorem 5.1.2 Let Λ be an adjoint split Kac–Moody group over the finite fieldFq

and associated with the generalized Cartan matrix A =
(

2 −m
−1 2

)

, with m > 4

coprime to q.
Then the commutator subgroup of Λ is simple, has index � q in Λ, and acts as a

non-uniform lattice on the product T+ × T− of the twin trees associated with Λ.

The following consequence is immediate, since split Kac–Moody groups over
fields of order >3 are known to be perfect.

Corollary 5.1.1 LetΛ be an adjoint split Kac–Moody group over the finite fieldFq

and associated with the generalized Cartan matrix A =
(

2 −m
−1 2

)

.

If m > 4 is coprime to q and q > 3, then Λ is simple.

Other examples of twin tree lattices satisfying the conditions from Theorem 5.1.1
can be constructed in the realm of Kac–Moody theory, as almost split groups.
Indeed, it is possible to construct non-splitKac–Moodygroups of rank 2, usingGalois
descent, so that some root groups are nilpotent of class 2, while all commutation
relations involving distinct roots are trivial.

Here is an example among many other possibilities. Pick an integer m � 2 and

consider the generalized Cartan matrix A =
⎛

⎝
2 −1 −m

−1 2 −m
−m −m 2

⎞

⎠. This defines a split

Kac–Moody group (over any field) whoseWeyl group is the Coxeter group obtained,
via Poincaré’s theorem, from the tessellation of the hyperbolic plane by the (almost
ideal) triangle with two vertices at infinity and one vertex of angle π

3 . The associated
twinned buildings have apartments isomorphic to the latter hyperbolic tessellation.
ThisWeyl group is generated by the reflections in the faces of the hyperbolic triangle,
and the Dynkin diagram has a (unique, involutive) symmetry exchanging the vertices
corresponding to the reflections in the two edges of the hyperbolic triangle meeting
at the vertex of angle π

3 . Using [2, Theorem1] and [9, Theorem2], one sees that any
prenilpotent pair of two roots leading to a non-trivial commutation relation between
root groups is contained, up to conjugation by theWeyl group, in the standard residue
of type A2.

Suppose now that GA(Fq2) is the split Kac–Moody group of that type, defined
over a finite ground field of order q2. According to [11, Proposition13.2.3], the non-
trivial element of the Galois group of the extension Fq2/Fq , composed with the
symmetry of the Dynkin diagram, yields an involutory automorphism of GA(Fq2)

whose centraliser, which we denote by Λ, is a quasi-split Kac–Moody group over
the finite field Fq . This quasi-split group acts on a twin tree obtained as the fixed
point set of the involution acting on the twin building of the split group; the valencies
are equal to 1 + q and 1 + q3, corresponding to root groups isomorphic to (Fq ,+)
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and to a p-Sylow subgroup of SU3(q), respectively. In particular, the root groups of
order q3 are nilpotent of step 2. Moreover for any prenilpotent pair of two distinct
roots, the corresponding root groups commute to one another: this follows from the
last statement in the previous paragraph. Hence Λ satisfies both conditions from
Theorem 5.1.1 and is thus virtually simple. In fact, Lemma 5.2.1 below also applies
to Λ, and yields the sharper conclusion that the derived group [Λ,Λ] is simple and
of index at most q2 in Λ. If in addition q > 3, then the rank-1 subgroups of Λ are
perfect. Since they generate Λ, we infer that Λ itself is perfect, hence simple.

Further examples of twin tree lattices satisfying the simplicity criterion from
Theorem 5.1.1, of a more exotic nature, can be constructed as in [12]. In particular
it is possible that the two conjugacy classes of root groups have coprime order.

Finitely generated Kac–Moody groups associated with the generalized Cartan

matrix

(
2 −4

−1 2

)

or

(
2 −2

−2 2

)

, are known to be residually finite (and can in fact

be identifiedwith some S-arithmetic groups of positive characteristic). In particular it
cannot be expected that the conclusions of Theorem 5.1.2 hold without any condition
on theCartanmatrix A. The remaining open case is that of amatrix of the form Am,n =(

2 −m
−n 2

)

with m, n > 1. In that case Condition (ii) from Theorem 5.1.1 holds,

but Condition (i) is violated. On the other hand, if the matrix Am,n is congruent to the
matrix Am ′,n′ modulo q − 1, then the corresponding Kac–Moody groups over Fq

are isomorphic (see [5, Lemma4.3]). In particular if (m ′, n′) = (2, 2) or (m ′, n′) =
(4, 1), then all these Kac–Moody groups are residually finite. It follows that overF2,
a rank-2 Kac–Moody group is either residually finite (because it is isomorphic to a
Kac–Moody group of affine type), or virtually simple, by virtue of Theorem 5.1.2.
The problemwhether this alternative holds for rank-2Kac–Moody groups over larger
fields remains open; its resolution will require to deal with Cartan matrices of the
form Am,n with m, n > 1.

5.2 Proof of the Simplicity Criterion

Virtual simplicity will be established following the Burger–Mozes strategy from
[3] by combining the Normal Subgroup Property, abbreviated (NSP), with the
property of non-residual finiteness. This strategy was also implemented in [6]. The
part of the work concerning (NSP) obtained in that earlier reference already included
the rank-2 case, and thus applies to our current setting; its essential ingredient is the
work of Bader–Shalom [1]:

Proposition 5.2.1 LetΛ be a twin building lattice with associated root group datum
(Uα)α∈Φ . Assume that Λ is generated by the root groups.

If Φ is irreducible, then every normal subgroup of Λ is either finite central, or of
finite index. In particular, if Λ is center-free (equivalently if it acts faithfully on its
twin building), then Λ is just-infinite.
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Proof See [6, Theorem18].

The novelty in the present setting relies in the proof of non-residual finiteness. In
the former paper [6], we exploited some hyperbolic behaviour of non-affine Coxeter
groups, appropriately combined with the commutation relations ofΛ. This argument
cannot be applied to infinite dihedralWeyl groups. Instead, we shall use the following
non-residual finiteness result for wreath products, due to Meskin [8]:

Proposition 5.2.2 Let F, Z be two groups. Assume that Z is infinite and let Γ be
the wreath product F � Z ∼= (

⊕
i∈Z F) � Z.

Then any finite index subgroup of Γ contains the subgroup
⊕

i∈Z [F, F]. In par-
ticular, if F is not abelian, then Γ is not residually finite.

Proof For each i ∈ Z , let Fi be a copy of F , so that F � Z = (
⊕

i∈Z Fi ) � Z .
Let ϕ : Γ → Q be a homomorphism to a finite group Q. Since Z is infinite, there

is some t ∈ Z \ {1} such that ϕ(t) = 1. Notice that, for all i ∈ Z and all x ∈ Fi , we
have t xt−1 ∈ Fti �= Fi , whence t xt−1 commuteswith every element of Fi . Therefore,
for all y ∈ Fi , we have

ϕ
([x, y]) = [ϕ(x), ϕ(y)]

= [ϕ(t xt−1), ϕ(y)]
= ϕ

([t xt−1, y])
= 1.

