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AN OPEN COLLAR THEOREM FOR 4-MANIFOLDS

CRAIG R. GUILBAULT

Abstract. Let M4 be an open 4-manifold with boundary. Conditions are

given under which M4 is homeomorphic to <9Afx[0, 1). Applications include

a 4-dimensional weak /¡-cobordism theorem and a classification of weakly flat

embeddings of 2-spheres in 5"*. Specific examples of (n-2)-spheres embedded

in S"  (including n = 4) are also discussed.

1. Introduction

This paper contains results in the area of 4-dimensional manifolds. The

answers to the questions considered here have been known (or at least well

understood) for several years in all other dimensions. As might be expected of

results of this type, the work of Michael Freedman plays an essential role.

Theorem 3.3 may be considered the main result of the paper. It is an exten-

sion to dimension four of a result due to L. C. Siebenmann [31]. This result,

"the open collar theorem," gives conditions under which an w-manifold M

(m > 5) is homeomorphic to dM x [0, 1). The 4-dimensional version given

here requires an extra hypothesis involving allowable fundamental groups; a fact

that will not surprise those familiar with recent results in 4-dimensional topol-

ogy. It should also be noted here that, like most recent 4-dimensional results,

the conclusion is topological as opposed to PL or smooth.

In §4 we examine an embedding problem for 2-spheres in 4-dimensional

space. The problem, originally motivated by a conjecture of Siebenmann's ap-

pearing in his "open collars" paper, was solved for 1-spheres in S3 by R. J.
Daverman [10] in 1973, and for (n - 2)-spheres in Sn (n > 5) by T. B. Rush-

ing and J. G. Hollingsworth [23] in 1976. These results give necessary and

sufficient conditions for a codimension 2 sphere in S" to have a complement

the same as that of the standard (« - 2)-sphere in Sn . An embedded (« - 2)-

sphere with this property is said to be "weakly flat." Theorem 4.3 makes use

of the open collar theorem to extend this characterization to the case « = 4.
The technique of proof used here is also valid for « > 4. This points out the
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228 C. R. GUILBAULT

surprising fact that the paper by Siebennman, which motivated much of the

work on weakly flat codimension 2 spheres, virtually contains a solution when

the ambient space is of dimension five or greater. This observation will be made

more precise when we prove the result.

Section 5 contains some concrete examples of codimension 2 embeddings of

spheres in S" which illustrate the necessity and independence of the hypotheses

in the characterization mentioned above. Besides lending credibility to our

dimension four characterization, these examples seem to fill a void in the earlier

work where very few examples are considered.

In §6 we mention a few applications of the characterization theorem for

weakly flat 2-spheres in S4 ; discuss an open question; and report on some

recent results.

2. Preliminaries

Throughout this paper the symbols «, ~, and = will denote homeomor-

phism, homotopy equivalence, and isomorphism, in that order. When we let a

superscripted capital letter (e.g., M") denote a manifold, the superscript will
represent the dimension of Mn . Thereafter M" will often be referred to sim-

ply as M, with the dimension understood. The term open manifold will mean

a noncompact manifold. For us the term manifold means "manifold possibly

with boundary."
When dealing with a noncompact manifold M we will often talk about the

ends of M. Though our definitions are standard, we repeat them for complete-

ness.

2.1. Definition. Let M be a manifold and let s be a collection of subsets of

M such that

(i) each gee is a connected nonempty open set with compact boundary
in M,

(ii) if G, G' e e there exists G" e e with G" cGnG', and

(in) nci«7) = 0.
Now add to s every nonempty connected open set H c M with compact

boundary with the property that H contains some element of e. The new

collection still satisfies (i)-(iii) and is called the end determined by s.

A neighborhood of e is any set containing an element of e. An end e is

collared if it has a manifold neighborhood A such that A « dN x [0, 1).

We will often wish to consider "the fundamental group of an end e." We say

7ii is stable at e if there is a sequence {X¡} of path connected neighborhoods

of e with Xx D X2 D X-i D ■ ■ ■ , f| X¡• = 0, and such that the sequence

Kl{Xl,xl)é-xi(X2,x2)àn1{X3,X3)é--

induces a sequence of isomorphisms;

image(/i) à- image(/2) â image(/3) ¿ • • •.

To define /: nx(X¡+x, x;+i) -» nx(X¡, x,), first choose a path a, in X¡ from

x, to xi+i , and let g¡ be the isomorphism nx(X¡, x¡+x) —> nx(X¡, x¡) induced

by a¡. Then / is the composition

n(Xi+i, xi+x) -> nx(Xj, x,-+i) -+ nx(Xi, x,),
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AN OPEN COLLAR THEOREM 229

where the first homomorphism is induced by inclusion. If nx is stable at e,

define nx (e) to be the inverse limit of the sequence {nx (X¡, x,), /•} . This is

isomorphic to image(/) for any i. It can be shown without much trouble (see

[30]) that these definitions are independent of the sequence {X¡} chosen.

In accordance with common practice, when a manifold has only one end we

will refer to that end simply as "infinity" or oo.

Another important concept, when dealing with open manifolds (or noncom-

pact spaces in general), is that of "properness." A map /: X -> Y is proper

if f~x(K) is compact for any compact K. A map h: X -> Y is a proper

homotopy equivalence if not only h is proper, but all homotopies involved can

be chosen to be proper. A cobordism ( W, Mo, Mx ) is a proper h-cobordism
provided M0 C W and MxcW are proper homotopy equivalences.

