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Abstract. The Topological Radon Theorem states that, for every continuous func-
tion from the boundary of a (d + 1)-dimensional simplex into R

n, there exist a pair
of disjoint faces in the domain whose images intersect in R

n. The similarity between
that result and the classical Borsuk-Ulam Theorem is unmistakeable, but a proof
that the Topological Radon Theorem follows from Borsuk-Ulam is not immediate.
In this note we provide an elementary argument verifying that implication.

1. Introduction

The classical Radon Theorem states that any collection X =
{

x1,x2, · · · ,xd+2

}

of

d + 2 points in R
d can be divided into two disjoint sets whose convex hulls intersect.

The proof is a straightforward application of elementary linear algebra. See, for
example, [Ma, p.90]. An equivalent formulation of this theorem, with ∆d+1 denoting
the (d + 1)-dimensional simplex, is the following.

Theorem 1.1 (Radon’s Theorem). For every affine map f : ∆d+1 → R
d there exist

a pair of disjoint faces FA and FB of ∆d+1 such that f (FA) ∩ f (FB) 6= ∅.

The equivalence of these two statements is easily deduced from the fact that every
set X = {x1,x2, · · · ,xd+2} ⊆ R

d determines an affine map f : ∆d+1 → R
d taking the

vertices of ∆d+1 to the elements of X. Under this map, the image of each face is the
convex hull of the images of its vertices.

The ‘topological version’ of the above theorem relaxes the requirements on the
function f .

Theorem 1.2 (The Topological Radon Theorem). For every continuous function

f : ∆d+1 → R
d there exists a pair of disjoint faces FA and FB of ∆d+1 such that

f (FA) ∩ f (FB) 6= ∅.

Several proofs of this theorem may be found in the literature—each depending on
an application of the Borsuk-Ulam Theorem. See for example [BB], [Wo] and [Ma,
Ch 5]. The goal of this paper is to present a new and particularly elementary method
for deducing the Topological Radon Theorem from Borsuk-Ulam.
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2. Background and notation

Recall that the Borsuk-Ulam Theorem guarantees that, for any continuous g :
Sd → R

d, there exists x ∈ Sd such that g (x) = g (−x). Here Sd denotes the standard
d-sphere

{

x ∈R
d+1 | ‖x‖ = 1

}

. (Points x and −x from Sd are called antipodal points.)
Let N = (0, · · · , 0, 1) and S = (0, · · · , 0,−1) denote the north and south poles of

Sd and view Sd−1 as a subset of Sd — the intersection of Sd with the hyperplane
R

d × 0. We may then view Sd as the union Sd = ∪y∈Sd−1Gy where Gy is the great
semicircle with endpoints S and N intersecting Sd−1 at the point y. In other words,
Gy =

{

(cos θ · y, sin θ) | θ ∈
[

−π

2
, π

2

]}

. Notice that for distinct y1,y2 ∈ Sd−1, Gy1

intersects Gy2
only in the poles {N,S}.

For convenience, we represent a point (cos θ · y, sin θ) in generalized polar form by
the expression 〈y, θ〉. This representation is unique provided −π

2
< θ < π

2
. In this

form antipodal points are easy to recognize—the antipode of 〈y, θ〉 is 〈−y,−θ〉.
Next we discuss simplexes, their faces, and their boundaries. Let v1,v2, · · · ,vd+1

be the points (1, 0, 0, · · · , 0), (0, 1, 0, · · · , 0) , · · · , (0, 0, 0, · · · , 1) in R
d+1. The d-

dimensional simplex ∆d is the convex hull of {v1,v2, · · · ,vd+1}. Thus,

∆d =
{

∑

d+1
i=1 aivi | ai ≥ 0 and

∑

d+1
i=1 ai = 1

}

.

We call v1,v2, · · · ,vd+1 the vertices of ∆d. The coefficient ai of a given point is
called its ith barycentric coordinate. The point in ∆d with barycentric coordinates
uniformly equal to 1

d+1
is called the barycenter of ∆d; it will be denoted bd

Notice that, for any k ≤ d, the simplex ∆k may be viewed as a subset of ∆d. More
generally, if A ⊆ {v1,v2, · · · ,vd+1}, we call the convex hull of A, denoted FA, a face

of ∆d. When A contains exactly k + 1 elements, then FA is an isometric copy of ∆k.
Faces FA and FB are disjoint if and only if A ∩ B = ∅. The boundary of a simplex
∆d, denoted ∂∆d, is the union of all proper faces of ∆d.