This proves that [Fi , Fi ] is contained in Ker(ϕ), and so is thus
⊕

i∈Z [Fi , Fi ].
This proves that every finite index normal subgroup Γ contains

⊕
i∈Z [Fi , Fi ]. The

desired result follows, since every finite index subgroup contains a finite index normal
subgroup.

Proof (Proof of Theorem 5.1.1) Recall that in the case of twin trees, a pair of roots
{φ;ψ} is prenilpotent if and only if φ ⊇ ψ or ψ ⊇ φ (where the roots φ and ψ

are viewed as half-apartments). By (i) there exists such a pair with [Uφ,Uψ ] �= {1}
(possibly φ = ψ). In particular the group F = 〈Uφ,Uψ 〉 is non-abelian.

In view of (ii), the distance between the roots φ andψ in the trees on whichΛ acts
is smaller than C . Pick an element t ∈ Λ stabilising the standard twin apartment and
acting on it as a translation of length >2C. It follows from (ii) and from the axioms
of Root Group Data that the subgroup of Λ generated by F and t is isomorphic to
the wreath product F � Z, where the cyclic factor is generated by t .

Since F is not abelian, we deduce from Proposition 5.2.2 that Λ contains a non-
residually finite subgroup, and can therefore not be residually finite.On the other hand
Λ is just-infinite by Proposition 5.2.1. Therefore, we deduce from [15, Proposition1]
that the unique smallest finite index subgroup Λ0 of Λ is a finite direct product
of m � 1 pairwise isomorphic simple groups. It remains to show that m = 1. This
follows from the fact thatΛ acts minimally (in fact: edge-transitively) on each half of
its twin tree, and so doesΛ0. But a group acting faithfully minimally on a tree cannot
split non-trivially as a direct product. Hence m = 1 and Λ0 is a simple subgroup of
finite index in Λ.
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Lemma 5.2.1 Retain the hypotheses of Theorem 5.1.1 and assume in addition that
one of the following conditions is satisfied:

(iii-a) the commutator [Uφ,Uψ ] contains some root group Uγ ;
(iii-b) we have π = ψ , and the rank-1 group 〈Uφ,U−φ〉 is either a perfect group of

Lie type, or a sharply 2-transitive group such that the commutator subgroup
[Uφ,Uφ] is of even order.

Then the maximal finite quotient Λ/Λ0 afforded by Theorem 5.1.1 is abelian. More-
over we have |Λ/Λ0| � maxα∈Φ |Uα|, or |Λ/Λ0| � (maxα∈Φ |Uα/[Uα,Uα]|)2 if the
second case of (iii-b) holds.

Proof Retain the notation from the proof of Theorem5.1.1. Proposition 5.2.2 ensures
that every finite index normal subgroup of F � Z contains the commutator subgroup
[F, F]. In particular, so does N = Λ0.

Assume that (iii-a) holds, i.e. that [Uφ,Uψ ] contains some root group Uγ . Then
Uγ is contained in N . Since Xγ = 〈Uγ ,U−γ 〉 is a finite group acting 2-transitively on
the conjugacy class ofUγ , it follows that Xγ is entirely contained in N . In particular,
so is the element rγ ∈ Xγ acting as the reflection associated with γ on the standard
twin apartment.

Let now α ∈ Φ be any root such that α ⊂ γ and that the wall ∂α is at distance
> C/2 away from ∂γ . Then α ⊂ rγ (−α), and the walls associated with the latter two
roots have distance > C . By condition (ii), the corresponding root groups commute.
Denoting by ϕ : Λ → Λ/N the quotient map, we deduce

[ϕ(Uα), ϕ(U−α)] = [ϕ(Uα), ϕ(Urγ (−α))]
= ϕ

([Uα,Urγ (−α)]
)

= 1.

Since ϕ(Uα) and ϕ(U−α) commute in the image under ϕ of the rank-1 group
Xα = 〈Uα ∪U−α〉, and sinceUα and U−α are conjugate in Xα , we conclude that we
have ϕ(Xα) = ϕ(Uα) = ϕ(U−α) and that the latter group identifies with an abelian
quotient of Uα .

Remark finally that there are only two conjugacy classes of root groups, the union
of which generates the whole group Λ. One of these conjugacy classes has trivial
image under ϕ, since N contains the root group Uγ . The other conjugacy class
contains root groups associated with roots α whose wall is far away from ∂γ . This
implies that ϕ(Λ) = ϕ(Uα), which has been proved to be abelian. We are done in
this case.

Assume now that condition (iii-b) holds. Again, by Proposition 5.2.2, the com-
mutator [Uφ,Uφ] is contained in N .

If the rank-1group Xφ = 〈Uφ,U−φ〉 is not a sharply 2-transitive group, then it is
a perfect group of Lie type by hypothesis, and we may conclude that it is entirely
contained in N . Hence the same argument as in the case (iii-a) with φ playing the
role of γ yields the conclusion.

If the rank-1 group Xφ = 〈Uφ,U−φ〉 is a sharply 2-transitive group, then we have
at our disposal the additional hypothesis that the commutator [Uφ,Uφ] contains
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an involution. Since Xφ is sharply 2-transitive, all its involutions are conjugate.
They must thus all be contained in N . In particular N contains some involution
rφ swapping Uφ and U−φ . Again, this is enough to apply the same computation as
above and conclude that for each root α whose wall is far away from ∂φ, the image
of 〈Uα,U−α〉 under ϕ is abelian and isomorphic to a quotient of Uα . We take two
distinct such roots α ⊂ β so that there is no root γ strictly between α and β. Thus
Uα and Uβ commute by the axioms of Root Group Data. Moreover Λ is generated
by Uα ∪U−α ∪Uβ ∪U−β , and we have just seen that, modulo N , the root groups
Uα and U−α (resp. Uβ and U−β) become equal, and abelian. It follows that Λ/N
is isomorphic to a quotient of the direct product Uα/[Uα,Uα] ×Uβ/[Uβ,Uβ ]. The
desired result follows.

Remark 5.2.1 Finite sharply 2-transitive groups are all known; they correspond to
finite near-fields,whichwere classified byZassenhaus.All of themare eitherDickson
near-fields, or belong to a list of seven exceptional examples. An inspection of that list
shows that, in all of these seven exceptions, the root group contains a copy of SL2(F3)

or SL2(F5) (see [4, Sect. 1.12]); in particular the commutator subgroup of a root
group is always of even order in those cases. Thus condition (iii-b) fromLemma 5.2.1
only excludes certain sharply 2-transitive groups associatedwithDickson near-fields.

5.3 Kac–Moody Groups of Rank 2

Let Λ be a Kac–Moody group over the finite fieldFq of order q, associated with the

generalized Cartan matrix Am,n =
(

2 −m
−n 2

)

. The Weyl group of Λ is the infinite

dihedral group and Λ is a twin tree lattice; the corresponding trees are both regular
of degree q + 1.

When mn < 4, the matrix A is of finite type and Λ is then a finite Chevalley
group over Fq . When mn = 4, the matrix A is of affine type and Λ is linear, and
even S-arithmetic; in particular it is residually finite.