A key ingredient in our proof of the 4-dimensional open collar theorem will

be a 5-dimensional proper s-cobordism theorem. Instead of spending a lot

of time describing the rather complicated machinery needed to give a general

statement of the theorem, we will state a very special case, tailored to meet our

specific needs. Other versions will appear in [20]. A very nice development by

Siebenmann for dimensions > 6, much of which is now applicable in dimension

five, can be found in [32].
The main problem unique to dimension five (as opposed to higher dimen-

sional) cobordism theorems is the need for fundamental group restrictions. This

comes about because of the difficulty in finding Whitney disks in 4-manifolds.

Freedman's disk embedding lemma (see [19 or 20]), the heart of his monumen-

tal work in 4-manifold theory, addresses this issue. We will say that a group

G is a Freedman group if the disk embedding lemma can be proved for 4-

manifolds M with nx(M) = G. At this time it is known that all poly-(finite or

cyclic) groups are Freedman. So far there are no groups which are known not

to be Freedman (see principal question in [20]).

Let W be a manifold with M0 , Mx disjoint submanifolds (with boundary)

of dW. Note that Y = cl(dW - (M0 U Mx)) is a cobordism between dM0
and 9Mi). We call (W, M0, Mx) a relative «-cobordism provided M0 c W,
M\ c W, dMo C Y, and dMx c Y are all homotopy equivalences.

2.2. Theorem (Special case of the 5-dimensional proper s-cobordism theo-

rem). Let (W5, Mq, Mx) be a proper relative h-cobordism such that

(1) Y^dM0xI,

(2) M0 « dM0 x [0, 1), and
(3) nx(Mo) is a Freedman group.

Then W is homeomorphic (rel boundary) to Mqx I.

Remarks, (i) This result is also true for dim(W) > 5 without any need for

condition (3) and with the final homeomorphism being PL (resp. smooth) if

all of the other information is PL (resp. smooth). In dimension 5, the final

homeomorphism is simply topological, even if all other information is PL or

smooth.
(ii) The proof of Theorem 2.2 best understood by this author involves a

careful modification of Siebenmann's higher dimensional Proper s-Cobordism
Theorem. This is the same strategy used by Freedman in § 10 of [ 18] to prove the

simply-connected version. In fact a good starting point for proving Theorem
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230 C. R. GUILBAULT

2.2 is an understanding of both [32] and §10 of [18]. The new issues which

must be faced are of course due to the existence of nx. In general, we need

to work harder to achieve desired nx conditions for neighborhoods of infinity.

Then, of course, the assumption that tix(Mq) (and thus ?ii(oo) and any of its

subgroups) is Freedman is essential for completing the proof.

(iii) Those unfamiliar with [32] may be surprised that Whitehead groups play

no role in Theorem 2.2. This occurs primarily because our hypotheses ensure

the surjectivity of nx (end of Mq) -» nx (M0), which in turn allows us to "push

torsion problems off to infinity." More precisely, the niceness of nx at infinity

guarantees the triviality of Siebenmann's z' obstruction. See [32] for details.

3. A 4-DIMENSIONAL OPEN COLLAR THEOREM

In his paper "On detecting open collars" [31], Siebenmann proves the follow-

ing theorem.

3.1. Theorem. Let M bean m-manifold where m>5. Then M is homeo-

morphic to dM x [0, 1) iff each of the following conditions holds:

(a) dM c M is a homotopy equivalence.

(b) nx is stable at infinity with nx(oo) -» nx(M) an isomorphism.

Remark. We will see later that condition (a) guarantees that M has precisely
one end.

The same result has been proved in dimension three provided one assumes

that M contains no fake 3-cells and that nx(M) ^ Z2 . This result is a con-

sequence of the dimension three "finding a boundary theorem" of Husch and

Price [24] when dM is compact, and by work of E. M. Brown and T. W. Tucker
[5] if d M is noncompact. If a fake 3-sphere A exists, we can find a coun-

terexample to the general statement as follows; let B be a closed ball in A and
p e N such that p $ B . Then A - (int(B) U {p}) is a counterexample to the

3-dimensional open collar theorem, as stated for higher dimensions.

The need to include condition (b) in these theorems may not be obvious,

but it is essential. Removing a Whitehead continuum from the interior of a

closed 3-ball produces a manifold M with dM c M a homotopy equivalence,

but which is not homeomorphic to dM x [0, 1) (see [27]). A quick way to

obtain similar examples in higher dimensions is to take a product of M with

any closed manifold.
An easily proved and aesthetically pleasing consequence of Theorem 3.1 is

the following.

3.2. Theorem. An m-manifold M (m > 5) is homeomorphic to dM x [0, 1)

iff the two are proper homotopy equivalent.

Besides being a nice characterization of certain manifolds, the open collar

theorem has proven useful in solving a variety of problems. Siebenmann's

original paper contains three sections of applications. Section 4 of this paper

gives a prime example of the ways in which this theorem can be used.

We are now ready to state the theorem.

3.3. Theorem (4-dimensional open collar theorem). Let M be a 4-manifold

with nx(M) a Freedman group. Then M is homeomorphic to dMx[0, 1) iff
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each of the following conditions holds:

(a) dM c M is a homotopy equivalence.

(b) 7i\ is stable at infinity with nx(oc) —> nx(M) an isomorphism.

Note. As is the case with Theorem 3.1, dM can be noncompact and its ends

need not satisfy any special conditions.

Like the higher dimensional case we get the following consequence.

3.4. Corollary. A 4-manifold M with nx(M) a Freedman group is homeomor-

phic to dM x [0, 1) iff the two are proper homotopy equivalent.

Another easy corollary is the following.