In preparation for our theorem, we express ∂∆d as a union of subsets, each made
up of a pair of line segments. Let ∂+∆d denote the union of all proper faces of ∆d

except for ∆d−1. Then each p ∈ ∂+∆d lies on a line segment Kq connecting a point
q ∈ ∂∆d−1 to the vertex vd+1. That segment is unique, unless p = vd+1. Similarly,
each p ∈ ∆d−1 lies on a segment Lq connecting a point q ∈ ∂∆d−1 to the barycenter
bd−1 of ∆d−1. Let Mq = Kq ∪ Lq, a ‘bent segment’ connecting bd−1 to vd+1.

The Mq’s in ∂∆d are analogous to the great semi-circles Gy in Sd−1 with {vd+1,bd−1}
analogous to {N,S}. In particular, ∂∆d = ∪q∈∂∆d−1Mq, with Mq intersecting Mq′

precisely in {vd+1,bd−1} whenever q 6= q′. See Figure 1.

3. Proofs

The Topological Radon Theorem is an easy consequence of the following:

Proposition 3.1. For every d ≥ 0, there exists a continuous function λd : Sd →
∂∆d+1 such that, for any x ∈ Sd, λd (x) and λd (−x) lie in disjoint faces of ∂∆d+1.

Proof of Theorem 1.2 from Proposition 3.1. Given a continuous function f : ∆d+1 →
R

d, consider f ◦λd : Sd → R
d. By the Borsuk-Ulam Theorem, these exists x ∈ Sd such



THE TOPOLOGICAL RADON THEOREM 3

N

S

y

y q

b

v

v

v

v

q

1

4

2

2

3

G M

Figure 1. A great semicircle Gy in S2 and a ‘bent segment’ Mq in ∂∆3.

that f ◦λd (x) = f ◦λd (−x). By Proposition 3.1, there exist disjoint faces FA and FB

of ∂∆d+1 containing λd (x) and λd (−x), respectively. Then f (FA)∩ f (FB) 6= ∅. �

Proof of Proposition 3.1. For d = 0, S0 = {−1, 1} and ∂∆1 = {v1,v2}. Simply define
λ0 (−1) = v1 and λ0 (1) = v2.

Proceeding inductively, assume that an acceptable λk : Sk → ∂∆k+1 exists for
some k. We show how to obtain λk+1 : Sk+1 → ∂∆k+2.

For each y ∈Sk define λk+1 to take Gy ⊆ Sk+1 onto Mλk(y) ⊆ ∂∆k+2 as follows:

λk+1 (〈y, t〉) =















vk+3 for π

4
≤ t ≤ π

2
(

1 − 4t

π

)

· λk (y) + (4t

π
) · vk+3 for 0 ≤ t ≤ π

4
λk (y) for − π

4
≤ t ≤ 0

−(1 + 4t

π
) · bk+1 +

(

2 + 4t

π

)

· λk (y) for − π

2
≤ t ≤ −π

4

.

In words, λk+1 maps the upper half of a great semicircle Gy onto the segment Kλ(y) by

squeezing the
[

π

4
, π

2

]

-portion to the vertex vk+3 and stretching the
[

0, π

4

]

-portion over

the entire segment. On the lower half of Gy, λk+1 maps the entire
[

−π

4
, 0

]

-portion

to the point λk (y) and stretches the
[

−π

2
,−π

4

]

-portion over the segment Lλ(y). The
continuity of λk+1 follows easily from the continuity of λk combined with the obvious
continuity of λk+1 on each of the great semicircles Gy.

Claim. For any 〈y, t〉 ∈ Sk+1, λk+1 (〈y, t〉) and λk+1 (〈−y,−t〉) lie in disjoint

faces of ∂∆k+2.
Without loss of generality, we may assume t ∈

[

0, π

2

]

.

Case 1. t ∈
[

π

4
, π

2

]

.

Then λk+1 (〈y, t〉) = vk+3 and λk+1 (〈−y,−t〉) = −(1+ 4t

π
)·bk+1+

(

2 + 4t

π

)

·λk (y) ∈

∆k+1. Since {vk+3} and ∆k+1 are disjoint, the claim holds.

Case 2. t ∈
[

0, π

4

]

.
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By the inductive hypothesis, there exist disjoint faces FA and FB of ∂∆k+1 con-
taining λk (y) and λk (−y), respectively. Applying the definition of λk+1, we see that
λk+1 (〈y, t〉) ∈ FA∪{vk+3} and λk+1 (〈−y,−t〉) ∈ FB ⊆ ∂∆k+1. Since A ∪ {vk+3} and
B are disjoint, so are the corresponding faces. �
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