In order to check that the conditions fromTheorem 5.1.1 are satisfiedwhenm > 4
and n = 1, we need a sharp control on the commutation relations satisfied by the
root groups. The key technical result is the following lemma, which follows from
the work of Morita [9] and Billig–Pianzola [2].

Lemma 5.3.1 Let Π = {α, β} be the standard basis of the root system Δ for Λ and
set t = rαrβ . For all i ∈ Z, let αi = t iα and βi = t iβ and set

Φ(+∞) = {−αi , β j | i, j ∈ Z} and Φ(−∞) = {αi ,−β j | i, j ∈ Z}.

Assume that m > 4 is coprime to q and that n = 1. Then for all φ,ψ ∈ Φ(+∞),
either Uφ and Uψ commute, or we have

{φ,ψ} = {−αi ,−αi+1} for some i ∈ Z and [Uφ,Uψ ] = Uβi .
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Similarly, for all φ,ψ ∈ Φ(−∞), either Uφ and Uψ commute, or we have

{φ,ψ} = {αi , αi+1} for some i ∈ Z and [Uφ,Uψ ] = U−βi .

Proof It follows from Theorem 2 in [9] and Theorem 1 in [2] that the only poten-
tially non-trivial commutation relations between Uφ and Uψ arise when {φ,ψ} =
{−αi ,−αi+1} or {φ,ψ} = {−αi ,−αi+1}. In the latter cases, the equality [Uφ,Uψ ]
= Uβi (resp. [Uφ,Uψ ] = U−βi ) holds if m is coprime to q, in view of Sect. 3.5 in
[13] (while if m is not coprime to q, we have [Uφ,Uψ ] = 1).

Proof (Proof of Theorem 5.1.2) Lemma 5.3.1 readily implies that Conditions (i) and
(ii) from Theorem 5.1.1 are satisfied (we can take C = 2 in this case), so that Λ

is virtually simple. In fact, Lemma 5.3.1 shows that some root group is equal to
the commutator of a pair of prenilpotent root groups, so that condition (iii-a) from
Lemma 5.2.1 is satisfied. The latter ensures that Λ0 is the commutator subgroup of
Λ, and that the quotient Λ/Λ0 is bounded above by the maximal order of a root
group. Thus the theorem holds, since all the root groups have order q in this case.

Acknowledgments The second author warmly thanks the organizers of the Special Quarter Topol-
ogy andGeometric Group Theory held at the Ohio State University (Spring 2011).We are grateful to
Bernhard Mühlherr for pointing out the degeneracy of the commutation relations when the defining
characteristic divides m in Theorem 5.1.2.
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Chapter 6
Groups with Many Finitary Cohomology
Functors

Peter H. Kropholler

Abstract For a group G, we study the question of which cohomology functors
commute with all small filtered colimit systems of coefficient modules. We say that
the functor Hn(G,−) is finitary when this is so and we consider the finitary set for
G, that is the set of natural numbers for which this holds. It is shown that for the class
of groups LHF there is a dichotomy: the finitary set of such a group is either finite or
cofinite. We investigate which sets of natural numbers n can arise as finitary sets for
suitably chosen G and what restrictions are imposed by the presence of certain kinds
of normal or near-normal subgroups. Although the class LHF is large, containing
soluble and linear groups, being closed under extensions, subgroups, amalgamated
free products, HNN-extensions, there are known to be many not in LHF such as
Richard Thompson’s group F . Our theory does not extend beyond the class LHF at
present and so it is an open problem whether the main conclusions of this paper hold
for arbitrary groups. There is a survey of recent developments and open questions.

Keywords Cohomology of groups, Finiteness conditions, Eilenberg–Mac Lane
spaces
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6.1 Introduction

Groups of types FP, FP∞ or FPn have been widely explored. The properties are most
often described in terms of projective resolutions. A groupG has type FPn if and only
if there is a projective resolution · · · → Pj → Pj−1 → · · · → P1 → P0 � Z of the
trivial moduleZ over the integral group ringZG such that Pj is finitely generated for
j ≤ n. Type FP1 is equivalent to finite generation of the group. For finitely presented
groups, type FPn is equivalent to the existence of an Eilenberg–Mac Lane space with
finite n-skeleton. These properties can also be formulated in terms of cohomology
functors by using the notion of a finitary functor. A functor is said to be finitary if it
preserves filtered colimits (see Sect. 6.5 of [22]; also Sect. 18 of [1]). For a group G
and a natural number n we can consider whether or not the nth cohomology functor
is finitary. For our purposes it is also useful to consider additive functors F between
abelian categories with the property that

lim→ F(Mλ) = 0

whenever (Mλ) is a filtered colimit system satisfying lim→ Mλ = 0: we shall say that

F is 0-finitarywhen this condition holds. Here is a classical result of Brown phrased
in this language:

Theorem 6.1.1 (Corollary to Theorem 1 of [5]) Let R be a ring and let M be an
R-module. Then the following are equivalent:

(a) M admits a resolution by finitely generated projectives.
(b) The functors ExtnR(M,−) are finitary for all n.
(c) The functors TorRn (−, M) commute with products for all n.

In this article we are concerned with the equivalence of (a) and (b) and we shall not
further investigate the connection with (c). Our interest is in the application to group
rings, so our applications involve the case R = ZG and M = Z. This special case of
group ring and trivial module has close connections with topological applications.
There are many variations on this theme. Details of Brown’s contribution along
with further results of Bieri and Eckmann can be found in ([4], Theorem 1.3) and
([6], VIII Theorem 4.8). The following summarizes the formulationthat generalizes
Theorem 6.1.1(a) ⇐⇒ (b) and suits our purpose of studying group cohomology.

Lemma 6.1.2 For a group G and n ≥ 0, the following are equivalent:

(a) G is of type FPn;
(b) Hi (G,−) is finitary for all i < n;
(c) Hi (G,−) is 0-finitary for all i ≤ n;

The classical definitions and results have focussed on investigating the largest n
for which the FPn property holds. Many interesting sequences of groups have been
discovered in which the nth term of the sequence is of type FPn but not of type FPn+1.
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Amongst recent deep results in this genre, the work of [8] of Bux, Gramlich and
Witzel stands out. The earlier work [7] of Brown already includes several interesting
cases and remains a vital contribution.

Nevertheless, investigations of this kind do not touch on what seems to us to
be a natural question: if a group is of type FPn but not of type FPn+1 could there
exist natural numbers k > n + 1 for which the cohomology functor Hk(G,−) is
finitary or 0-finitary? Obviously, if a group has finite cohomological dimension then
its cohomology functors become eventually finitary in a trivial way and given the
wealth of different kinds of groups of finite integral cohomological dimension it
quickly becomes clear that the following definition is both natural and likely to lead
to interesting investigations.

Definition 6.1.3 WewriteF (G) (resp.F0(G)) for the set of natural numbers n ≥ 1
for which Hn(G,−) is finitary (resp. 0-finitary).