3.5. Corollary (weak 4-dimensional «-cobordism theorem). Let (W4, M0, Mx)

be a 4-dimensional h-cobordism (assume proper if W4 is not compact) with

nx(Mo) Freedman. Then W4 - Mx « M0 x [0, 1).

Before beginning the proof of Theorem 3.3, we note that when dim(Af) > 6

and dM is compact (or at least has collarable ends), the open collar theorem is a

consequence of Siebenmann's work with placing boundaries on open manifolds

(see [30]). One of the main surprises in his open collar theorem is the dimension

five case. It gives some special situations in which a boundary can be placed on

an open 5-manifold. (Even with Freedman-Quinn technology this result cannot

be obtained in its full generality with the usual handle theoretic techniques.)

Similarly, Theorem 3.3 is unusual in that it describes situations in which a

boundary can be placed on an open 4-manifold.

In dimension four, there are two roadblocks to generalizing Siebenmann's

higher dimensional proof. The first is that his well-known procedure for finding

"1-neighborhoods of infinity" fails in dimension four. (A neighborhood U of

infinity is a 1-neighborhood provided it is a closed, connected manifold neigh-

borhood of infinity with connected, bicollared boundary such that the natural

homomorphism 7Ti(oo) —► nx(U) is an isomorphism and such that dil c U

induces a nx-isomorphism.) The second difficulty is encountered in an en-

gulfing step. Since one cannot necessarily engulf 2-dimensional polyhedra in

a 4-manifold (even if it was possible to arrange the desired homotopy condi-

tions), it is impossible to employ an engulfing trick of Stallings' which is key in

Siebenmann's proof.

The first problem can be solved satisfactorily by finding "almost nice" pairs

of neighborhoods of infinity. Lemma 3.6 gives an indication of what this might

mean.

The second problem is not so easily solved. We end up sidestepping the issue

by using a rather indirect proof. First we will build a proper /z-cobordism

between M and dM x [0, 1). This requires some work. Then we apply

Theorem 2.2 (where applicable) to guarantee the promised homeomorphism.

Interestingly, much of our time is now spent in a 5-dimensional world, where

we will engulf lots of 2-dimensional objects! See Lemmas 3.7 and 3.8 and

Theorem 3.9 for this portion of the proof.

We begin by proving four crucial lemmas and a preliminary theorem. Al-

though we are primarily interested in the 4-dimensional cases, we will prove

these results in greater generality when possible.
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3.5. Lemma. Suppose M is a manifold and dM c M is a homotopy equiva-

lence. Then M has precisely one end.

Proof. Choose a sequence Kx c K2 c K$ c • • • , of compact subsets of M such

that (J K¡; = M. Note that M clearly cannot be compact, so no K¡ can be all

of M. We break the rest of the proof into two cases.

Case 1.   (M is orientable.) Look at the long exact sequence

0^    H°(M)    ^H°(M-Ki)^Hx(M,M-Kj)-+---.

II
Z

Taking the direct limit over the K¡ 's gives

0^Z^H°oo(M)^Hx(M)^.-..

By duality [33, p. 342], HX(M) 2 Hn_x(M, dM) = 0 ; therefore, H^(M) has
rank 1, which implies that M has one end.

Case 2. (M is nonorientable.) Let p : M -> M be the orientable double cover

of M, and let A represent p~l(A) for any Ac M. Then {K¡} is a collection

of compact sets such that \J K¡■ = M, and dM c M is a homotopy equivalence.

By Case 1, M has exactly one end, so there exists an «o e Z+ such that for

any « > «0, M -K„ has precisely one noncompact component. Then M-Kn

will have just one noncompact component; therefore, M has just one end.

3.6. Lemma. Suppose Mm (m > 4) is a manifold satisfying conditions (a) and

(b) of Theorem 3.1 or 3.3. Then there exist arbitrarily small (open) neighbor-

hoods of infinity U\ and U2 such that each of the following are satisfied.

(i)  cl(U2)cUx.
(ii)   Ti*(Af, Uj) = 0 for k = 0 or 1 and j =1 or 2.

(iii)  The natural homorphism n2(M, U2) —> n2(M, Ux) is trivial.

Proof. Since the conclusion is a trivial consequence of Theorem 3.1 for all other

cases, we assume m = 4. Using Lemma 3.5 and hypothesis (b) of Theorem 3.3,

we can choose an arbitrarily small neighborhood Ux of oo satisfying condition

(ii). Next consider the 5-manifold MxSx . Note that all hypotheses of Theorem

3.1 are present, implying that M xSx « d (M x5')x[0, 1 ). This makes it easy

to find a neighborhood V of infinity in MxSx (choose V x d(MxSx)x[0, 1))

such that cl(F) cUxxSx and n2(M x Sx, V) = 0. Let p: M xSx -» M x {*}

denote the projection map, where * e Sx. Choose U2, a neighborhood of

infinity in M, satisfying condition (ii) and sufficiently small that U2 x {*} c

V. We need only verify (iii) for the pair Ux, U2. Let a: I2 into M such

that a(dl2) c U2. Considering a for a moment to represent an element of

7t2(Af x Sx, V), we know that there is a homotopy Ht: I2 —► M x Sx such

that H0 = a, H,(dl2) c V for all t, and HX(I2) c V. Then pH, is a
homotopy with pHo = a, keeping dl2 inside of p(V) c Ux , and such that

pHx(I2) c V c Ux . Thus, a represents a trivial element of n2(M, Ux), and

the lemma is proved.