6.2 Main Theorems

Our basic result concerns groups in the class LHF as described in [18, 20]. We write
N

+ for the set of natural numbers n ≥ 1.

Theorem 6.2.1 Let G be an LHF-group for which F0(G) is infinite. Then

(a) F0(G) is cofinite in N+;
(b) there is a bound on the orders of the finite subgroups of G;
(c) there is a finite dimensional model for the classifying space EG for proper group

actions.

We refer the reader to [20] for a brief explanation of the classifying space EG,
and to Lück’s survey article [23] for a comprehensive account. Our theorem shows
that for any LHF-group G the set F0(G) is either finite or cofinite in the set N+
of positive natural numbers. It is unknown whether there exists a group G outwith
the class LHF for which F0(G) is a moiety (i.e. neither finite nor cofinite). Notice
that groups of finite integral cohomological dimension all belong to LHF and have a
cofinite invariant because almost all their cohomology functors vanish. On the other
hand the theorem shows thatF0(G) is finite for all torsion-free LHF groups of infinite
cohomological dimension. Both conditions (ii) and (iii) above are highly restrictive.
However, the theorem does not give a characterization for cofiniteness ofF0(G) for
groups with torsion: this turns out to be a delicate question even for abelian-by-finite
groups and is studied by Hamilton in the companion article [13]. Before turning to
the proof of Theorem 6.2.1 we show that F0(G) can behave in any way subject to
the constraints it entails.

Theorem 6.2.2 Given any finite or cofinite subset S ⊆ N
+ there exists a group G

such that
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(a) F0(G) = S;
(b) G has a finite dimensional model for the classifying space EG.

Note that all groups with finite dimensional models for E belong to H1 F ⊂ LHF.
There is an abundance of examples of groups satisfying various homological finite-
ness conditions and we can select examples easily to establish Theorem 6.2.2.

Lemma 6.2.3 (a) For each n there is a group Jn of finite integral cohomological
dimension such that F0(Jn) = N

+ \ {n}.
(b) For each n there is a group Hn with a finite dimensional classifying space for

proper actions, which is of type FPn and for which F0(Hn) is finite.

Proof For Jn we can take Bieri’s example An−1 of a group which is of type FPn−1 but
not of type FPn ([4], Proposition 2.14). This group is the kernel of the homomorphism
from a direct product of n free groups to Z determined by sending each generator to
1 ∈ Z; it has cohomological dimension n and hence it has the desired properties. The
example predates and is generalized by the fundamental work of Bestvina–Brady
[3], and many more examples like this can be obtained using the powerful results of
[3]. Bieri’s example arises in one of the simplest cases, a kernel within a right-angled
Artin group described by a hyper-octahedron.

For the groups Hn wemaychooseHoughton’s examples [15] of groupswhichwere
shown to be of type FPn but not type FPn+1 by Brown [7]. The group Hn is defined
to be the group comprising those permutations σ of {0, 1, 2, . . . , n} × N for which
there exists m0, . . . ,mn ∈ N (depending on σ ) such that σ(i,m) = (i,m + mi ) for
all but finitely many ordered pairs (i,m). The translation vector (m0, . . . ,mn) is
uniquely determined by σ and necessarily satisfiesm0 + · · · + mn = 0. Every vector
satisfying this condition arises and so there is a group homomorphism Hn → Z

n+1

given by σ �→ (m0, . . . ,mn), whose image is free abelian of rank n. The kernel of
this homomorphism consists of those permutations which fix almost all elements of
{0, 1, 2, . . . , n} × N; the finitary permutations. Thus Hn fits into a group extension

T � Hn � Z
n

where T is the group of finitary permutations. We describe an explicit construction
for a finite dimensional EHn . Let T0 < T1 < T2 < · · · < Ti < · · · be a chain of finite
subgroups of the locally finite group T , indexed by i ∈ N and having

⋃
Ti = T . Let

Γ be the graph whose edge and vertex sets are the cosets of the Ti :

V :=
⊔

Ti\T =: E

and in which the terminal and initial vertices of an edge e = Ti g are τe = Ti+1g and
ιe = Ti g. Then Γ is a T -tree and its realization as a one dimensionalCW -complex is
a one dimensional model X for ET . Now take any Hn-simplicial complex abstractly
homeomorphic to R

n on which T acts trivially and on which the induced action of
Hn/T is free. Then we can thicken the space X by replacing each vertex by a copy of
T appropriately twisted by the action of Hn and replacing each higher dimensional
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simplex of X by the join of the trees placed at its vertices. This creates a finite
dimension model for EHn . This construction also shows that Hn belongs to H1 F and
hence Theorem 6.2.1 applies. Since T is an infinite locally finite group we see that
the conclusion Theorem 6.2.1(b) fails and it follows thatF0(Hn) is finite as required.

Lemma 6.2.4 Suppose that G is the fundamental group of a finite graph of groups in
which the edge groups are of type FP∞. Then F0(G) = ⋂

F0(Gv), the
intersection of the finitary sets of vertex stabilizers Gv as v runs through a set of
orbit representatives of vertices.

Proof The Mayer–Vietoris sequence for G is a long exact sequence of the form

· · · →
∏

Hn−1(Ge, −) → Hn(G, −) →
∏

Hn(Gv,−) →
∏

Hn(Ge,−) → · · ·

Here, e and v run through sets of orbit representatives of edges and vertices, and
since G comes from a finite graph of groups, the product here are finite. Since the
edge groups Ge are FP∞, we find that restriction induces an isomorphism

colim Hn(G, Mλ) →
∏

colim Hn(Gv, Mλ)

whenever (Mλ) is a vanishing filtered colimit system of ZG-modules. Thus if n /∈
F0(G) then any system (Mλ) witnessing this must also bear witness to a infinitary
functor Hn(Gv,−) for some v, and we see that

F0(G) ⊇
⋂

F0(Gv).

On the other hand, if n /∈ ⋂
F0(Gv) then there is a v and a vanishing filtered colimit

system (Uλ) of ZGv-modules such that

colim Hn(Gv,Uλ) = 0.

Set Mλ := Uλ ⊗ZGv
ZG. Since, qua ZGv-module, Uλ is a natural direct summand

of Mλ we also have
colim Hn(Gv, Mλ) = 0

and therefore from the isomorphism

colim Hn(G, Mλ) = 0

and n /∈ F0(G). Thus F0(G) ⊆ ⋂
F0(Gv) and the result is proved.

The simplest way to apply this is to a free product of finitely many groups. We
deduce that the collection of subsets which can arise asF0(G) for some G is closed
under finite intersections.
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Proof (Proof of Theorem 6.2.2) Suppose that S is a cofinite subset of N+. Then we
take G to be the free product of the finitely many groups Jn , as described in Lemma
6.2.3, for which n /∈ S. Lemmas 6.2.3 and 6.2.4 show that F0(G) = S.

On the other hand if S is finite then choose an n ∈ N
+ greater than any element

of S. Now S contained inF0Hn andF0Hn is finite. and let G be the free product of
the group Hn and the finitely many groups Jm as m runs through F0Hn \ S. Again,
Lemmas 6.2.3 and 6.2.4 show that F0(G) = S.

That the groups constructed this way have finite dimensional models for their
classifying spaces follows from the easy result below.

Lemma 6.2.5 Let G be a finite free product K1 ∗ · · · ∗ Kn where each Ki has a finite
dimensional EKi . Then G also has a finite dimensional EG.

Proof Choose a G-tree T whose vertex set V is the disjoint union of the G-sets

Ki\G := {Kig : g ∈ G}

and so that G acts freely on the edge set E .

In order to prove Theorem 6.2.1 we shall make use of complete cohomology: we
shall use Mislin’s definition in terms of satellite functors. Let M be a ZG-module.
We write FM for the free module on the underlying set of non-zero elements of M .
The inclusion

M \ {0} → M

induces a natural surjection
FM → M

whose kernel is written ΩM . Both F and Ω are functorial: for a map θ : M → N ,
the induced map Fθ : FM → FN carries elements m ∈ M \ ker θ to their images
θm ∈ N and carries elements of ker θ \ {0} to 0. The functor F is left adjoint to the
forgetful functor from ZG-modules to pointed sets which forgets everything save
the set and zero. The advantage of working with F rather than simply using the free
module on the underlying set of M is that it is 0-finitary. Our functor Ω inherits
this property: it is also 0-finitary. We shall make use of these observations in proving
Theorem 6.2.1. As in [25] the j th complete cohomology ofG is given by the colimit:

Ĥ j (G, M) := lim−→
n

H j+n(G,ΩnM).

Lemma 6.2.6 If there is an m such that H j (G, F) = 0 for all free modules F and
all j ≥ m then the natural map

H j (G,−) → Ĥ j (G,−)

is an isomorphism for all j ≥ m + 1.
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Proof The connectingmaps H j+n(G,ΩnM) → H j+n+1(G,Ωn+1M) in the colimit
system defining complete cohomology are all isomorphisms because they fit into the
cohomology exact sequence with H j+n(G, FΩnM) and H j+n+1(G, FΩnM) to the
left and the right, and these both vanish for j ≥ m + 1.

The next result makes use of the ring of bounded Z-valued functions and some
remarks are in order to explain why we might consider bounded functions in pref-
erence to arbitrary functions. Let G be a group. If f : G → Z is a function and
g ∈ G then we may define f g to be the function defined by g′ �→ f (gg′). In this
way the ring of functions becomes a (right) ZG-module and the ring of bounded
functions is a submodule. In group cohomology, the ring of all Z-valued functions
on G yields the coinduced module which is cohomologically acyclic and for this
reason coinduced modules are useful in dimension-shifting arguments where their
role is similar to but sometimes more transparent than that of injective modules. If
the group is infinite, the coinduced module involves a subtlety: it is torsion-free as
an abelian group, but not free abelian. The ring of bounded functions, even on an
infinite set, is convenient because it is free abelian no matter what the cardinality of
the set. The ring B of bounded Z-valued functions with domain a group G yields
a ZG-module which retains at least some of the good properties of the coinduced
module, in particular it contains the constant functions, while it also enjoys the useful
property of having free abelian underlying additive group. The results we need are
summarized as follows.

Theorem 6.2.7 Let G be an LHF-group for which the complete cohomology functors
Ĥ j (G,−) are 0-finitary for all j . Then

(a) The set B of bounded Z-valued functions on G has finite projective dimension.
(b) If M is aZG-module whose restriction to every finite subgroup is projective then

M has finite projective dimension: in fact

proj. dimM ≤ proj. dimB.

(c) For all n > proj. dimB, Hn(G,−) vanishes on free modules.
(d) For all n > proj. dimB, the natural map Hn(G,−) → Ĥ n(G,−) is an isomor-

phism.
(e) n ∈ F0(G) for all n > proj. dimB.
(f) G has rational cohomological dimension ≤ proj. dimB + 1.
(g) There is a bound on the orders of the finite subgroups of G.
(h) There is a finite dimensional model for EG.

Proof (Outline of the proof) Since Ĥ j (G,−) is finitary and G belongs to the class
LHF we have the following algebraic result about the cohomology of G:

Ĥ j (G, B) = 0 for all j. (6.1)

For HF-groups of type FP∞ this follows from ([9], Proposition 9.2) by taking the ring
R to be ZG and taking the module M to be the trivial ZG-module Z. However we
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need to strengthen this result in two ways. Firstly we wish to replace the assumption
that G is of type FP∞ by the weaker condition that the functors Ĥ j (G,−) are
0-finitary for all j . This presents no difficulty because the proofs in [9] depend
solely on calculations of complete cohomology rather than ordinary cohomology.
The second problem is also easy to address but we need to take care. Groups of
type FP∞ are finitely generated and so LHF-groups of type FP∞ necessarily belong
to HF. However the weaker condition that the complete cohomology is finitary
does not imply finite generation: for example, all groups of finite cohomological
dimension have vanishing complete cohomology and there exists such groups of
arbitrary cardinality. A priori we do not know that G belongs to HF and we must
reprove the result that

Ĥ∗(G, B) = 0

from scratch. The key, which has been established [24] by Matthews, is as follows:

Lemma 6.2.8 Let G be an group for which all the functors Ĥ j (G,−) are 0-finitary.
Let M be a ZG-module whose restriction to every finite subgroup of G is projective.
Then

Ĥ j (G, M ⊗ZH ZG) = 0

for all j and all LHF-subgroups H of G.

Proof (Proof of Lemma 6.2.8) If H is an HF-group then this can be proved by
induction on the ordinal height of H in the HF-hierarchy. The proof proceeds in
exactly the same way as the proof of the Vanishing Theorem ([9], Sect. 8).

In general, suppose that H is an LHF-group. Let (Hλ) be the family of finitely
generated subgroups of H . Then we may view H as the filtered colimit H = lim→ Hλ.

Now suppose that G is as in the statement of Theorem 6.2.7. Lemma 6.2.8 shows
that

Ĥ 0(G, B) = 0.

and using the ring structure on B it follows that

Êxt
0
ZG(B, B) = 0.

This implies that B has finite projective dimension: see ([18], 4.2) for discussion and
proof of the fundamental property of complete cohomology that a ZG-module M
has finite projective dimension if and only if Êxt

0
ZG(M, M) = 0. Like the coinduced

module, the module B contains a copy of the trivial module Z in the form of the
constant functions. Thus Theorem 6.2.7(i) is established.