We pause now to set up some notation and terminology which will be used in

both the statements and the proofs of the following two lemmas. M will denote
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a PL manifold with the property that dM -> M is a homotopy equivalence,

and such that condition (b) of Theorem 3.1 or 3.3 holds. M will always denote

M x (0, 1) and if A is any subset of M then A will denote A x (0, 1) c M.
An open collar C, on dM, will be called nice if cl(C) « dM x [0, 1].

Important note. Work by Quinn [28 or 20] guarantees that a PL structure can

be placed on any noncompact 4-manifold; therefore, in the following results,
the PL assumption is superfluous when « = 4.

3.7. Lemma. Let Mm (m > 4) be as stated above, C be a nice open collar

on dM in M, Ux and U2 be neighborhoods of infinity satisfying (i)—(iii) of

Lemma 3^6, and P = (M - C) x {1/2} c M. Then there is a homeomorphism

h: M -> M satisfying the following three conditions:

(a) h has compact support,

(b) h\dM = xá> and

(C)   h(Uy)DP.

Proof. Choose another nice open collar C on dM, with C c cl(C') c C.

Let A = (M - C) x [1/4, 3/4] be a closed regular neighborhood of P with a
triangulation T (see Figure^). By Stallings engulfing [34], there is an engulfing

homeomorphism hx : int(Af) -* int(M) with compact support and such that

hx(Ux) D \T(2)\. Clearly we can extend hx to the identity on dM.

Now let T0 be a finite subcomplex of T such that \T0\ D N n (M - t/0),
where U0 is a neighborhood of infinity in M sufficiently small that «i|~ =id.

Use Bing's radial engulfing [3] to obtain a homeomorphism h2: M - cl(C') -►

M - cl(C') with compact support, such that h2(C - cl(C')) contains the dual
(«-3)-skeleton of T0, and such that h2 moves points a distance of less than 1/8

in the "vertical direction." The control function called for in radial engulfing is

Ui

N Ü2

72

0

h(U0

0

Figure 1. Result of applying Lemma 3.7
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234 C. R. GUILBAULT

simply the projection f: M = M x(0, 1) —> (0, 1). Extend «2 trivially, to get

a homeomorphism of all of M onto itself.

Finally, alter hx slightly to expand hx(Û) along the join structure of T,

so that «.(£/) U «2(C) 3 N. This implies that h2xhx(Ûx) U C D h2x(N).

Futhermore, the contols used in obtaining «2 guarantee that h2x(N) contains

P; therefore, h2xhx(Ux) contains P, and letting h = h2xhx completes the

proof.

3.8. Lemma. Again let Mm (m > 4) be as stated above. Let Cx and C2

be nice open collars on dM such that cl(Cx) c C2. Let U be a connected

neighborhood of infinity in M, and let

V = Uö[(M- cl(C)) x (0, 1/;)] U [(M - cl(C,)) x ((; - 1)/;, 1)],

where j is any integer larger than 2. Then there exists a homeomorphism

h: M —> M such that
(a) « has compact support,

(b) h\ar¡ = id, andv   '       'dM

(c) h(V)U C2 = M.

Proof. Begin by choosing another nice open collar Co on d M, such that Ci C

cl(Ci) c Co c cl(Co) c C2. Let T be a triangulation of M -Co, and note that
\T\-V is contained in a finite subcomplex of T (see Figure 2). Our first goal

is to engulf |r<2)| with V.

Claim.  nk(M, V) = 0 for k = 0, 1, 2.
The k = 0 case is trivial. We will use the following long exact sequence for

the other two cases.

-y n2(V) h n2(M) ^ n2(M, V) -* nx(V) h nx(M) -» nx(M, K)-»0.

It is clear that both Xx and X2 are surjective, thus nx(M, V) is trivial, telling

us that we need only show Xx to be injective in order to get n2(M, V) = 0.

To do this, choose a loop ß in V, based at * e [M - cl(Ci)] x ((j - l)/j, 1),

which contracts in M. As in the previous lemma we use hypothesis (b) of

Theorems 3.1 and 3.3 to see that nx(M, U) = 0. This allows us to pull the

portion of ß lying below the (1/7) -level into U, while staying in V. Now

push ß straight upward into [M - cl(Ci)] x ((j - l)/j, 1), where ß must

contract since [M - cl(Cx)] x ((j - l)/j, 1) includes into M as a homotopy

equivalence. This finishes the claim.

We now have the necessary conditions to apply Stallings engulfing to obtain

a homeomorphism with compact support, «1 : M - cl(Cx) -► M - cl(Cx), such

that hx(V) D \TW\. Extend «1 via the identity to cl(Ci).

Next we go to the "other side" of M to do some more engulfing. This time

we will work in M - cl(Q) and our engulfing set will be W = C2 - cl(Co).

Note that the inclusion W c Af-cl(Co) is a homotopy equivalence. Let To be

a finite subcomplex of T such that |7b| D [[M - (cl(Co) U V)] U support(«i)].

Let r denote the dual (n - 3)-skeleton of T0 . Then K = \F\ n (M - cl(C0)) is

a (not necessarily compact) (n - 3)-polyhedron in Af-cl(Co) suchthat K-W
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h(V)

Figure 2. Result of applying Lemma 3.8

has compact closure in M - cl(Co). Then, again by Stallings engulfing there is

a homeomorphism h2 : M - cl(Co) -> M - cl(Q), with compact support, such

that h2(W) d K. As usual, extend h2 to the remainder of M via the identity.

Note that «2(^2) D |r|. By pushing along the join structure we can assume

that hx(V) u h2(C2) = M ; therefore h2x
completes the proof.

hx(V) U C2 = M. Letting h = «2_1«

3.9. Theorem. Let Mm be a PL manifold (m > 4) such that

(i)   dM c M is a homotopy equivalence, and

(ii)   nx is stable at infinity with nx(oo) —> nx(M) an isomorphism.

Then there exists a proper PL h-cobordism ( Wm+X, Mo, Mx ) with Mo~dMx

[0, 1) and MX^M.

Proof. Let A be a nice open collar on dM, in M, and let W = (M x (0, 1]) Ü

(A x {0}), Mq = A x {0} , and Mx = M x {1} . Clearly we have an «-cobordism.

Our job is to show that the required deformations of W onto its boundary

components can be made proper. The general strategy is to choose collars on

Mo and Mx , and then to "zip" them together so that fibers near the end of Mo

are brought together with fibers near the end of Mx . The collar lines will then

show the way for the desired proper deformation retractions.

The proof is broken down into five steps.

Step 1. (Setup.) By Lemma 3.6 we can write M as (JK¡, where [/, = M-K¡

is a connected neighborhood of infinity for each z, and with the property that

nk(M, Uj) - 0 (k = 0, 1) and the natural homomorphism n2(M, Ui+X) —>

n2(M, Uj) is trivial for all z. Use Urysohn's Lemma to construct a map

p: M -> (0, (1/2) - e], where e is small, so that p(Kx) = {(1/2) - e},
M*2-int(Ä-,)) = [l/3,(l/2)-e],and n{K¡-ittt(Ki-i)) = [l/(/ + l), 1/í] for
z>2.
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236 C. R. GUILBAULT

Figure 3. Set up for Theorem 3.9

Step 2. (Choosing special collars for M0 and Mx.) Let E be the (closed)

collar on Mx, each of whose collar lines is a set of the form {m} x[p(m), l]c

W ; where W is thought of as M x (0, l]U^x {0} , and m e Mx. To select

a collar for Mo, begin by choosing a (PL) homeomorphism t: A/0 -> dM x

[0, 1 ), and let p : dM x [0, 1 ) —► [0, 1 ) be the projection map. Define F to be
the collar on Mq , each of whose fibers is of the form {m} x [0, 1 -pr(m)] c W,

where m e Mo. Also needed will be a collar F' c F with collar lines of the

form {m} x [0, (1 - pt(m))/2] (see Figure 3).

Step 3. (An initial stretching of the collar E.) Consider a "slice" of W of the

form M x (1/(2« + 1), 1/(2« - 1)), where n is an integer > 1. Let M2n-X

denote [M x (1/(2« + 1), 1/(2« - 1))] -F', C2„_, denote (F-F')nM2„-i,

and P2„-\ denote [Mx {l/(2n)}]-F . Then the triple (M2n_x, C2n-X, P2n-\)

is homeomorphic to a triple of the form (M, C, P) as described in Lemma

3.7 (use Figure 3 as a reference). It is easy to find sets U2n-Xt x and U2„-Xy2 ,

contained in E, and filling the roles of Ux and U2 in Lemma 3.7. To do this

begin with a pair Ur, Ur+X of the neighborhoods of infinity in M describ-

ed earlier, where r is sufficiently large that Ur x (1/(2« +1), 1/(2« - 1))

C E. Let L>2„_i,i = Urx (1/(2« + 1), 1/(2«- 1)), and f/2„_12 = U^x x

(l/(2«+l), l/(2«-l)). Lemma 3.7 promises a homeomorphism f2n_x: M2n_x

-* M2n-\ such that

(a) yàn-i has compact support,

(b) /2B-iLd.   . = id, and
,d\f2n-l

-1(0211-1.(C)   /2B-l(i/2»-l, l)3ftii-l.

Now define /: W —> W as follows:

fix)
i(x) if x e AÍ2„_i

elsewhere.
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Figure 4. Cobordism (W, M0, Mx) after Step 4

Condition (b) on the f2n-X,s guarantees that / is continuous on F', and

condition (a) gives continuity on all "horizontal seams" between the domains

of the f2n-\ 's. Note that / satisfies the following conditions;

(i)   /If'ua/x[i/2,i]um0 = id,
(ii)   [f(E) UF]dMx {1/2«} for all integers « > 1,

(iii) if x e M x [1/(2« + 1), 1/(2« - 1)], then so is f(x), and
(iv) for each set M x [l/(k + 1), 1/k] in W, there is a neighborhood U

of infinity in M suchthat f\ux[i/k+i,i/k] = id.

Step 4. (Completing the stretch of E towards F.) Here we concentrate on

slices of the form M x (1/2« + 2, 1/2«), where « is an integer > 1. Let

M2n = [Mx (1/2« + 2, 1/2«)] -F' and C2„,2 = (F- F') n M2n . We can now

find an open collar C2»,i on dM2n contained in C2n<2 and close enough to

C2n, 2 that M2n contains a set V2n , which is also contained in f(E), and such

that the quadruple (M2„ , C2n>x, C2n,2, V2n) is homeomorphic to a quadruple

(M, CX,C2, V) of the form described in Lemma 3.8. Applying Lemma 3.8,

for each « , gives us homeomorphisms g2n : M2n —» M2n with the properties:

(a) g2n has compact support,

(b) g2n\dg2n = id, and

(C)    g2n(V2n)UC2n<2 = M2n .

We define a homeomorphism g : W —> W by,

g(x)
g2„(x)   ifxeM2n,

x elsewhere.