Let M be a module satisfying the hypotheses of (ii), namely that M is projective
as a ZH -module for all finite subgroups H of G. If B has projective dimension b
then ΩbM ⊗ B is projective. We therefore replace M by ΩbM and our goal is to
prove that M is projective. We have reduced to the case when M ⊗ B is projective.
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The proof that M is projective requires two steps. First we show that M is projective
over ZH for all HF-subgroups H of G. The argument here is essentially the same as
that used to prove Theorem B of [9], using transfinite induction on the least ordinal
α such that H belongs to Hα F. We consider first the case

α = 0

This is the starting point of the inductive proof. Since H0 F is the class of finite groups
and we are assuming that M is projective on restriction to every finite subgroup there
is nothing to prove in this case. Next we consider the case

α > 0

Let H be a subgroup of G which belongs to Hα F and consider an action of H on a
contractible finite dimensional complex X so that each isotropy subgroup belongs to
Hβ Fwith β < α. Note that β may vary depending on the choice of istropy subgroup
and so conceivably α is the least upper bound of the β which arise. The augmented
cellular chain complex C∗ � Z of X is an exact sequence of finite length:

0 → Cd → Cd−1 → · · · → C1 → C0 → Z → 0

where d is the dimension of X . Each chain group Ci is a permutation module for
H and therefore a direct sum of modules of the form Z ⊗ZK ZH where K is a
subgroup of H belonging to one of the classes Hβ F with β < α. Observe that the
diagonal actionofG onM ⊗ (Z ⊗ZK ZH)yields amodule isomorphic to the induced
moduleM ⊗ZK ZG and sinceM is, by the inductive hypothesis, projective overZK ,
therefore M ⊗ (Z ⊗ZK ZH) is projective over ZG. thus M ⊗ Ci is a projective ZG-
module for each i and hence, on tensoring augmented cellular chain complex with
M we obtain a projective resolution of M over ZG:

0 → M ⊗ Cd → M ⊗ Cd−1 → · · · → M ⊗ C1 → M ⊗ C0 → M → 0.

This shows that M has finite projective dimension. At this stage, the projective
dimension of M appears to depend on the dimension d of the witness X . However, if
we write B denote that quotient B/Z of B by the constant functions then we also see
that M ⊗ B ⊗ · · · ⊗ B︸ ︷︷ ︸

k

has a finite projective resolution for any k ≥ 0 and always of

length at most d. Note that here we use the fact that B is additively free abelian. The
short exact sequence Z � B � B gives rise to the short exact sequences

M � M ⊗ B � M ⊗ B

M ⊗ B � M ⊗ B ⊗ B � M ⊗ B ⊗ B

...
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M ⊗ B ⊗ · · · ⊗ B︸ ︷︷ ︸
k

� M ⊗ B ⊗ · · · ⊗ B︸ ︷︷ ︸
k

⊗B � M ⊗ B ⊗ · · · ⊗ B︸ ︷︷ ︸
k+1

Since M arises as a dth kernel in a projective resolution of M ⊗ B ⊗ · · · ⊗ B︸ ︷︷ ︸
d

it

follows that M itself is projective of ZH . Concatenating these short exact sequences
upto and including the case when k + 1 = d we obtain a partial projective resolution
of M ⊗ B ⊗ · · · ⊗ B︸ ︷︷ ︸

d

in which M arises as a dth kernel. But since we know that

M ⊗ B ⊗ · · · ⊗ B︸ ︷︷ ︸
d

has projective dimension at most d, it follows thatM is projective.

This completes the inductive proof.
The HF-subgroups of G account for all countable subgroups. The next step is

to establish by induction on the cardinality κ that M is projective on restriction to
all subgroups of G of cardinality κ . This argument can be found in the work [2] of
Benson. In this way (ii) is established.

Part (iii) follows from the inequality

silp(ZG) ≤ κ(ZG)

as stated in Theorem C of [10]. Note that although ([10], Theorem C) is stated
for HF-groups, the given proof shows that the above inequality holds for arbitrary
groups.

Lemma 6.2.6 yields (iv).
We are assuming that the complete cohomology is 0-finitary in all dimensions.

Now we also know that the ordinary cohomology coincides with the complete coho-
mology in high dimensions. Hence (v) is established.

The trivial module Q is an instance of a module whose restriction to every finite
subgroup has finite projective dimension, (projective dimension one in fact). There-
fore the dimensional finiteness conditions imply (vi). This means in particular that

Ĥ 0(G,Q) = 0.

Since the complete cohomology is 0-finitary we can deduce that Ĥ 0(G,Z) is torsion.
Being a ring with a one, it therefore has finite exponent, say m, and the argument
with classical Tate cohomology used to prove ([18], Sect. 5, Proposition) shows that
the orders of the finite subgroups of G must divide m and thus (vii) is established.
The argument for proving (viii) can be found in [20]. Although the Theorem as stated
there does not directly apply to our situation, a reading of the proof will reveal that
the all the essentials to make the construction work are already contained in the
conclusions (i)–(vii).

Proof (Proof of Theorem 6.2.1) We first show that the complete cohomology of G
is 0-finitary in all dimensions. Recall that the j th complete cohomology of G is
the colimit:
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Ĥ j (G, M) := lim−→
n

H j+n(G,ΩnM).

The maps H j+n(G,ΩnM) → H j+n+1(G,Ωn+1M) in this system are the connect-
ing maps in the long exact sequence of cohomology which comes from the short
exact sequence

Ωn+1M � FΩnM � ΩnM.

Let S = {s ∈ N : s + j ∈ F0(G)}. Since S is infinite, it is cofinal in N. Hence

Ĥ j (G, M) := lim−→
s∈S

H j+s(G,ΩsM).

Now, for any vanishing filtered colimit system (Mλ) of ZG-modules we have

colim Ĥ j (G, Mλ) = colim lim−→
s∈S

H j+s(G,ΩsMλ)

= lim−→
s∈S

colim H j+s(G,ΩsMλ)

= lim−→
s∈S

H j+s(G, colim ΩsMλ)

= 0.

Theorem 6.2.1 now follows from Theorem 6.2.7.

6.3 General Behaviour of Finitary Cohomology Functors

In this section we show how the finitary properties of one cohomology functor can
influence neighbouring functors. Our arguments are based on an unpublished obser-
vation of Robert Snider. The first gives a further insight into the nature of the finite-
cofinite dichotomy for the set F0(G). It is a property held by many groups G that
Hn(G,−) vanishes on projective modules for all sufficiently large n. For example,
we have the following.

Lemma 6.3.1 If G belongs to H1 F and P is a projective ZG-module then
Hn(G, P) = 0 for all sufficiently large n.

Proof Let X be a finite dimensional contractible G-complex to witness that G
belongs to H1 F: i.e. G acts on X with finite isotropy groups. Let d be the dimension
of X . We show that Hn(G, P) = 0 for all n > d. Let

0 → Cd → Cd−1 → · · · → C1 → C0 → Z → 0

be the cellular chain complex of X . Then there is a first quadrant spectral sequence
with E p,q

1 := Extq
ZG(Cp, P) converging to H p+q(G, P). For each p, the chain group

Cp is a direct sum
⊕

σ Z ⊗ZGσ
ZG of induced modules where σ runs through a set
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of orbit representatives of p-cells in X . By using the Shapiro–Eckmann lemma we
have

Extq
ZG(Cp, P) ∼=

∏

σ

Hq(Gσ , P).

Since the subgroups Gσ are all finite, it follows that Hq(Gσ ,−) vanishes on free and
therefore also on projective modules for any q > 0. Therefore the spectral sequence
collapses with E p,q

1 = 0 whenever q > 0. It follows that for all n, Hn(G, P) is
isomorphic to the nth homology of the cochain complex HomZG(C∗, P) and so is
supported in the range 0 through to d.