Properties (a) and (b) ensure the continuity of g, and combine with property

(c) to give the following properties for g (see Figure 4);
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(Í)    g\F'UMx[\/2,\]UM0 — id,

(ii)   [g(f(E))UF]=W,
(iii) if x e Af x [1/2« + 2, 1/2«] then so is g(x), and
(iv) for each set M x [1/k + 1, 1/k] in W, there is a neighborhood U of

infinity in M, such that g\ux[i/k+i,i/k] = id.

Step 5. (The deformation retractions.) Note that gf: W —> W is a homeo-

morphism with the properties:

(A) ^/|fuA/x[i/2, i]um0 - id,

(B) [gf(E)üF] = W, and
(C) if x G M x [1/n + 1,1/«] then gf(x) e Mx [l/(n + 3), l/(« - 3)]

for all « > 3 (use condition (A) if « < 3),
(D) for each set M x [1/k + 1, 1/k] in W, there is a neighborhood U of

infinity in M suchthat gf\ux[i/k+i,i/k] = id.

It is now easy to exhibit the desired proper deformation retractions. To

deform W onto Mo, first push W into F along the collar lines of gf(E),

then use the collar lines of F to push everything down onto A/n ■ It is a

simple matter to check that this deformation is proper. A similar pair of pushes

along collar lines gives a proper deformation retraction of W onto Mx. This

completes our proof.

Proof of 3.3. Theorem 3.9 combines with Theorem 2.2 to give the desired proof.

4. Characterizing weakly flat 2-spheres in S4

An embedded /c-sphere Zfc c S" is said to be weakly flat provided S" -Zk «
S"-Sk , where Sk is the standard /c-sphere in S" . There are many well-known
examples of embedded spheres (even when codimension ^ 2) which are not

weakly flat. The most famous, a codimension one example is the Alexander

Horned Sphere. There are also examples of weakly flat spheres which are not

flat. We will discuss some of these in §5. With this in mind, it is clear that, to

classify weakly flat embeddings, some restrictions on the wildness will have to

be made. At the same time, these restrictions should not be so severe that they

imply local flatness (see [2, 11, 7, 4, 9, or 6] for conditions of this type).

An embedded /c-sphere Xfc c Sn is said to be globally 1-alg provided each

neighborhood U of Z contains a neighborhood V of Z such that loops which

are null-homologous in V - Z are contractible in U - Z. Work done in the

sixties and early seventies supports this condition as the right one for studying

weak flatness. The following theorem combines results of McMillan [26] in

1964 (the k = n - 1 case), Duvall [15] in 1969 (for 2 < k < n - 3), and
Daverman [10] in 1973 (k = 1).

4.1. Theorem. Suppose Z* c S" is an embedded k-sphere with k±n-2 and

« ^ 4. Then Z is weakly flat iff it is globally 1-alg.

Work by Hollingsworth and Rushing [23] in 1976 combined with Daverman's

k = 1 work settles the codimension 2 weak flatness problem, provided « ^ 4.

4.2. Theorem. An (n-2)-sphere Zfe c S"  (n ^ 4) is weakly flat iff Z is globally
1-alg and S" - Z* is homotopy equivalent to Sx .
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The relationship of "weak flatness" characterizations to the open collar the-
orem is well documented. One application Siebenmann presents in [31] is a

solution to a conjecture of Hempel and McMillan [22] confirming their belief

that for « > 5 and k < n - 3 , /c-spheres in Sn are weakly flat provided they

are 1-LC at each point (a later result discovered independently by Daverman

[10] and Cernavskiï [7] made this characterization obsolete). Duvall's work

improved Siebenmann's characterization by again employing the open collar

theorem. The main contribution of Duvall's was in recognizing that the much

weaker global 1-alg condition is sufficient for getting the right "end conditions"

for S" - Zfc , thus allowing an application of the open collar theorem to show

weak flatness. The codimension 2 work of Hollingsworth and Rushing was at
least partly motivated by a conjecture of Siebenmann's in [31]. Their result

confirms this conjecture, and more. Surprisingly, their proof essentially mim-
ics that of the open collar theorem (a small modification of theirs makes their

proof more elementary), showing that Siebenmann's paper virtually contained

a solution to his conjecture! Our proof of Theorem 4.3 shows how this works.

As was the case with many results in geometric topology, the 4-dimensional

cases of the weak flatness characterizations remained unsolved for several years.
Freedman's landmark paper [18] of 1982 extended Theorem 4.1 to the case of

3-spheres in S4 . In 1987, G. Venema [35] confirmed the characterization for 1-

spheres in S4 . In the remainder of this section we handle the case of 2-spheres

in S4, thus completing the program for classifying weakly flat embeddings of

spheres.

4.3. Theorem (characterization of weakly flat 2-spheres in 5"*). A 2-sphere

Z2 c S4 is weakly flat iff it is globally 1-alg and S4 - Z is homotopy equivalent
to Sx.

Proof. Let ß be a PL embedded loop representing a generator of nx(S4 - Z).

Choose a regular neighborhood A of ß in 54-Z,andlet L denote (5"*-Z)-

int( A). Since the complement of a standard 2-sphere in S4 is homeomorphic

to 5'xR3, and since A « Sx x B3, it is clear that the theorem will be proved

if we can show that I«9Lx[0, 1 ). In view of Theorem 3.3 it will suffice to

verify that

(i)   dL c L is a homotopy equivalence, and
(ii)   7ti is stable at the end of L with 7ti(oo) —► 7Ci(L) an isomorphism.

Note.  nx(dL)   (= nx(Sx x S2)) is infinite cyclic, which is a Freedman group.

Towards verifying (i), let M denote the universal cover of S4 - Z and for

any set A c S4 - Z, let A — P~X(A) where p is the covering projection. Since

the inclusion A c S4 - Z is a homotopy equivalence, A c M must also be

one. Applying Van Kampen's Theorem to the triple M, N, L tells us that

L is simply connected, and is therefore the universal cover of L. By excision

Hk(L, dL) = Hk(M, Ñ) = 0 for all k. Since L and dL are simply connected,

the Hurewicz Theorem guarantees that nk(L,dL) = 0 for all k. Finally,

this implies that nk(L, dL) is trivial for all k, so dL c L is a homotopy

equivalence.

To verify (ii) we use the fact that Z is an ANR, together with the global 1-alg

hypothesis, to find a sequence {V¡} of manifold neighborhoods of Z, missing

A, with f| V,'■■ = Z and such that for each i; Vi+X deformation retracts to Z
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in Vi and null-homologous loops in Vi+X - Z contract in V¿. The sequence

{ V,■ - Z} will be our preferred set of neighborhoods of infinity in L.

For any triple i, i+1, i + 2 we have the following diagram.

H2(Vi+2)   4   H2(Vi+2,Vl+2-l)    1   Hx(Vi+2-2Z)   -»   ff,(F/+2)
I J. » I eM I 0

#2(K/+i) -    ¿W+i,F/+1-Z) ^>    tf,(Fi+1-Z) -»    Hx(Vi+x)
I 1= U |o

H2(Vi) ±       H2(Vi,Vi-l) ^     Hx(Vi-l) -     ^(F,)

4- 4- 4- 4^

0 -»      //2(54,54-Z)      ^     HX(S4-1)     -* 0.

The column of isomorphisms is due to excision, the maps in the far right col-

umn are trivial by our selection of the V¡ 's and the triviality of the first map

in each row is a result of our first two observations. This diagram tells us that

L is "homologically stable at infinity," with the correct homology there. More

specifically, ej|im(ei+i): im(e¡+i) —> im(e,) is an isomorphism, and inclusion in-

duces an isomorphism im(e,) —> HX(S4 - Z), the latter which is isomorphic to

Hx (L) via inclusion.

Next we use another diagram to translate this information into nx informa-

tion.

nx(Vi+x--L)   ÖA2   Hi(Vi+2-2Z)
I Ji+i I e¡+,

nx(Vi+x-l)   eÁ'    HX(V¡+X-1)

i ji I e¡

Jt,(H-I) ^ Hx(Vi-l)

The di 's in this diagram represent Hurewicz homomorphisms. First note that
6i\im!jiji+ù'm imÜiJi+i) —> im(^i^/+i) is an isomorphism. A key point here is that

nullhomologous loops in any Vk+X - Z contract in Vk - Z. It then follows that

JiJi+i\imU,+2JM): imO'/+2J/+3)->im(//'i+i) is an isomorphism, so nx is stable at

infinity and im(jiji+x) —► nx(L) is an isomorphism. This completes our proof.

Remarks. (1) This diagramatic proof that globally 1-alg gives the right end con-

ditions in the complement is due to Daverman (see [12]).

(2) The above proof, and therefore the theorem, works with Z replaced by

any compactum A with the shape of a 2-sphere, the conclusion being that
S4 - A « Sx x R3.

5. Examples

Two questions which clearly should be asked regarding the study of weak

flatness are as follows:

Question 1. Do there exist embeddings Z* c S" which are weakly flat but not

flat?

Question 2. Do there exist embeddings Z"-2 c S" with Sn - Z homotopy

equivalent to Sx but which are not weakly flat?

Since our main concern has been the codimension 2 case, we restrict our

attention to that situation for Question 1 as well as Question 2. Our goal in
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this section is to present examples which produce affirmative answers to both

questions, for all « > 3.

Example 5.1 (A weakly flat 1-sphere Z c S3 which is not flat). In [29], Row
and Walsh construct a nonshrinkable decomposition G of S3 into points and
cellular arcs such that:

(i)   J = cl(|J{g € G\g is not a point}) is a simple closed curve which
bounds a disk Q that is locally flat at each of its interior points, and

(ii) each arc contained in / is cellular.

Readers unfamiliar with the language of decomposition theory are referred to

[13].
To construct the desired Z, we begin by choosing an arc L c J containing

all but one (nontrivial) go e G. Let G' denote the decomposition of S3 whose
nontrivial elements are the nontrivial elements of G - {go} . Note that G' is
still nonshrinkable. Now choose an arc A in Q connecting the end points of

L and meeting / only in those two points. Let D denote the disk contained

in Q which is bounded by LliA.

Claim. 2Z = LLiA is weakly flat but not flat.
If Z was flat then L would be also, but since G' is not shrinkable this is

impossible. Seeing that Z is weakly flat involves several observations. First,

since D is locally flat away from L we can thicken D up on one side to

create a 3-cell B with D c dB and dB locally flat at all points not on L.

Furthermore, each point of L is contained in a tame arc on D. (To see this

requires a quick inspection of [29], where the construction is similar to that

used in creating Bing's "hooked run.") This in turn implies that all points of

the cellular arc L are piercing points of dB. We are now in position to apply

a result of Garza (see [21, Theorem 2.1] and the discussion which follows) to

conclude that dB/L is a flat 2-sphere in S3/L « S3. This of course means

that Z/L is a flat 1-sphere in S3/L. Since Z c S3 and Z/L c S3/L have
homeomorphic complements, then Z is weakly flat in S3.