When the conclusion of this lemma holds, there is a very simple proof that the
finitary set is either finite or cofinite: it is a corollary of the following.

Lemma 6.3.2 Let n be a positive integer. Suppose that G is a group such that

(a) Hn−1(G,−) vanishes on all projective ZG-modules, and
(b) Hn(G,−) is 0-finitary.

Then Hn−1(G,−) is 0-finitary.

Proof Let F and Ω denote the free module and loop functors described in the proof
of Theorem 6.2.1. Let (Mλ) be a vanishing filtered colimit system of ZG-modules.
From the short exact sequence

ΩMλ → FMλ → Mλ

we obtain the long exact sequence

· · · → Hn−1(G, FMλ) → Hn−1(G, Mλ) → Hn(G,ΩMλ) → · · ·

Here the left hand group vanishes by hypothesis (i) and the right hand systemvanishes
on passage to colimit by hypothesis (ii). Hence

colim Hn−1(G, Mλ) = 0

as required.

Thus, if G is a group for which the set

{n : Hn(G, F) is non-zero for some free module F}

is bounded while the finitary setF0(G) is unbounded, then the finitary set is cofinite.
We have seen that any finite or cofinite set can be realized as the 0-finitary set

of some group. It is interesting to note that the existence of certain normal or near
normal subgroups will impose some restrictions. The next lemma provides a way of
seeing this.
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Lemma 6.3.3 Let G be a group and suppose that there is an overring R ⊃ ZG
such that R is flat over ZG and Z ⊗ZG R = 0. Let n be a positive integer. If both
Hn−1(G,−) and Hn+1(G,−) are 0-finitary then Hn(G,−) is also 0-finitary.

Proof Let F and Ω denote the free module and loop functors described in the proof
of Theorem 6.2.1. Let (Mλ) be a vanishing filtered colimit system of ZG-modules.
Then we have a short exact of vanishing filtered colimit systems:

ΩMλ → FMλ → Mλ.

Applying the long exact sequence of cohomology and taking colimits we obtain the
exact sequence

colim Hn(G, FMλ) → colim Hn(G, Mλ) → colim Hn+1(G,ΩMλ).

Here we wish to prove that the central group is zero and we know that the right hand
term is zero because Hn+1(G,−) is 0-finitary. Therefore it suffices to prove that the
left hand group is zero. Since the FMλ are free we have the short exact sequence

FMλ → FMλ ⊗ZG R → (FMλ ⊗ZG R)/FMλ

of vanishing filtered colimit systems and hence we obtain an exact sequence

colim Hn−1(G, (FMλ ⊗ZG R)/FMλ) → colim Hn(G, FMλ) → colim Hn(G, FMλ ⊗ZG R).

We need to prove that the central group here is zero and we know that the left hand
group vanishes because Hn−1(G,−) is 0-finitary. Therefore it suffices to prove that
the right hand group is zero. In fact it vanishes even before taking colimits: let F be
any free ZG-module and let P∗ � Z be a projective resolution of Z over ZG. Then
HomZG(P∗, F ⊗ZG R) ∼= HomR(P∗ ⊗ZG R, F ⊗ZG R) is split exact because R is
flat over ZG and Z ⊗ZG R = 0. Thus H∗(G, F ⊗ZG R) = 0.

For example, if G is a group with a non-trivial torsion-free abelian normal
subgroup A then the lemma can be applied by taking R to be the localization
ZG(ZA \ {0})−1 and shows that for such groups there cannot be isolated members
in the complement of the finitary set F0(G). The condition that A is normal can be
weakened and yet it can still be possible to draw similar conclusions. We conclude
this paper with two further results showing how this can happen.

Two subgroups H and K of a group G are said to be commensurable if and
only if H ∩ K has finite index in both H and K . We write CommG(H) for the set
{g ∈ G : H and Hg are commensurable}. This is a subgroup of G containing the
normalizer of H .

Lemma 6.3.4 Let G be a group with a subgroup H such that CommG(H) = G and
ZH is a prime Goldie ring. Then the set Λ of non-zero divisors in ZH is a right Ore
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set in ZG. Moreover, if H is non-trivial, then the localization R := ZGΛ−1 satisfies
the hypotheses of Lemma 6.3.3.

Proof Before starting, recall that in a prime Goldie ring, the set of non-zero divisors
is a right Ore set and the resulting Ore localization is a simple Artinian ring. We
first prove that Λ is a right Ore set in ZG. If H is normal in G then this is an easy
and well known consequence of Λ being a right Ore set in ZH . Now consider the
general case. Let r be an element of ZG and let λ be an element of Λ. We need to
find μ ∈ Λ and s ∈ ZG such that rμ = λs. Choose any way

r = g1r1 + · · · + gmrm

of expressing r as a finite sum in which each ri belongs to ZH and gi ∈ G. Since all
the subgroups gi Hg−1

i are commensurable with H we can choose a normal subgroup
K of finite index in H such that

K ⊆
m⋂

i=1

gi Hg−1
i .

The group algebra ZK inherits the property of being a prime Goldie ring and the set
of non-zero divisors in ZK is

Λ0 := Λ ∩ ZK .

By our initial remarks on the case of a normal subgroup, Λ0 is a right Ore set in ZH .
Moreover, ZHΛ−1

0 is finitely generated over the Artinian ring ZKΛ−1
0 . It follows

a fortiori that ZHΛ−1
0 is Artinian as a ring and since every non-zero divisor in an

Artinian ring is a unit, we conclude that

ZHΛ−1
0 = ZHΛ−1.

Hence, there exists a t in ZH such that ν := λt ∈ Λ0: to see this, simply choose an
expression tν−1 for λ−1 ∈ ZHΛ−1 in the spirit of the localization ZHΛ−1

0 . For each
i , we have g−1

i Kgi ⊆ H and hence g−1
i νgi ∈ ZH . It is straightforward to check that

each giνg
−1
i is a non-zero divisor in ZH . Applying the Ore condition to the pair

ri , g
−1
i νgi we find si ∈ ZH and μi ∈ Λ such that

riμi = g−1
i νgi si .

It is routine that a finite list of elements in an Ore localization can be placed over a
common denominator and it is therefore possible to make these choices so that the
μi are all equal: we do this and write μ for the common element. Thus

riμ = g−1
i νgi si ,
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and

rμ =
∑

i

giriμ =
∑

i

gi g
−1
i νgi si = ν

(
∑

i

gi si

)

= λt

(
∑

i

gi si

)

.

This establishes the Ore condition as required with s = t
(∑

i gi si
)
.

Finally, assume H is non-trivial and let h denote the augmentation ideal in ZH .
Then h is non-zero and h.ZHΛ−1 is a non-zero two-sided ideal in the simpleArtinian
ring ZHΛ−1. Hence h.ZHΛ−1 = ZHΛ−1 and Z ⊗ZH ZHΛ−1 = 0. It follows that
Z ×ZG R = 0 so R does indeed satisfy the hypotheses of Lemma 6.3.3.