Example 5.2 (A 1-sphere ZcS3 with S3 - Z ~ Sx, but which is not weakly
flat). This example was first cited in [14] for this purpose. We repeat it here

(without proofs) for completeness and later use. Let Z be the boundary of

a Fox-Artin wild disk [17] (see Figure 5). Daverman and Rushing show that

because Z bounds a cellular disk, its complement will have infinite cyclic fun-

damental group. In S3 this suffices to ensure that the complement has the

homotopy type of Sx. They also show that the type of wildness present at the

bad point prevents it from being weakly flat. It is an easy but interesting exercise

to use the picture to find a loop which violates the global 1-alg condition.

Next we discuss a couple of methods for turning these (or other) exam-

ples into interesting examples in higher dimensions. In the following lemma,

susp(^4) stands for the suspension of A. Recall that the suspension of an «-

sphere is an (n + l)-sphere.

5.3. Lemma. Let Z"-2 c S" be an embedded (n - 2)-sphere such that

nx(Sn -ï)ëZ.

Then susp(Z) c susp(5") is a globally 1-alg (n - l)-sphere in Sn+X.
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Figure 5. A Fox-Artin simple closed curve

Proof. Let U be a connected manifold neighborhood of Z in S" . The long

exact sequence for the pair (Sn , U), together with excision, tells us that

HX(S"-1, U-1) = 0.

Since nx(S" - Z) is abelian, this implies that nx(S" - Z, U - Z) = 0. We
will use this later. We now find an (arbitrarily small) neighborhood V of

susp(Z) in susp(5,,!) such that nullhomologous loops in F-susp(Z) contract in

F-susp(Z). Let p, p' denote the suspension points. Then (susp^")-^, p'},

susp(Z)-{p, p'}) « (S"xRx, Zxi?1). This tells us that susp(Z) has artibrarily

small neighborhoods V such that

V - susp(Z) « ((Sn - Z) x [(-oo, -/] U [/, oo)]) U ((U - Z) x Rx),

where U is a connected manifold neighborhood of Z in S" . Let a be a

nullhomologous loop in V - susp(Z). Since nx (S" - Z, U - Z) = 0, we can pull

the portion of a lying below the " (-/)-level" of V - susp(Z) into the U x Rx

portion. Now push a upward into the (Sn - Z) x [J, oo) portion. Here a

must contract since nx((Sn - Z) x [J, oo)) = nx(S" - Z) = Z is abelian. Thus

V has the desired property, and the lemma is proved.

5.4. Lemma. IfL"~2 c S" isanembedded (n-2)-spherewith 5"-Z homotopy
equivalent to Sx, then susp(Z) is weakly flat in susp(5").

Proof. Since susp(5") - susp(Z) «(S'-Ijxi?1 ~ Sx, the proof is immediate

from Lemma 5.3 and either Theorem 4.2 or 4.3.

5.5. Example. (Weakly flat (« - 2)-spheres which are not flat in S" (for any

« > 3).) Applying Lemma 5.4 to either Example 5.1 or 5.2 gives us a weakly

flat 2-sphere in 5"*. It is easy to see that since the original embeddings are not

locally flat, their suspensions cannot be locally flat, and are therefore not flat.

Continuing this process inductively gives examples with the desired properties

for any « > 3.

5.6. Example. (A method for constructing an (« - 2)-sphere with complement

homotopy equivalent to Sx, but which is not weakly flat (for any « > 3).) We

will describe a spinning construction like that used by Artin [1] to create knots
in S4 using knots in S3. Although the technique is much more general, we will

concentrate on using Example 5.2 to create a 2-sphere in S4 with the desired

properties. Inductively, one can then create an example in each dimension > 3.
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Let I.FA c S3 denote Example 5.2 (see Figure 5). Begin by choosing a

small round ball B in S3 such that "LFA intersects B in a flat arc A which

pierces dB in exactly two points. Next remove a point p edB -A to get 2ZFA
contained in R3, with dB - {p} a nice plane in R3 separating ~LFA into two

arcs; A and Aw - ZFA - int(A). Let R^ denote the closure of the component
containing int(Aw). Note that

nx(R3-Aw)^Z.

We now create R4 by "spinning," i.e., we realize R4 as the decomposition

space (R3 x Sx)/{{x} x Sx\x e dR3+}. Denote the "image" of Aw x Sx by

spin^u,), and note that spin(^4w) « S2 . Compactifying gives us a 2-sphere in

S4 . It is left to the reader to show that S4 - spin(Aw) ~ Sx and that spin(,4w)

is not globally 1-alg in S4 .

Remark. Certainly there are many different (and more clever) ways to build

examples such as these. The examples presented here were chosen mainly for

their simplicity and the fact that they are very visual. They also seem to illustrate

some nice uses of the different embedding conditions.

6. Final remarks

A nice set of applications of the 1-alg characterization of weakly flat codi-
mension 2 spheres appears in [14]. With our proof of Theorem 4.3, most of

their proofs can be immediately extended to the cases involving 2-spheres in

S4. One which is especially interesting, due to its analogue in knot theory, is

the following.

6.1. Theorem. A 2-sphere in S4 which bounds a cellular 3-cell is weakly flat.

We mentioned earlier that Theorem 4.3 completes the 1-alg classification

scheme for weakly flat spheres. As is the case with most recent work in dimen-

sion four, the results are purely topological (as opposed to PL or smooth). In

all other dimensions, the results on weak flatness (as well as most of the other
results mentioned here) are also true in the PL or smooth categories. It is an

open question, whether or not two weakly flat k-spheres in S4 have PL (or

smoothly) homeomorphic complements.

Finally we report that Liem and Venema [25] have used the above results to

show that every globally 1-alg embedding of S2 in S4 is the complement of

some locally flat knot. This extends the higher dimensional result of Daverman

[12].
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