The conditionCommG(H) = G has been studied by the author in cohomological
contexts, see [17, 19]. The second paper [19] addresses a more general situation in
which H is replaced by a set S of subgroups which is closed under conjugation
and finite intersections: it is then shown one can define a cohomological functor
H∗(G/S ,−) on ZG-modules and that spectral sequence arguments can be used to
carry out certain calculations. Here we show, for the reader familiar with [19] how
these arguments may be used to investigate when the new functors H∗(G/S ,−)

are finitary.

Lemma 6.3.5 Let S and G be as above.

(a) The functor H 0(G/S , ) is 0-finitary.
(b) If G is finitely generated then the functor H 1(G/S , ) is 0-finitary.
(c) More generally if n is an integer such that G has type FPn and all members of

S have type FPn−1 then the functors Hi (G/S , ) are 0-finitary for all i ≤ n.

Proof We prove part (iii) by induction on n. The case n = 0 is easy: this is part (i) of
the statement and the finitary property is inherited from ordinary cohomology. The
case n = 1 is part (ii) of the statement and there is no need to treat this separately.
Fix n ≥ 1 and assume inductively that the result is established for numbers < n. In
particular we may assume that Hi (G/S , ) is 0-finitary when i < n.

Let (Mλ) be a vanishing filtered colimit system in the category Mod -ZG/S .
Taking colimits of the spectral sequences of [19] we obtain the spectral sequence

E p,q
2 = colim H p(G/S , Hq(S , Mλ)) =⇒ colim H p+q(G, Mλ).

Now consider the cases when p + q ≤ n, p ≥ 0, q ≥ 0. When p is less than n, the
inductive and originally stated finitary assumptions imply that E p,q

2 = 0 and so we
have a block of zeroes on the E2-page of the spectral sequence in the range 0 ≤ p ≤
n − 1 and 0 ≤ q ≤ n. Therefore only the term En,0

2 = En,0∞ and the cohomology
colim Hn(G, Mλ) is isomorphic to

colim Hn(G/S , H 0(S , Mλ)).
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But colim Hn(G, Mλ) is zero by assumption and so

colim Hn(G/S , H 0(S , Mλ)) = 0.

The Mλ were chosen in the subcategory so this simplifies to

colim Hn(G/S , Mλ) = 0.

This vanishing applies to any choice of system (Mλ) and thus Hn(G/S , ) is
0-finitary as required.

6.4 Hamilton’s Results

6.4.1 When Is Group Cohomology Finitary?

Hamilton [13] uses the results of this paper to characterize the locally (polycyclic-
by-finite) groups cohomology almost everywhere finitary: these are shown to be
precisely the locally (polycyclic-by-finite) groups with finite virtual cohomological
dimension and in which the normalizer of every non-trivial finite subgroup is of type
FP∞. In particular this class of groups is subgroup closed. Note that the class of
locally (polycyclic-by-finite) groups includes the class of abelian-by-finite groups
and already, within the class of abelian-by-finite groups there are many interesting
examples. The abelian group Q

+ × C2 (a direct product of the additive group of
rational numbers by the cyclic group of order 2 has almost all its cohomology functors
infinitary. By contrast, the non-abelian extension of Q+ by C2 is almost everywhere
finitary even though it is infinitely generated. Hamilton finds that in general, the
locally (polycyclic-by-finite) groups which have almost all cohomology functors
finitary form a subgroup closed class.

In view of our Theorem 6.2.1, Hamilton naturally focusses on groups with finite
virtual cohomological dimension. He shows, for example, that if G is a group with
finite vcd and thenG has cohomology almost everywhere finitary over the field Fp of
p elements if and only ifG has finitelymany conjugacy classes of elementary abelian
p-subgroups and the centralizer of each non-trivial elementary abelian p-subgroup
is of type FP∞ over Fp.

Clearly, a natural question is whether one can generalize Hamilton’s results from
locally (polycyclic-by-finite) groups to other classes of soluble groups. One of the
main reasons why this appears hard is that there is no clear classification of which
soluble groups have type FP∞ over a given finite field. There are satisfactory theories
of soluble groups of type FP∞ overQ and overZ but these have yet to be generalized
to the case of finite fields. Hamilton’s proofs make use of the deep results [14] of
Henn and in particular this leads to an answer to a question raised by Leary and
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Nucinkis [16], namely he shows that if G is a group of type VFP over Fp, and P is
a p-subgroup of G, then the centralizer CG(P) of P is also of type VFP over Fp.

The most relevant questions raised by this research are as follows:

Question 6.4.1 Let G be a soluble group and let p be a prime. What are the homo-
logical and cohomological dimensions of G over Fp? Is there a simple criterion for
G to have type FP∞ over Fp.

One may expect soluble groups to behave similarly over Fp as they do over Q
with the obvious elementary caveat that one has to take care of p-torsion. However,
there is no detailed account in the literature: Bieri’s notes confine analysis to the
characteristic zero case subsequent authors have studied this case alone in depth.

Finally, in this paper, Hamilton proves a more general result for groups that admit
a finite dimensional classifying space for proper actions. He concludes that if G is
such a group and if there are just finitely many conjugacy classes of non-trivial finite
subgroups for each of which the corresponding centralizers have cohomology almost
everywhere finitary, then G itself has cohomology almost everywhere finitary.

Hamilton uses results [21] of Leary to show that the converse of this result fails.
Leary has constructed groups of type FP∞ which are of type VFP but which have
infinitely many conjugacy classes of finite subgroups.

6.4.2 Eilenberg–Mac Lane Spaces

In a second paper [12], Hamilton studies the question of whether the property almost
everywhere finitary impacts on the Eilenberg–MacLane space of a group. Hamilton’s
main result [12, TheoremA] includes the statement that a group G in the class LHF
has cohomology almost everywhere finitary if and only if G × Z (the direct product
ofG with an infinite cyclic group) admits an Eilenberg–Mac Lane space with finitely
many n-cells for all sufficiently large n. There are two natural questions arising from
this research.

Question 6.4.2 Does Hamilton’s [12, TheoremA] hold for arbitrary groups, outwith
the class LHF?

Question 6.4.3 Can Hamilton’s [12, TheoremA] be proved without the stabilization
device of replacing G by G × Z?

It is natural so speculate that both of these questions have a positive answer but
they remain open.

6.4.3 Group Actions on Spheres

In a third paper [11], Hamilton builds on [13] by showing that in a locally (polycyclic-
by-finite) group with cohomology almost everywhere finitary, every finite subgroup
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admits a free action on some sphere. This perhaps surprising fact is proved purely
algebraically by showing that the same algebraic restrictions apply to the finite sub-
groups in Hamilton’s context as apply in the theory of group actions on spheres,
namely that subgroups of order a product of two (not necessarily distinct) primes
must be cyclic. So the natural questions that arise are:

Question 6.4.4 Is there a geometric explanation for the connection between
Hamilton’s ([11], Theorem 1.3) which explains the link with group actions on
spheres? Are there similar results for a larger class of groups, for example, solu-
ble groups of finite rank.
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